小学数学“正反比例问题、 按比例分配问题、百分数问题”总结+解题思路+例题整理(经典应用题10收藏!)

合集下载

小学奥数正反比例性质求解

小学奥数正反比例性质求解

小学六年级奥数讲义正反比率性质求解注:标有※的题目,属于东华、南开等中学历年考试原题有关知识铺垫一、下边是有关购置相同礼物的份数与总价的表格第一次第二次第三次份数102040总价/元8016032 0因为总价÷份数=80:10=160:20=320:40=单价(必定),所以份数与总价成()比率关系。

除此之外,我们还发现:10:20=80:160 20 :40=160:320 10 :40=80():()依据以上发现,能够得出这样的结论:单价必定,份数与总价成正比率关系,第一次与第二次的份数比,就是第一次与第二次的总价比;或许说,第一次与第二次的总价比就是第一次与第二次的份数比。

简单地说,就是:单价必定,份数与总价成正比率关系,份数的比就是总价的比。

二、下边是有关汽车从塘厦到东莞来回时的速度与时间的表格。

去时回时速度千米/小时120 80时间/小时 2 3因为,时间×速度=120×2=80×3=行程(必定),所以时间与速度成()比率关系。

除此之外,我们还发现:120:80=():() 2 :3=():()依据以上发现,能够得出这样的结论:行程必定,时间与速度成反比率关系,去时的速度比回时的速度等于()的时间比()的时间;去时的时间比回时的时间等于()的速度比()的速度。

简单地说,就是:行程必定,时间与速度成反比率关系,时间的比是速度的反比。

你能依据以上规律,说出一些其余近似的例子吗?利用以上知识,能够将题目中A类条件的比转变成B类条件的比,所以,正反比率性质也是“条件转变”的重要依照之一。

如:汽车从塘厦到东莞,来回时间的时间分别是4小时和6小时,则来回的速度比是():()这就是将已知中的时间条件比转变成了速度关系。

例一、甲乙两人同时加工一批部件,甲乙工作效率的比是4:5,达成任务时,乙比甲多加工120个零件,这批部件共多少个?剖析:因为题目中给出的比是工效比,而详细量又是工作总量的差,条件不般配,所以,一定进行条件的转变。

精选练习六年级下册 正比例、反比例应用题专项训练 含答案解析

精选练习六年级下册 正比例、反比例应用题专项训练 含答案解析

正比例、反比例应用题一、应用题1.小兰的身高1.5m,她的影长是2.4m。

如果同一时间同一地点测得一棵树的影子长4米,这棵树有多高?2.一间房子要用方砖铺地,用边长5分米的方砖需用2000块,如果改用边长是4分米的方砖,需用多少块?(用比例解)3.用同样的砖铺地,铺18平方米要用618块砖.如果铺地24平方米,要用多少块砖?(用比例知识来解)4.测量小组要测量一棵树的高度,先量得树的影子长12米,接着在树的附近直立了一根长2米的竹竿,量得竹竿的影子长1.2米.这棵树的高度是多少米?5.王师傅完成一批零件,计划每天加工240个,20天完成。

实际每天多加工60个,多少天完成任务?(用比例知识解答)6.青艺农场收割小麦.前6天收割了114公顷,剩下152公顷.(1)照前几天的工作效率,剩下的还要多少天才能完成?(用比例解)(2)前几天收割的比后几天收割的少百分之几?(3)每公顷平均收小麦7.5吨,这个农场用载重5吨的卡车运回全部小麦,需要运多少次?7.小华的身高是1.6米,他的影长是2.4米.如果在同一时间、同一地点测得一棵树的影长为6米,这棵树有多高?8.市政工程队铺一条路,原计划每天铺0.6千米,24天完成.实际每天铺0.8千米,实际用多少天完成?9.给学校教务处办公室铺地砖,原计划选用3分米的方砖,需要960块;后来实际选用了4分米的方砖铺地,实际用了多少块4分米的方砖?10.甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车时间234….(小时)路程100150200….(千米)4.5千米,20天完成,实际每天修6千米,实际几天可修完?(用比例解)12.一辆汽车3小时行了135千米,照这样计算,行驶315千米需要几小时?(用比例解)13.一辆汽车从甲地出发,每小时行45千米,4小时到达乙地.如果每小时行60千米,几小时可到达乙地?(用比例解)14.(2015•邹城市)一艘轮船从甲港开往乙港,去时顺水,每小时行24千米,15小时到达.返回时逆水,速度降低了25%,多少小时返回甲港?(用比例解)15.用边长是40厘米的方砖给教室铺地需500块,如果改用边长是50厘米的方砖铺地,可节省多少块?16.六年级甲、乙、丙三个班植树,任务分配是:甲班要植三个班总棵数的40%,乙、丙两班植树棵数的比是4:3.当甲班植了200棵树时,正好完成三个班植.求丙班植树多少棵?树总棵数的2717.一间房子要用方砖铺地,用边长是5分米的方砖需要400块,如果改用边长是4分米的方砖,需要多少块?(用比例解)18.育美小学的六年级同学参加军校的行军训练,3小时行了15千米.照这样计算,再行17.5千米就可到达目的地,到达目的地还要行几小时?(用比例解) 19.A、B两地相距360km,一辆汽车从甲地到乙地,原计划每小时行90km,实际这辆汽车是按照下表的速度行驶的.问这辆汽车能否在原计划时间内到达目的时间(h)234…10…路程(km)100150200…500…平方米的客厅要用87.5块,那么18平方米的卧室要用多少块?21.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?车厢种类车厢节数每节车厢可乘人数硬座7108硬卧1678软卧43423.一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用边长是4分米的方砖,需用多少块?(用比例解)24.在春游活动中,我班共创建了8个活动小组,每组5人。

小学数学“正反比例问题、 按比例分配问题、百分数问题”总结+解题思路+例题整理(经典应用题10收藏!)

小学数学“正反比例问题、 按比例分配问题、百分数问题”总结+解题思路+例题整理(经典应用题10收藏!)

小学数学“正反比例问题、按比例分配问题、百分数问题”总结+解题思路+例题整理一、正反比例问题【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】判断正比例或反比例关系是解这类应用题的关键。

许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。

例1修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?解:由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12现已修长度∶总长度=1∶(1+2)=1∶3=4∶12比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)答:这条公路总长3600米。

例2张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?解:做题效率一定,做题数量与做题时间成正比例关系设91分钟可以做X应用题则有28∶4=91∶X28X=91×4X=91×4÷28X=13答:91分钟可以做13道应用题。

例3孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?解:书的页数一定,每天看的页数与需要的天数成反比例关系设X天可以看完,就有24∶36=X∶1536X=24×15X=10答:10天就可以看完。

小学数学-正反比的应用典型例题及解析

小学数学-正反比的应用典型例题及解析

1.从学校到图书馆,彬彬去时用了15分钟,沿原路返回时用了18分钟,去的速度与返回的速度的比是______.2.张华、李明同走一段路,它俩的速度比是3:2,所用的时间比是______.3.甲、乙两车在同样的时间里所行路程比是4:3,两车的速度比是______;行完同样的路程,两车所用时间比是______.4.从学校道南山湖风景区,小明走了12分钟,小刚走了15分钟,小明和小刚所用时间的比是______,速度比是______.5.甲、乙两车同时从两地相对开出,相遇时甲车比乙车多行52km.如果甲、乙两车的速度比是7:5,速度之和是130km/时,则两车相遇所需时间是多少小时?6.两座城市相距525千米,客车与货车从两地同时出发相向而行,经过5小时两车途中相遇,已知客车和货车的速度比是4:3,那么客车的速度是多少呢?7.小明上坡速度为每小时3.6千米,下坡时每小时4.5千米,有一个斜坡,小明先上坡再原路返回共用1.8小时,这段斜坡全长______千米.8.星期天小刚与爸爸去爬山,从山脚下爬到山顶用了18分钟,原路下山时用了15分钟.已知他们下山的速度是每分钟60米,他们上山的速度是每分钟多少米?9.小明和小红同时从A、B两地相向而行,小明每分钟走60米,小红每分钟走80米,他们两人在距离中点120米的地方相遇,求AB两地之间的距离.10.淘气和笑笑同时从甲乙两地相向而行,两人相遇时距离两地中点300米,已知淘气每分钟行100米,笑笑每分钟行125米,那么甲乙两地相距______米.参考答案与试题解析1.从学校到图书馆,彬彬去时用了15分钟,沿原路返回时用了18分钟,去的速度与返回的速度的比是___ 。

【正确答案】:[1]6:5【解析】:假设从学校到图书馆的路程是单位“1”,则彬彬的去时速度与返回速度分别是115、118;然后用去时的速度比返回时的速度,再化简即可解答。

【解答】:解:把从学校到图书馆的路程看作单位“1”,彬彬去时用了15分钟,沿原路返回时用了18分钟,所以去时的速度和返回时的速度分别是115、118,所以去的速度与返回速度的比是115:118。

六年级数学正反比例应用题例题

六年级数学正反比例应用题例题

正、反比例应用题☆知识要点:<1>解答正、反比例应用题,要以正、反比例的意义为依据.<2>解答正反比例应用题的一般步骤:①先确定题中三种数量关系中的定量,然后分析两个变量是比值一定,还是积一定,从而确定两个变量间是正比例关系还是反比例关系.②设未知数x .③根据题意列出等式,正比例列成比例式,反比例列成乘积相等的等式.④解答并检验.<3>解答正反比例应用题的关键是正确判断,两种相关联的量是成什么比例,判断的方法是例1. 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?分析:根据条件和问题,可知这道题,一批电视机是一定的,每天装的台数和完成的天数成反比例关系,所以两次每天生产的台数和完成的天数的乘积是相等的.解:设每天应装x台.答:每天应装75台.例2. 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?分析:每天生产个数×天数=零件总数(一定),已知零件总数一定,每天生产个数与生产天数成反比例.此题可先求实际用多少天,然后再求提前几天完成.方法<1>解:设实际用x天完成.(间接设)答:提前5天完成.方法<2>解:设可以提前x天完成.(直接设)例3. 用4台拖拉机每天可耕地32公顷,如果用9台同样的拖拉机,每天可耕地多少公顷?已知工作效率一定,工作总量和拖拉机台数成正比例解:设每天耕地x公顷.答:每天可耕地72公顷.<4>会应用比例等知识用多种方法解答问题,提高综合运用知识能力.在学习中,要注重知识的内在联系的沟通,这样就可以提高综合运用知识能力.答:两袋共重216千克.方法4. 用比例分配方法解答:24×(4+5)=216(千克)从以上的解答过程可以知道,同学们学习了用比例解题后,又多了一种解题思路,思路更开阔了,但要注意具体问题要具体分析,根据题目的实际情况选择最好的解题方法,指出提高我们的解题能力.☆基础练习:<1>一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?<2>同样的方砖铺地,铺18平方米用砖144块,现有840块方砖可铺地多少平方米?<3>修一条公路,5天共修4500米,照这样计算20天共可修多少米?<4>用边长20厘米的方砖铺一块地,需要2000块,如果改用边长为40厘米的方砖铺地,需要多少块?<5>一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完?<6>学生参加搬砖劳动,6人搬砖162块,照这样计算,再增加432块,需要学生多少人?<7>一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米?<8>运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?☆数学医院:<1> 电视机厂要生产一批电视机,头30天生产180台,照这样计算,要生产1320台,需要多少天?(用比例解)解:设需要x天。

人教版数学六年级下册:《正反比例》解答题

人教版数学六年级下册:《正反比例》解答题

人教版数学六年级下册:《正反比例》解
答题
正反比例是数学中的一个重要概念,通过研究正反比例,可以帮助我们理解数与数之间的关系。

下面是对《正反比例》一课中解答题的解析。

1. 解答题一
题目:小明用20块钱买了5本书,如果每本书的价钱一样,那么每本书的价钱是多少?
解析:由题可知,小明用20块钱买了5本书,且每本书的价钱一样。

我们可以用反比例关系来解答这个问题。

设每本书的价钱为x元,则有正反比例关系:
20 / 5 = 5 / x
通过求解上述比例关系,可以得出每本书的价钱x为4元。

2. 解答题二
题目:运动会上,小红用1小时跑了8圈操场,那么3小时能跑几圈?
解析:根据题目,我们可以列出正比例关系式:小时数与圈数之间存在正比关系。

设3小时能跑的圈数为y圈,则有正比例关系:
1 / 8 = 3 / y
通过求解上述比例关系,可以得出3小时能跑的圈数y为24圈。

3. 解答题三
题目:一辆汽车以每小时60公里的速度行驶,行驶10小时能行驶多少公里?
解析:根据题目,我们可以列出正比例关系式:小时数与行驶的公里数之间存在正比关系。

设行驶10小时的公里数为z公里,则有正比例关系:
1 / 60 = 10 / z
通过求解上述比例关系,可以得出行驶10小时的公里数z为600公里。

以上是对《正反比例》解答题的解析。

通过解答这些题目,我们能够更好地理解正反比例的概念,以及在实际问题中的应用。

希望这些解析对你的研究有所帮助!。

六年级正反比例题100道

六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。

2. 5本书的价格是20元,那么每本书的价格是多少元。

3. 一个足球的价格是50元,购买3个足球需要多少钱。

4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。

5. 4个橙子的总价是16元,1个橙子多少钱。

6. 一条绳子长6米,3条绳子总长多少米。

7. 如果每辆车能载5人,10辆车能载多少人。

8. 一盒巧克力有10块,3盒巧克力有多少块。

9. 每个学生要交100元的学费,10个学生总共交多少钱。

10. 一台电脑的价格是4000元,4台电脑的总价是多少元。

11. 如果1升油的价格是8元,5升油的价格是多少元。

12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。

13. 1本书的页数是200页,5本书的总页数是多少页。

14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。

15. 一棵树的高度是3米,5棵树的总高度是多少米。

16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。

17. 如果每本杂志售价10元,9本杂志总共多少钱。

18. 一辆车每小时行驶80公里,4小时能行驶多少公里。

19. 如果1公斤米的价格是5元,2公斤米总共多少钱。

20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。

21. 一支笔的价格是3元,12支笔总共多少钱。

22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。

23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。

24. 如果一个人的工资是3000元,5个人的总工资是多少元。

25. 每条鱼的重量是200克,10条鱼的总重量是多少克。

26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。

27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。

28. 每个学生要用5张纸,25个学生需要多少张纸。

29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。

六年级下学期数学 正比例与反比非常完整版考点总结+题型训练+课后作业 均带答案

考点三、正比例系的必须是两个量,可以取不同数值的两个量,不能是具体的数字。

4、生活中正比例的例子:(1)正方形的周长与边长成正比例关系。

(2)如果汽车行驶速度一定,路程与时间成正比例关系。

(3)平行四边形的高一定,面积和底成正比例关系。

【练习三】一、判断(1)如果3x=8y (x 和y 均不为0),那么y 与x 成正比例。

( √ )(2)黄豆的出油率一定,榨出豆油的重量和所需要的黄豆的重量成正比例( √ )(3)装订每个练习本所用纸的页数一定,装订的本数和所需要的纸的总张数成正比例。

( √ )(4)如果14x =20y (x 和y 均不为0),那么y 与x 成正比例。

( √ ) (5)一个加数不变,和与另一个加数成正比例。

( × )(6)小明的身高和体重。

( × )(7)长方形的周长一定,长和宽。

( × )(8)收入一定,支出和结余。

( × )二、判断下面语句中的两个量是否成正比例关系,是打√,不是打×(1)平行四边形的高一定,它的面积和底( √ )(2)被减数一定,减数和差。

( × )(3)单价一定,总价和数量。

(√)(4)分母一定,分子和数值。

(√)(5)少先队员每人做好事的件数一定,做好事的总件数和做好事的少先队员的人数。

(√)三、填空题1、《中古少年报》的总份数和总价是两种像关联的量,总份数扩大,总价也随着(扩大),如果总份数缩小,总价也随着(缩小),这两种量中(相对应)的两个数的(比值)一定,也就是(单价)一定,《中国少年报》的总价和总份数成(正比例)关系。

2、已知a÷b=5,(a和b均不为0),则a和b是成(正比例)的量,他们的关系叫做(正比例)关系。

3、每台电视机的价格一定,购买电视机的台数和钱数成(正)比例。

4、甲数的3/4相当于乙数的2/3。

甲数与乙数的比是( 8:9 )。

5、X/5=Y/4,X与Y成(正比例)关系。

小学数学比例与比例题目详解与思路

小学数学比例与比例题目详解与思路比例是数学中常见的概念之一,也是小学数学学习中的重要内容。

通过学习比例,可以帮助学生建立数与数之间的关系,培养他们分析和解决实际问题的能力。

本文将详解比例的概念,并提供一些常见的比例题目解题思路。

一、比例的概念比例是指两个或者多个具有相同的单位的量进行比较的结果。

用数学语言表达,就是两个数或多个数之间的相等关系。

常用的表示比例的方式为:1. 用冒号(:)表示:例如,10:15表示10和15的比例为10比15;2. 用分数表示:例如,10/15表示10和15的比例为10/15。

比例中的两个数或多个数分别称为“比例的项”,比例的第一个项叫做“被比”,第二个项叫做“比比”。

二、比例题目详解下面从实际的比例题目中,详解比例的应用和解题思路。

例题1:某班级男生人数和女生人数的比例为3:5,如果男生人数增加了20%,那么男生和女生人数的比例变为多少?解析:首先,根据题意可得男女生人数比例为3:5,可以表示为3/8。

男生人数增加了20%,即原来人数的1.2倍。

因此,男生人数变为3*1.2=3.6。

女生人数不变,仍为5。

所以,新的男生和女生人数比例为3.6/5。

例题2:市场上某种水果的售价是3元/斤,小明用了5元买了若干斤水果,请问他买了多少斤?解析:首先,设小明购买的斤数为x。

根据题意可得 3(元/斤):1(斤)= 5(元):x(斤)。

根据比例的性质,我们可以得到3/1=5/x,解方程得到x=5/3。

所以,小明购买了5/3斤水果。

三、比例题目解题思路对于解比例题,我们可以分为以下几个步骤来进行:1. 确定比例的关系:明确题目中涉及的两个或多个比例的项,确定其之间的关系;2. 建立等式:根据题目中给出的条件,建立比例的等式;3. 解方程:通过解方程求解未知数,找到所求的答案。

在实际解题中,还需要注意以下几个问题:1. 数量单位统一:在进行比例运算时,要确保所涉及的量的单位是统一的,否则会影响计算结果;2. 倍数关系的转化:对于增加了或减少了多少倍的情况,可以先将其转化为百分数或小数,再进行计算;3. 变量的定义:在建立方程时,要清楚地定义变量,明确其代表的含义。

小学六年级正反比例解题技巧

变式训练1印刷厂装订一批图书,原计划每天装订500本,30天完成;实际只用了25天就完成了任务,实际每天装订多少本?(用比例方法解答)
经典例题2学校图书馆的科技书、文艺书和故事书共12000本,其中科技书占 ,科技书与故事书的比是2:3,故事书有多少本?
变式训练2小明读一本书,已经读了全书的 ,如果再读15页,则读过的页数与未读的页数的比是2:3,这本书有多少页?
如果用字母 和 分别表示两种相关联的量,用 表示它们的比值,正比例关系可以用这样的式子来表示: = (一定)。
2、用“描点法”可以得到正、反比例的图像,比例的图像是一条直线,比例的图像是一条曲线。对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
经典例题3修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?
变式训练3一项工程原计划42人工作,14天可以做完。现在要求提前2天完成,需要增加多少人?
(能力提升)每条男领带20元,每支女胸花元。领带与胸花各多少?
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
6、运用正、饭反比例知识解决实际问题:
(1)解答正、反比例应用题用以正、反比例的意义为依据;
(2)解答正、反比例应用题的一般步骤:
先确定题中三种数量关系中的定量,然后分析两个变量是比值一定,还是乘积一定,从而确定两个变量是正比例关系,还是反比例关系;
设未知数x;
根基题意列出等式,正比例列成比例式,反比例列成乘积相等的等式。
解答并检验。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学“正反比例问题、按比例分配问题、百分数问题”总结
+解题思路+例题整理
一、正反比例问题
【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】
判断正比例或反比例关系是解这类应用题的关键。

许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】
解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。

例1
修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?
解:
由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12
现已修长度∶总长度=1∶(1+2)=1∶3=4∶12
比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)
答:这条公路总长3600米。

例2
张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?
解:
做题效率一定,做题数量与做题时间成正比例关系
设91分钟可以做X应用题则有28∶4=91∶X
28X=91×4X=91×4÷28X=13
答:91分钟可以做13道应用题。

例3
孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?
解:
书的页数一定,每天看的页数与需要的天数成反比例关系
设X天可以看完,就有24∶36=X∶15
36X=24×15X=10
答:10天就可以看完。

二、按比例分配问题
【含义】所谓按比例分配,就是把一个数按照一定的比分成若干份。

这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】
从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。

总份数=比的前后项之和
【解题思路和方法】
先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

例1
学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?
解:
总份数为47+48+45=140
一班植树560×47/140=188(棵)
二班植树560×48/140=192(棵)
三班植树560×45/140=180(棵)
答:一、二、三班分别植树188棵、192棵、180棵。

例2
用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。

三条边的长各是多少厘米?
解:
3+4+5=1260×3/12=15(厘米)
60×4/12=20(厘米)
60×5/12=25(厘米)
答:三角形三条边的长分别是15厘米、20厘米、25厘米。

例3
从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

解:
如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。

如果用按比例分配的方法解,则很容易得到
1/2∶1/3∶1/9=9∶6∶2
9+6+2=1717×9/17=9
17×6/17=617×2/17=2
答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

例4
某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?
解:
80÷(12-8)×(8+12+21)=820(人)
答:三个车间一共820人。

三、百分数问题
【含义】百分数是表示一个数是另一个数的百分之几的数。

百分数是一种特殊的分数。

分数常常可以通分、约分,而百分数则无需;
分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。

在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。

【数量关系】
掌握“百分数”、“标准量”“比较量”三者之间的数量关系:
百分数=比较量÷标准量
标准量=比较量÷百分数
【解题思路和方法】
一般有三种基本类型:
(1)求一个数是另一个数的百分之几;
(2)已知一个数,求它的百分之几是多少;
(3)已知一个数的百分之几是多少,求这个数。

例1
仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?
解;
(1)用去的占720÷(720+6480)=10%
(2)剩下的占6480÷(720+6480)=90%
答:用去了10%,剩下90%。

例2
红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?
解:
本题中女职工人数为标准量,男职工比女职工少的人数是比较量所以(525-420)÷525=0.2=20%
或者1-420÷525=0.2=20%
答:男职工人数比女职工少20%。

例3
红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?
解:
本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此(525-420)÷420=0.25=25%
或者525÷420-1=0.25=25%
答:女职工人数比男职工多25%。

例4
红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?
解:
(1)男职工占420÷(420+525)=0.444=44.4%
(2)女职工占525÷(420+525)=0.556=55.6%
答:男职工占全厂职工总数的44.4%,女职工占55.6%。

相关文档
最新文档