重难点突破乘法公式题型汇编培优必备素材
整式乘法乘法公式培优

第二课 整式乘法——乘法公式培优一、平方差②(2)(2)x y x y -+-- ②11()()22a b a b --- ③(2)(2)a b c a b c +---=④(23)(23)a b c a b c ---+- ⑤22(34)(34)a b a b --+=2、已知:12345671234569A =⨯,21234568B =,比较A 、B 的大小,则A B .3、(1)计算:2481631111111(1)(1)(1)(1)(1)222222++++++= .(2)2481632(51)(51)(51)(51)(51)(51)++++++=(3)222222111111(1)(1)(1)(1)(1)(1)234201620172018---⋯⋯---=二、利用完全平方公式计算:1、(1)()223x - (2)()243x y + (3)()2mn a -(4)()225xy x + (5)()221n n +- (6)(a -b +c )22、(1)22411_________24x x ⎛⎫+=++ ⎪⎝⎭ (2)()22_______p pq -+=三、混合运算(1)1(3x m +2y n +4)(3x m +2y n -4) (2)(m+n )(m -n )(m 2-n 2)(3)(x+2y)(x 2-2xy+4y 2) (4)(3x+2)2-(3x -2)2+(3x+2)2(3x -2)2(5)(2x+3)2-2(2x+3)(3x-2)+(3x-2)2(6)22(23)(46)(23)(23)x y x y x y x y -+-+++(7)(2x+3y)2(2x-3y)2(8)(3x+2)2-(3x-5)2(9)(x 2+x+6)(x 2-x+6) (10)(9-a 2)2-(3-a)(3-a)(9+a)2(11)(a+b-c)(a-b+c)-(a-b-c)(a+b+c) (12)x 2–(x+y)(x –y)(13) (14))(15) (16)(a -2b +3c )2-(a +2b -3c )2.(17)(2x +y -z +5)(2x -y +z +5) (18) 22)231()231(y x y x --+-(19)()()()()x z x xz z x z x xz z +-+-++222222四、配方1.(1)若292(3)16x k x +-+是完全平方式,则k 的值为 (2)如果26x x k -+是完全平方式,则k 的值为 (3)若22(1)4x k x -++是完全平方式,则k 的值为(4)若29(1)4x k x -++是完全平方式,则k 的值为(5)若多项式224(2)9x k xy y --+是完全平方式,则k 的值是 .⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+4428y x y x ()()22875875c b a c b a +---+2.已知:a ,b ,c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++的值.3、实数a ,b ,c 满足2617a b +=-,2823b c +=-,2214c a +=,则a b c ++的值。
整式的乘除(重点、难点、考点复习总结)

整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。
单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。
【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。
初二数学知识点专题讲解与练习2---乘法公式(培优版)

A.正数
B.负数
C.非负数
D.可正可负
.若 则 的值是( ) 9 x − y = 2, x2 + y2 = 4, x1992 + y1992
.A 4
.B 19922
.C 21992
.D 41992
3/9
(“希望杯”邀请赛试题)
10.某校举行春季运动会时,由若干名同学组成一个 8 列的长方形队列.如果原队列中增加 120 人,就能
例 4 71 提示:由 a+b=1, a2 + b2 =2 得 ab=- 1 ,利用 an+1 + bn+1 =( an + bn )(a+
8
2
b)-ab( an−1 + bn−1 )可分别求得 a3 + b3 = 5 ,a4 + b4 = 7 ,a5 + b5 = 19 ,a6 + b6 = 26 ,a7 +
对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.
1/9
【例 3】计算下列各题: ( ) ; 1 6(7 +1)(72 +1)(74 +1)(78 +1) +1
(天津市竞赛试题)
( ) ; 2 1.234 52 + 0.765 52 + 2.469× 0.765 5
(“希望杯”邀请赛试题)
3.13 4.156 5.D
6.C 提示:(x+y)(x-y)=2009=7×7×41 有 6 个正因数,分别是 1,7,41,49,287 和 2009,因此对应的方程组为: x + y = −1,−7,−41,−49,−287,−2009,1,7,41,49,287,2009; x − y = −2009,−287,−49,−41,−7,−1,2009,287,49,41,7,1. 故(x,y)共有 12 组不同的表示. 7.B 8.C 9.提示:不存在符合条件的整数对(m,n),因为 1954 不能被 4 整除.
专题08 乘法公式(知识点串讲)(解析版)

专题08乘法公式知识网络重难突破知识点一完全平方公式1、完全平方公式222+=++a b a ab b()2222-=-+()2a b a ab b文字语言:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍.速记口诀首平方,尾平方,乘积2倍放中央,符号确定看前方。
注意:①两个公式的左边都是一个二项式的完全平方的形式,二者仅有一个“符号”不同;两个公式的右边都是二次三项式,其中有两项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的2倍,二者也仅有一个“符号”不同;②公式的拓展:公式中的a ,b 可以是数,也可以是单项式或多项式;③完全平方公式的变形公式:222()2a b a b ab+=+- 222()2a b a b ab+=-+ 2222()()ab a b a b =+-+2222()()ab a b a b =+--224()()ab a b a b =+--2、完全平方公式的几何意义图① 图②表示图①中大正方形的面积,可以得到:222()2a b a ab b +=++表示图②中左下正方形的面积,可以得到:222()2a b a ab b -=-+3、利用完全平方公式进行简便运算典例1(2019春•宝应县期末)已知关于x 的二次三项式29x mx ++是一个完全平方式,则m 的值是()A .3±B .6±C .9±D .12± 【解答】解:关于x 的二次三项式29x mx ++是一个完全平方式,2136m ∴=±⨯⨯=±.故选:B .典例2(2019春•滨湖区期中)已知:2x y +=,3xy =-,则22x y +的值( )A .10B .3C .16D .4【解答】解:2x y +=,3xy =-,∴原式2()24610x y xy =+-=+=,故选:A .典例3(2019春•姑苏区期中)用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是121,小正方形的面积是9,若用a ,b 分别表示矩形的长和宽()a b >,则下列关系中不正确的是( )A .11a b +=B .3a b -=C .28ab =D .22121a b +=【解答】解:由题意得,大正方形的边长为11,小正方形的边长为3,11a b ∴+=,3a b -=,22()()33a b a b a b ∴+=+-=,7a =,4b =,28ab ∴=,故选:D .典例4(2019春•常熟市期末)对于代数式:222x x -+,下列说法正确的是( )A .有最大值1B .有最小值1C .有最小值2D .无法确定最大最小值【解答】解:222x x -+2211x x =-++2(1)1x =-+, 2(1)0x -,2(1)11x ∴-+,即222x x -+有最小值1,故选:B .知识点二 平方差公式1、公式的推导2222()()a b a b a ab ab b a b +-=-+-=-2、两种表达方式数学语言:22()()a b a b a b +-=-;文字语言:两个数的和与这两个数的差的积,等于这两个数的平方差.注意:①平方差公式适用于两个二项式相乘,且这两个二项式中有一项完全相同,另一项只是符号相反,计算结果是相同项的平方减去相反项的平方;②运用公式时,关键是确定公式中的a 和b ,完全相同的项是a ,符号相反的项是b ,然后再套用公式; ③公式的拓展:公式中的两个二项式相乘可以拓展到两个多项式相乘,只要满足有完全相同的部分,其余部分正好符号相反即可套用平方差公式.3、平方差公式的几何意义22()()a b a b a b+-=- 4、利用平方差公式进行简便运算典例1(2019春•玄武区校级期中)下列整式乘法中,能运用平方差公式进行运算的是( )A .(2)(2)a b b a +-B .()()x b x b --+C .()()a b b a --D .()()22x x y y +- 【解答】解:A 、(2)(2)a b b a +-,不符合平方差公式,故此选项错误;B 、()()()()x b x b x b x b --+=-++,不符合平方差公式,故此选项错误;C 、()()()()a b b a a b a b --=---,不符合平方差公式,故此选项错误;D 、()()22x x y y +-,符合平方差公式,故此选项正确;故选:D .典例2(2018秋•涟水县期中)如图,边长为(4)a +的正方形纸片剪出一个边长为a 的正方形之后,剩余部分可剪拼成一个矩形(无缝隙,不重叠),若拼成的矩形一边长为4,则另一边长是( )A .4a +B .8a +C .24a +D .28a +【解答】解:依题意得剩余部分面积为:2222(4)816816a a a a a a +-=++-=+,拼成的矩形一边长为4,∴另一边长是(816)424a a +÷=+.故选:C .典例3(2019春•宿豫区期中)计算:2201920182020-⨯= .【解答】解:原式222222019(20191)(20191)2019(20191)2019201911=--⨯+=--=-+=,故答案为:1典例4(2019春•滨湖区期中)[问题1]在学完平方差公式后,小滨出示了一串呈“数字”链的计算题:248(21)(21)(21)(21)++++小梅根据算式的特点,结合平方差公式,发现:只要在算式最前面添上一个“引线”一一数字1,就可用平方差公式,像点鞭炮一样依次“点燃”整个“数字”链.(1)请根据小梅的思路,求出这个算式的值.(2)计算:248161(31)(31)(31)(31)(31)2++++++.【解答】解:(1)原式248(21)(21)(21)(21)(21)=-++++2248(21)(21)(21)(21)=-+++448(21)(21)(21)=-++88(21)(21)=-+1621=-;(2)原式2481611(31)(31)(31)(31)(31)(31)22=+-+++++ 22481611(31)(31)(31)(31)(31)22=+-++++ ⋯3211(31)22=+- 32132=⨯.知识点三 整式计算及化简求值化简求值的一般步骤:第一步:运用相关的乘法公式将代数式展开;第二步:寻找代数式中的同类项,合并成最简形式;第三步:将字母的值代入化简后的代数式,并计算得出结果.典例1(2019春•常州期中)下列计算正确的是( )A .22(2)(2)4x y x y x y ++=+B .22(2)4x x -=-C .2(2)(3)6x x x x +-=+-D .2(1)(1)1x x x ---=-【解答】解:22(2)(2)44x y x y x xy y ++=++,A 错误;22(2)44x x x -=-+,B 错误;2(2)(3)6x x x x +-=--,C 错误;2(1)(1)1x x x ---=-,D 正确;故选:D .典例2(2019春•徐州期末)先化简,再求值:225()(2)(3)a a b a b a b -++--,其中3a =-,15b =. 【解答】解:原式222225544965a ab a ab b a ab b ab =-+++-+-=,当3a =-,15b =时,原式3=-.典例3(2019春•张家港市期末)若7a b +=,且(2)(2)2a b --=.(1)求ab 的值.(2)求223a ab b ++的值.【解答】解:(1)7a b +=,且(2)(2)2()42a b ab a b --=-++=,1442ab ∴-+=, 解得:12ab =;(2)7a b +=,12ab =,∴原式2()491261a b ab =++=+=.巩固训练一、单选题(共6小题)1.(2019春•无锡期末)计算(3)(3)a b a b +-的结果为( )A .229a b -B .229b a -C .2296a ab b --D .2296a ab b -+【解答】解:(3)(3)a b a b +-22(3)a b =-229a b =-故选:A .2.(2019春•姑苏区期末)下列运算正确的是( )A .33a a a =B .632a a a ÷=C .22(2)4a a -=-D .2(3)(2)6a a a a -+=--【解答】解:A 、原式4a =,不符合题意;B 、原式3a =,不符合题意;C 、原式244a a =-+,不符合题意;D 、原式26a a =--,符合题意,故选:D .3.(2019春•天宁区校级期中)下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6x x x +-=-C .22211(2)2424x y x xy y +=++D .22(2)(2)4y x y x y x -+-=-【解答】解:A 、222()2x y x xy y -=-+,故此选项不合题意;B 、2(2)(3)6x x x x +-=-+,故此选项不合题意;C 、22211(2)2424x y x xy y +=++,故此选项符合题意;D 、22(2)(2)44y x y x y xy x -+-=-+-,故此选项不合题意;故选:C .4.(2019春•淮安区期末)若多项式291x mx ++是一个含x 的完全平方式,则m 等于()A .6B .6或6-C .9D .9或9- 【解答】解:多项式291x mx ++是一个含x 的完全平方式,6m ∴=±,故选:B .5.(2019春•江阴市期中)24323(21)(21)(21)1++⋯++计算结果的个位数字是( )A .4B .6C .2D .8【解答】解:原式22432(21)(21)(21)(21)1=-++⋯++44832(21)(21)(21)(21)1=-++⋯++64211=-+642=;122=,224=,328=,4216=,个位数按照2,4,8,6依次循环,而64164=⨯,∴原式的个位数为6.故选:B .6.(2018秋•沛县期末)如图,从边长为(4)a cm +的大正方形纸片中剪去一个边长为(1)a cm +的小正方形(0)a >,剩余部分沿虚线剪开,拼成一个矩形(不重盘无縫隙),则矩形的面积为( )A .2(25)a a cm +B .23(25)a cm +C .23(21)a cm +D .2(21)a a cm +【解答】解:矩形的面积是22(4)(1)a a +-+81621a a a a =++---615a =+.故选:B .二、填空题(共5小题)7.(2019春•鼓楼区期中)已知2a b +=,1a b -=-,则22a b -= .【解答】解:因为2a b +=,1a b -=-,则22()()2(1)2a b a b a b -=+-=⨯-=-,故答案为:2-.8.(2019春•玄武区期中)计算:2201920172021-⨯= .【解答】解:2201920172021-⨯22019(20192)(20192)=--+222201920192=-+4=.故答案为:4.9.(2019春•泰兴市期中)已知2()20x y +=,2()4x y -=,则xy 的值为 .【解答】解:222()220x y x xy y +=++=①,222()24x y x xy y -=-+=②,∴①-②得:416xy =,则4xy =,故答案为:410.(2019秋•泗洪县校级月考)如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么2()a b +的值是 .【解答】解:根据题意得:22213c a b =+=,14131122ab ⨯=-=,即212ab =, 则222()2131225a b a ab b +=++=+=,故答案为:25.11.(2019春•东台市期中)我们规定一种运算:a b ad bc c d =-,例如353645246=⨯-⨯=-.按照这种运算规定,已知21012x x x x -+=++,则x = . 【解答】解:由题意可知:2(2)(2)(1)0x x x -+-+=,224(21)0x x x ∴--++=250x ∴--=,52x ∴=-, 故答案为:52-.三、解答题(共2小题)12.(2019春•南京期末)先化简,再求值:22()()()2a b a b a b b +---+,其中3a =-,12b =. 【解答】解:原式22222222a b a ab b b ab =--+-+=,当3a =-,12b =时,原式3=-. 13.(2019春•无锡期末)先阅读下面的内容,再解答问题.【阅读】例题:求多项式2222613m mn n n ++-+的最小值.解;222222222613(2)(69)4()(3)4m mn n n m mn n n n m n n ++-+=+++-++=++-+, 2()0m n +,2(3)0n -∴多项式2222613m mn n n ++-+的最小值是4.【解答问题】(1)请写出例题解答过程中因式分解运用的公式是 ;(2)已知a 、b 、c 是ABC ∆的三边,且满足2210841a b a b +=+-,求第三边c 的取值范围;(3)求多项式2224367x xy y y -+--+的最大值.【解答】解:(1)完全平方公式.(2)2210841a b a b +=+-,2210258160a a b b ∴-++-+=,22(5)(4)0a b ∴-+-=.2(5)0a -,2(4)0b -,5a ∴=,4b =.19c ∴<<.(3)原式2222426916x xy y y y =-+----+222()(3)16x y y =---++,22()0x y --,2(3)0y -+,∴多项式2224367x xy y y -+--+的最大值是 16.。
7下第6讲乘法公式(培优)

第六讲 乘法公式(培优)重难点:1、平方差公式:()()22b a b a b a -=-+拓展:()()3322b a b ab a b a ±=+± (立方和差公式)2、完全平方公式:()2222b ab a b a +±=±拓展:()ac bc ab c b a c b a 2222222+++++=++()()()()abb a ab b a b a ab b a b a 224222222+-==-+=+=--+例1、应用乘法公式计算。
(1)()()x y y x ---22(2)3221 ⎝⎛-x(2,=+441xx _____________。
1.3、已知()256432222=+A ,则()()=++1232A A __________________。
1.4、已知2,5==+xy y x ,求下列各式的值:(1)22y x +; (2)()2y x -; (3)44y x +; (4)()()55--y x 。
例2、(1)已知5=+b a ,23=ab ,求22b a +和()2b a -的值; (2)若()()623=--a a ,求()()2223-+-a a 的值。
举一反三2.1、已知()()199919982000=--a a ,求()()2219982000a a -+-的值。
2.2、已知c b a ,,满足01672=++++=+-c b bc ab c b a ,,求ab 的值。
例3、若b a ,为有理数,且0442222=+++-a b ab a ,求22ab b a +的值。
举一反三3、当y x ,取什么值时,代数式72422+-++y x y x 的值最小,这个最小值是多少?例4、我们在计算()()()()()()1212121212123216842++++++时,发现直接运算很麻烦,如果在算是前面乘()12-,即1,原算式的值不变,而且还使得整个算式能用乘法公式计算,解答过程如下: ()()()()()()()()()()()()()()()()()()12121212121212121212121212121212121212643216844321684223216842-=++++-=+++++-=++++++-=原式你能用上述的方法计算()()()()()131313131316842+++++的值吗?4、计算①12200520062007200822222-++-+-②()()()()1171717176842+++++例()]22a c a -((ac bc --的值。
部编数学八年级上册专题05乘法公式与因式分解七大重难考点(期末真题精选)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题05 乘法公式与因式分解七大重难考点一.平方差公式的灵活运用1.下列运算中,不能用平方差公式运算的是( )A .(﹣b ﹣c )(﹣b +c )B .﹣(x +y )(﹣x ﹣y )C .(x +y )(x ﹣y )D .(x +y )(2x ﹣2y )试题分析:能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.答案详解:解:A 、(﹣b ﹣c )(﹣b +c )符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意;B 、﹣(x +y )(﹣x ﹣y )=(x +y )(x +y ),不符合平方差公式的特点,不能用平方差公式计算,故本选项符合题意;C 、(x +y )(x ﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意;实战训练D 、(x +y )(2x ﹣2y )=2(x +y )(x ﹣y )符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意.所以选:B .2.计算:20192﹣2017×2021= 4 .试题分析:根据平方差公式即可求出答案.答案详解:解:20192﹣2017×2021=20192﹣(2019﹣2)(2019+2)=20192﹣20192+22=4.所以答案是:4.3.利用乘法公式简便计算.(1)2020×2022﹣20212.(2)3.6722+6.3282+6.328×7.344.试题分析:(1)运用平方差公式计算即可;(2)运用完全平方公式计算即可.答案详解:解:(1)原式=(2021﹣1)×(2021+1)﹣20212.=20212﹣1﹣20212=﹣1;(2)原式=3.6722+6.3282+2×3.672×6.328=(2.672+6.328)2=102=100.4.某同学在计算3(4+1)(42+1)时,把3写成4﹣1后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=162﹣1=255.请借鉴该同学的经验,计算:(1+12)(1+122)(1+124)(1+128)+1215.试题分析:原式变形后,利用平方差公式计算即可得到结果.答案详解:解:原式=2(1−12)(1+12)(1+122)(1+124)(1+128)+1215=2(1−1216)+1215=2.5.阅读下面的材料并填空:①(1−12)(1+12)=1−122,反过来,得1−122=(1−12)(1+12)=12×32②(1−13)(1+13)=1−132,反过来,得1−132=(1−13)(1+13)= 23 × 43 ③(1−14)(1+14)=1−142,反过来,得1−142= (1−14)(1+14) =34×54利用上面的材料中的方法和结论计算下题:(1−122)(1−132)(1−142)……(1−120162)(1−120172)(1−120182)试题分析:直接利用平方差公式计算进而结合已知规律得出答案.答案详解:解:①(1−12)(1+12)=1−122,反过来,得1−122=(1−12)(1+12)=12×32,②(1−13)(1+13)=1−132,反过来,得1−132=(1−13)(1+13)=23×43,③(1−14)(1+14)=1−142,反过来,得1−142=(1−14)(1+14)=34×54利用上面的材料中的方法和结论计算下题:(1−122)(1−132)(1−142)……(1−120162)(1−120172)(1−120182)=12×32×23×43×34×⋯×20172018×20192018 =20194036.所以答案是:23,43,(1−14)(1+14).二.完全平方公式的灵活运用6.在学习完全平方公式后,我们对公式的运用作进一步探讨.请你阅读例题的解题思路:例:已知a +b =4,ab =3,求a 2+b 2的值.解:∵a +b =4,ab =3,∴a 2+b 2=(a +b )2﹣2ab =42﹣2×3=10.请结合例题解答问题.若a +b =7,ab =10,求a 2+b 2的值.试题分析:根据完全平方公式即可解答.答案详解:解:∵a +b =7,∴(a +b )2=72,∴a 2+2ab +b 2=49,∵ab =10,∴a 2+b 2=49﹣2ab =49﹣20=29,即a 2+b 2的值是29.7.阅读下列解答过程:已知:x ≠0,且满足x 2﹣3x =1.求:x 2+1x 2的值.解:∵x 2﹣3x =1,∴x 2﹣3x ﹣1=0∴x −3−1x =0,即x −1x =3.∴x 2+1x 2=(x−1x)2+2=32+2=11.请通过阅读以上内容,解答下列问题:已知a ≠0,且满足(2a +1)(1﹣2a )﹣(3﹣2a )2+9a 2=14a ﹣7,求:(1)a 2+1a 2的值;(2)a 25a 4a 25的值.试题分析:(1)根据题意可得a −1a=2,再利用完全平方公式计算即可;(2)根据倒数的定义和完全平方公式计算即可.答案详解:解:(1)(2a +1)(1﹣2a )﹣(3﹣2a )2+9a 2=14a ﹣71﹣4a 2﹣(9﹣12a +4a 2)+9a 2﹣14a +7=0,整理得:a 2﹣2a ﹣1=0∴a −1a=2,∴a 2+1a 2=(a−1a)2+2=4+2=6;(2)解:a 25a 4a 25的倒数为5a 4a 25a 2,∵5a 4a 25a 2=5a 2+5a 2+1=5(a 2+1a 2)+1=5×6+1=31,∴a 25a 4a 25=131.8.若m +n =7,mn =12,求m 2﹣mn +n 2的值.试题分析:首先把m 2﹣mn +n 2加上2mn ﹣2mn ,把m 2+2mn +n 2利用完全平方公式因式分解,进一步整体代入计算即可.答案详解:解:m2﹣mn+n2+2mn﹣2mn=m2+2mn+n2﹣3mn=(m+n)2﹣3mn;把m+n=7,mn=12代入得:原式=72﹣3×12=13.9.已知(x+y)2=25,(x﹣y)2=1,求x2+y2与xy的值.试题分析:已知等式利用完全平方公式化简,相加减即可求出所求式子的值.答案详解:解:∵(x+y)2=x2+2xy+y2=25①,(x﹣y)2=x2﹣2xy+y2=1②,∴①+②得:2(x2+y2)=26,即x2+y2=13;①﹣②得:4xy=24,即xy=6.10.回答下列问题(1)填空:x2+1x2=(x+1x)2﹣ 2 =(x−1x)2+ 2 (2)若a+1a=5,则a2+1a2= 23 ;(3)若a2﹣3a+1=0,求a2+1a2的值.试题分析:(1)根据完全平方公式进行解答即可;(2)根据完全平方公式进行解答;(3)先根据a2﹣3a+1=0求出a+1a=3,然后根据完全平方公式求解即可.答案详解:解:(1)2、2.(2)23.(3)∵a=0时方程不成立,∴a≠0,∵a2﹣3a+1=0两边同除a得:a﹣3+1a=0,移项得:a+1a=3,∴a2+1a2=(a+1a)2﹣2=7.三.数形结合----多项式与图形的面积的美妙融合11.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式 (a+b+c)2=a2+b2+c2+2ab+2bc+2ca ;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=6,ab+bc+ac=8,求a2+b2+c2的值.试题分析:(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a+b+c=6,ab+bc+ac=8,代入(1)中得到的关系式,然后进行计算即可.答案详解:解:(1)∵正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca),∵a+b+c=6,ab+bc+ac=8,∴a2+b2+c2=62﹣2×8=36﹣16=20.12.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=12,ab+bc+ac=47,求a2+b2+c2的值;(3)小明同学打算用x张边长为a的正方形,y张边长为b的正方形,z张相邻两边长为分别为a、b的长方形纸片拼出了一个面积为(5a+8b)(7a+4b)长方形,那么他总共需要多少张纸片?试题分析:(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a+b+c=12,ab+bc+ac=47代入(1)中得到的关系式,然后进行计算即可;(3)长方形的面积xa2+yb2+zab=(5a+8b)(7a+4b),然后运算多项式乘多项式法则求得(5a+8b)(7a+4b)的结果,从而得到x、y、z的值,代入即可求解.答案详解:解:(1)∵正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=122﹣47×2=50.(3)∵长方形的面积=xa2+yb2+zab=(5a+8b)(7a+4b)=35a2+76ab+32b2,∴x=35,y=32,z=76,∴x+y+z=143.答:那么他总共需要143张纸片.13.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 (b﹣a)2 ;(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 (a+b)2﹣(a﹣b)2=4ab ;(3)根据(2)中的结论,若x+y=5,x•y=94,则x﹣y= ±4 ;(4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现? (a+b)•(3a+b)=3a2+4ab+b2 .试题分析:(1)阴影部分为边长为(b﹣a)的正方形,然后根据正方形的面积公式求解;(2)在图2中,大正方形有小正方形和4个矩形组成,则(a+b)2﹣(a﹣b)2=4ab;(3)由(2)的结论得到(x+y)2﹣(x﹣y)2=4xy,再把x+y=5,x•y=94得到(x﹣y)2=16,然后利用平方根的定义求解;(4)观察图形得到边长为(a+b)与(3a+b)的矩形由3个边长为a的正方形、4个边长为a、b 的矩形和一个边长为b的正方形组成,则有(a+b)•(3a+b)=3a2+4ab+b2.答案详解:解:(1)阴影部分为边长为(b﹣a)的正方形,所以阴影部分的面积(b﹣a)2;(2)图2中,用边长为a+b的正方形的面积减去边长为b﹣a的正方形等于4个长宽分别a、b 的矩形面积,所以(a+b)2﹣(a﹣b)2=4ab;(3)∵(x+y)2﹣(x﹣y)2=4xy,而x+y=5,x•y=9 4,∴52﹣(x﹣y)2=4×9 4,∴(x﹣y)2=16,∴x﹣y=±4;(4)边长为(a+b)与(3a+b)的矩形面积为(a+b)(3a+b),它由3个边长为a的正方形、4个边长为a、b的矩形和一个边长为b的正方形组成,∴(a+b)•(3a+b)=3a2+4ab+b2.所以答案是(b﹣a)2;(a+b)2﹣(a﹣b)2=4ab;±4;(a+b)•(3a+b)=3a2+4ab+b2.四.因式分解--一提净,二公式,三十字,四分组14.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2.①72﹣52=8× 3 ;②92﹣( 7 )2=8×4;③( 11 )2﹣92=8×5;④132﹣( 11 )2=8× 6 ;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?试题分析:(1)从上式中可以发现等式左边:两数的平方差,前一个数比后一个数大2;等式右边:前一个因数是8,后一个是等式左边两数的和除4,所以可写成:(2n+1)2﹣(2n﹣1)2=8n;(2)运用平方差公式计算此式,证明它成立.答案详解:解:①3;②7;③11;④11,6.(1)(2n+1)2﹣(2n﹣1)2=8n;(2)原式可变为(2n+1+2n﹣1)(2n+1﹣2n+1)=8n.15.因式分解:(1)16x4﹣1.(2)(m﹣n)(x+3y)﹣(n﹣m)(x﹣y).试题分析:(1)用平方差公式因式分解,注意分解要彻底;(2)用提取公因式法因式分解,注意公因式要提取彻底.答案详解:解:(1)16x4﹣1=(4x2+1)(4x2﹣1)=(4x+1)(2x+1)(2x﹣1);(2)(m﹣n)(x+3y)﹣(n﹣m)(x﹣y)=(m﹣n)(x+3y)+(m﹣n)(x﹣y)=(m﹣n)(x+3y+x﹣y)=(m﹣n)(2x+2y)=2(m﹣n)(x+y).16.(1)若3a=6,9b=2,求32a+4b的值;(2)已知xy=8,x﹣y=2,求代数式12x3y﹣x2y2+12xy3的值.试题分析:(1)直接利用同底数幂的乘法运算法则结合幂的乘方运算法则化简求出答案;(2)首先提取公因式12xy再利用完全平方公式分解因式,进而将已知代入求出答案.答案详解:解:(1)∵3a=6,9b=2,∴32a+4b=32a×34b=(3a)2×(32b)2=36×4=144;(2)∵xy=8,x﹣y=2,∴原式=12xy(x2﹣2xy+y2)=12xy(x﹣y)2=12×8×22=16.五.阅读类---化归思想17.阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.试题分析:(1)利用十字相乘法变形即可得;(2)①根据材料2的整体思想可以对(x﹣y)2+4(x﹣y)+3分解因式;②根据材料1和材料2可以对m(m+2)(m2+2m﹣2)﹣3分解因式.答案详解:解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A2+4A+3=(A+1)(A+3),所以(x﹣y)2+4(x﹣y)+3=(x﹣y+1)(x﹣y+3);②令B=m2+2m,则原式=B(B﹣2)﹣3=B2﹣2B﹣3=(B+1)(B﹣3),所以原式=(m2+2m+1)(m2+2m﹣3)=(m+1)2(m﹣1)(m+3).18.阅读以下材料材料:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得原式=(x+y+1)2上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2= (1﹣x+y)2 ;(2)因式分解:(a2﹣4a+2)(a2﹣4a+6)+4;(3)求证:无论n为何值,式子(n2﹣2n﹣3)(n2﹣2n+5)+17的值一定是一个不小于1的数.试题分析:(1)将“x﹣y”看成整体,令x﹣y=A,则原式=12﹣2A+A2=(1﹣A)2,再将“A”还原,得原式=(1﹣x+y)2;(2)将“a2﹣4a”看成整体,令a2﹣4a=A,则原式=(A+2)(A+6)+4=A2+8A+12+4=(A+4)2,再将“A”还原,得:原式=(a2﹣4a+4)2=(a﹣2)4;(3)先由(n2﹣2n﹣3)(n2﹣2n+5)+17,运用整体思想,再即可得到式子(n2﹣2n﹣3)(n2﹣2n+5)+17的值一定是一个不小于1的数.答案详解:解:(1)将“x﹣y”看成整体,令x﹣y=A,则原式=12﹣2A+A2=(1﹣A)2,再将“A”还原,得:原式=(1﹣x+y)2;所以答案是:(1﹣x+y)2;(2)将“a2﹣4a”看成整体,令a2﹣4a=A,原式=(A+2)(A+6)+4=A2+8A+12+4=(A+4)2,将“A”还原,得:原式=(a2﹣4a+4)2=(a﹣2)4;(3)令n2﹣2n=A,则原式=(A﹣3)(A+5)+17=A2+2A﹣15+17=A2+2A+2=(A+1)2+1,将A=n2﹣2n还原,原式=(n2﹣2n+1)2+1=(n﹣1)4+1,因为无论n为何值(n﹣1)4≥0,所以(n﹣1)4+1≥1,即式子(n2﹣2n﹣3)(n2﹣2n+5)+17的值一定是一个不小于1的数.19.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5= (m+1)(m﹣5) .(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值,并求出这个最小值.试题分析:(1)根据阅读材料,先将m2﹣4m﹣5变形为m2﹣4m+4﹣9,再根据完全平方公式写成(m﹣2)2﹣9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2﹣4a+6b+18转化为(a﹣2)2+(b+3)2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2﹣2ab+2b2﹣2a﹣4b+27转化为(a﹣b﹣1)2+(b﹣3)2+17,然后利用非负数的性质进行解答.答案详解:解:(1)m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9=(m﹣2+3)(m﹣2﹣3)=(m+1)(m﹣5).所以答案是(m+1)(m﹣5);(2)∵a2+b2﹣4a+6b+18=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值5;(3)∵a2﹣2ab+2b2﹣2a﹣4b+27=a2﹣2a(b+1)+(b+1)2+(b﹣3)2+17=(a﹣b﹣1)2+(b﹣3)2+17,∴当a=4,b=3时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值17.20.【阅读学习】做整式的乘法运算时借助图形,可以由图形直观的获取结论.例1:如图1,可得等式:a(b+c)=ab+ac.例2:由图2,可得等式:(a+2b)(a+b)=a2+3ab+2b2.借助几何图形,利用几何直观的方法在解决整式运算问题时经常采用.【问题解决】(1)如图3,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形.从中你发现的结论用等式表示为 (a+b+c)2=a2+b2+c2+2ab+2bc+2ac; ;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=12,ab+bc+ac=48.求a2+b2+c2的值.【拓展应用】(3)利用此方法也可以求出一些不规则图形的面积.如图4,将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.试题分析:(1)先用正方形的面积公式表示出面积,再用几个小正方形和小长方形的面积的和表示大正方形的面积,由两个结果相等即可得出结论.(2)利用数形结合思想用等面试法探究因式分解,用因式分解结论反求几何面积答案详解:解:(1)∵正方形面积为(a +b +c )2,小块四边形面积总和为a 2+b 2+c 2+2ab +2bc +2ac ,∴由面积相等可得:(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,故可得结论是:(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;所以答案是:(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;(2)由(1)可知a 2+b 2+c 2=(a +b +c )2﹣(2ab +abc +2ac ),∵a +b +c =12,ab +bc +ac =48,∴a 2+b 2+c 2=(a +b +c )2﹣2(ab +bc +ac )=144﹣2×48=48,故a 2+b 2+c 2的值为48;(3)∵a +b =10,ab =20,∴(a +b )2=100∴a 2+b 2+2ab =100,∴a 2+b 2=60,∴S 阴影=S 两正方形﹣S △ABD ﹣S △BFG ,=a 2+b 2−12a 2−12b (a +b )=12(a 2+b 2﹣ab )=12×(60﹣20)=20.故阴影部分的面积是20.六.规律类----类比思想21.有足够多的长方形和正方形卡片,分别记为1号,2号,3号卡片,如图1所示.(1)如果选取4张3号卡片,拼成如图2所示的一个正方形,请你用2种不同的方法表示阴影部分的面积.①方法1: (m﹣n)2 方法2: (m+n)2﹣4mn ②请写出代数式(m+n)2,(m﹣n)2,4mn这三个代数式之间的等量关系: (m+n)2=(m﹣n)2+4mn .(2)解决问题:若|a+b﹣6|+|ab﹣4|=0,求(a﹣b)2的值.(3)如果选取1张1号,2张2号,3张3号卡片,可拼成一个长方形(不重叠无缝隙),请画出这个拼出的长方形,根据图形的面积关系得到的等式是: m2+2n2+3mn=(m+2n)(m+n) .试题分析:(1)①从“整体”和“部分”两个方面分别表示阴影部分的面积即可;②由①中两种方法所表示的面积相等可得答案;(2)根据非负数的定义可得a+b=6,ab=4,再根据(a﹣b)2=(a+b)2﹣4ab进行计算即可;(3)求出所拼成的长方形的长、宽以及总面积即可.答案详解:解:(1)①方法1:图2中阴影部分是边长为(m﹣n),因此面积为(m﹣n)2,方法2:图2阴影部分也可以看作从边长为(m+n)的正方形减去4个长为m.宽为n的长方形面积,因此有(m+n)2﹣4mn,所以答案是:(m﹣n)2,(m+n)2﹣4mn;②由①得(m﹣n)2=(m+n)2﹣4mn,所以答案是:(m﹣n)2=(m+n)2﹣4mn;(2)∵|a+b﹣6|+|ab﹣4|=0,|a+b﹣6|≥0,|ab﹣4|≥0,∵a+b﹣6=0,ab﹣4=0,即a+b=6,ab=4,∴(a﹣b)2=(a+b)2﹣4ab=36﹣16=20,答:(a﹣b)2的值为20;(3)1张1号,2张2号,3张3号卡片的总面积为m2+2n2+3mn,而1张1号,2张2号,3张3号卡片可以拼成长为(m+2n),宽为(m+n)的长方形,所以有m2+2n2+3mn=(m+2n)(m+n),所以答案是:m2+2n2+3mn=(m+2n)(m+n).22.王老师在黑板上写下了四个算式:①32﹣12=(3+1)(3﹣1)=8=8×1;②52﹣32=(5+3)(5﹣3)=16=8×2;③72﹣52=(7+5)(7﹣5)=24=8×3;④92﹣72=(9+7)(9﹣7)=32=8×4;…认真观察这些算式,并结合你发现的规律,解答下列问题:(1)112﹣92= 40 ;132﹣112= 48 .(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n﹣1(n为正整数),请你用含有n的算式验证小华发现的规律.试题分析:(1)根据已知算式写出符合题意的答案;(2)利用平方差公式计算得出答案.答案详解:解:(1)112﹣92=(11+9)(11﹣9)=8×5=40;132﹣112=(13+11)(13﹣11)=8×6=48.所以答案是:40;48;(2)(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n,∵n为正整数,∴两个连续奇数的平方差是8的倍数.23.阅读下面材料,并回答相应的问题:通过学习,我们了解了因式分解的两种基本方法:提公因式法,公式法.下面我们将探索因式分解的其它方法.(1)请运用多项式乘以多项式的法则填空:(x+2)(x+3)= x2+5x+6 ,(x+2)(x﹣3)= x2﹣x+6 ,(x﹣2)(x+3)= x2+x+6 ,(x﹣2)(x﹣3)= x2﹣5x+6 .从特殊到一般,探索规律进行推导,过程如下:(x+p)(x+q)= x2+px+qx+pq =x2+ (p+q) x+ pq (2)因式分解是与整式乘法方向相反的变形,利用(1)中的规律,我们可以得到一种因式分解的新方法: (x+p)(x+q)=x2+(p+q)x+pq (用字母等式表示).利用这种方法,请将下列各式因式分解:x2+4x+3= (x+1)(x+3) ,x2+4x﹣5= (x+1)(x﹣5) ,2x2﹣5x+2= (2x﹣1)(x﹣2) ,3x2﹣x﹣2= (3x+2)(x﹣1) .试题分析:(1)利用多项式乘多项式的法则进行运算即可;(2)结合(1)进行分析即可求解.答案详解:解:(1)(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,(x+2)(x﹣3)=x2﹣3x+2x﹣6=x2﹣x+6,(x﹣2)(x+3)=x2+3x﹣2x﹣6=x2+x+6,(x﹣2)(x﹣3)=x2﹣3x﹣2x+6=x2﹣5x+6,(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq,所以答案是:x2+5x+6;x2﹣x+6;x2+x+6;x2﹣5x+6;x2+px+qx+pq;(p+q);pq;(2)(x+p)(x+q)=x2+(p+q)x+pq,x2+4x+3=(x+1)(x+3),x2+4x﹣5=(x+1)(x﹣5),2x2﹣5x+2=(2x﹣1)(x﹣2),3x2﹣x﹣2=(3x+2)(x﹣1),所以答案是:(x+p)(x+q)=x2+(p+q)x+pq;(x+1)(x+3);(x+1)(x﹣5);(2x﹣1)(x﹣2);(3x+2)(x﹣1).24.老师在黑板上写了三个算式,希望同学们认真观察,发现规律.请你结合这些算式,解答下列问题:请观察以下算式:①32﹣12=8×1;②52﹣32=8×2;③72﹣52=8×3;………试写出符合上述规律的第五个算式;验证:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),并说明它们的平方差是8的倍数;试题分析:仿照已知等式确定出第五个算式即可;列出两个连续奇数的平方差,分解后即可作出判断.答案详解:解:第五个算式为:112﹣92=8×5;验证:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n.故两个连续奇数的平方差是8 的倍数.七.乘法公式的综合应用25.你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)= a2﹣1 ;(a﹣1)(a2+a+1)= a3﹣1 ;(a﹣1)(a3+a2+a+1)= a4﹣1 ;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)= a100﹣1 (2)利用这个结论,请你解决下面的问题:①求2199+2198+2197+…+22+2+1 的值;②若a7+a6+a5+a4+a3+a2+a+1=0,则a等于多少?试题分析:(1)原式利用多项式乘多项式法则计算得到结果,归纳总结得到一般性规律,写出即可;(2)各项变形后,利用得出的规律计算即可得到结果.答案详解:解:(1):(a﹣1)(a+1)=a2﹣1;(a﹣1)(a2+a+1)=a3﹣1;(a﹣1)(a3+a2+a+1)=a4﹣1;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=a100﹣1;所以答案是:a2﹣1;a3﹣1;a4﹣1;a100﹣1;(2)①∵(2﹣1)(2199+2198+2197+…+22+2+1)=2200﹣1,∴2199+2198+2197+…+22+2+1=2200﹣1;②∵a8﹣1=(a﹣1)(a7+a6+a5+a4+a3+a2+a+1)=0,即a8=1,∴a=±1,当a=1时,a7+a6+a5+a4+a3+a2+a+1=0不成立,∴a=﹣1.26.分解因式x2﹣4y2﹣2x+4y,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了,过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:a2﹣4a﹣b2+4;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.试题分析:(1)应用分组分解法,把a2﹣4a﹣b2+4分解因式即可.(2)首先应用分组分解法,把a2﹣ab﹣ac+bc=0分解因式,然后根据三角形的分类方法,判断出△ABC的形状即可.答案详解:解:(1)a2﹣4a﹣b2+4=a2﹣4a+4﹣b2=(a﹣2)2﹣b2=(a+b﹣2)(a﹣b﹣2)(2)∵a2﹣ab﹣ac+bc=0,∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a﹣b=0或a﹣c=0,∴a=b或a=c,∴△ABC是等腰三角形.27.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.试题分析:(1)根据x2﹣2xy+2y2+6y+9=0,应用因式分解的方法,判断出(x﹣y)2+(y+3)2=0,求出x、y的值各是多少,再把它们相乘,求出xy的值是多少即可;(2)首先根据a2+b2﹣10a﹣12b+61=0,应用因式分解的方法,判断出(a﹣5)2+(b﹣6)2=0,求出a、b的值各是多少;然后根据三角形的三条边的长度的关系,求出△ABC的最大边c的值是多少即可;(3)首先根据a﹣b=8,ab+c2﹣16c+80=0,应用因式分解的方法,判断出(a﹣4)2+(c﹣8)2=0,求出a、c、b的值各是多少;然后把a、b、c的值求和,求出a+b+c的值是多少即可.答案详解:解:(1)∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy的值是9.(2)∵a2+b2﹣10a﹣12b+61=0,∴(a2﹣10a+25)+(b2﹣12b+36)=0,∴(a﹣5)2+(b﹣6)2=0,∴a﹣5=0,b﹣6=0,∴a=5,b=6,∵6﹣5<c<6+5,c≥6,∴6≤c<11,∴△ABC的最大边c的值可能是6、7、8、9、10.(3)∵a﹣b=8,ab+c2﹣16c+80=0,∴a(a﹣8)+16+(c﹣8)2=0,∴(a﹣4)2+(c﹣8)2=0,∴a﹣4=0,c﹣8=0,∴a=4,c=8,b=a﹣8=4﹣8=﹣4,∴a+b+c=4﹣4+8=8,即a+b+c的值是8.。
专题1.3 乘法公式-重难点题型(举一反三)(北师大版)(解析版)
专题1.3 乘法公式-重难点题型【北师大版】【题型1 乘法公式的基本运算】【例1】(2021•锦江区校级开学)下列运算正确的是( )A.(x+y)(﹣y+x)=x2﹣y2B.(﹣x+y)2=﹣x2+2xy+y2 C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2D.(x+y)(y﹣x)=x2﹣y2【分析】根据完全平方公式和平方差公式逐个判断即可.【解答】解:A、结果是x2﹣y2,原计算正确,故本选项符合题意;B、结果是x2﹣2xy+y2,原计算错误,故本选项不符合题意;C、结果是x2+2xy+y2,原计算错误,故本选项不符合题意;D、结果是y2﹣x2,原计算错误,故本选项不符合题意;故选:A.【变式1-1】(2021春•龙岗区校级期中)下列关系式中,正确的是( )A.(a﹣b)2=a2﹣b2B.(a+b)(﹣a﹣b)=a2﹣b2 C.(a+b)2=a2+b2D.(﹣a﹣b)2=a2+2ab+b2【分析】根据完全平方公式判断即可.【解答】解:A 选项,原式=a 2﹣2ab +b 2,故该选项计算错误;B 选项,原式=﹣(a +b )2=﹣a 2﹣2ab ﹣b 2,故该选项计算错误;C 选项,原式=a 2+2ab +b 2,故该选项计算错误;D 选项,原式=[﹣(a +b )]2=(a +b )2=a 2+2ab +b 2,故该选项计算正确;故选:D .【变式1-2】(2021春•舞钢市期末)下列乘法运算中,不能用平方差公式计算的是( )A .(m +1)(﹣1+m )B .(2a +3b ﹣5c )(2a ﹣3b ﹣5c )C .2021×2019D .(x ﹣3y )(3y ﹣x )【分析】平方差公式,要求有一项完全相同,另一项互为相反项.根据公式的结构特点解答即可.【解答】解:不能用平方差公式计算的是(x ﹣3y )(3y ﹣x )=(x ﹣3y )×[﹣(x ﹣3y )]=﹣(x ﹣3y )2,故选:D .【变式1-3】(2021春•龙岗区校级月考)下列各式,能用平方差公式计算的是( )A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(13a +1)(―13a ―1)【分析】只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;【解答】解:A .既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B .原式=﹣(2b +a )(2b ﹣a ),符合平方差公式,故本选项符合题意;C .原式=﹣(2a ﹣3b )(2a ﹣3b ),只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D .原式=﹣(13a +1)(13a +1)只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B .【题型2 完全平方公式(求系数的值)】【例2】(2021春•仪征市期中)若多项式4x 2﹣mx +9是完全平方式,则m 的值是( )A .6B .12C .±12D .±6【分析】根据完全平方公式得到4x 2﹣mx +9=(2x ﹣3)2或4x 2﹣mx +9=(2x +3)2,即4x 2﹣mx +9=x 2﹣12x +9或4x 2﹣mx +9=x 2+12x +9,从而得到m 的值.【解答】解:∵多项式4x2﹣mx+9是一个完全平方式,∴4x2﹣mx+9=(2x﹣3)2或4x2﹣mx+9=(2x+3)2,即4x2﹣mx+9=x2﹣12x+9或4x2﹣mx+9=x2+12x+9,∴m=12或m=﹣12,故选:C.【变式2-1】(2021春•南山区校级期中)如果x2+8x+m2是一个完全平方式,那么m的值是( )A.4B.16C.±4D.±16【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵x2+8x+m2是一个完全平方式,∴m2=16,解得:m=±4.故选:C.【变式2-2】(2021春•新城区校级期末)已知:(x﹣my)2=x2+kxy+4y2(m、k为常数),则常数k的值为 ±4 .【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵(x﹣my)2=x2+kxy+4y2=x2+kxy+(2y)2(m、k为常数),∴m=±2,∴(x±2y)2=x2±4xy+4y2=x2+kxy+4y2,∴k=±4.故答案为:±4.【变式2-3】(2021春•邗江区期中)若x2﹣2(m﹣1)x+4是一个完全平方式,则m= 3或﹣1 .【分析】根据完全平方公式得出2(m﹣1)x=±2•x•2,求出m即可.【解答】解:∵x2﹣2(m﹣1)x+4是一个完全平方式,∴﹣2(m﹣1)x=±2•x•2,解得:m=3或﹣1.故答案为:3或﹣1.【题型3 完全平方公式的几何背景】【例3】(2021春•兴宾区期末)有A,B两个正方形,按图甲所示将B放在A的内部,按图乙所示将A,B并列放置构造新的正方形.若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为( )A.13B.19C.11D.21【分析】设A,B两个正方形的边长各为a、b,则由题意得(a﹣b)2=3,(a+b)2﹣(a2+b2)=2ab=16,所以正方形A,B的面积之和为a2+b2=(a﹣b)2+2ab,代入即可计算出结果.【解答】解:设A,B两个正方形的边长各为a、b,则图甲得(a﹣b)2=a2﹣2ab+b2=3,由图乙得(a+b)2﹣(a2+b2)=(a2+2ab+b2)﹣(a2+b2)=2ab=16,∴正方形A,B的面积之和为,a2+b2=(a2﹣2ab+b2)+2ab=(a﹣b)2+2ab=3+16=19,故选:B.【变式3-1】(2021春•芝罘区期末)用4块完全相同的长方形拼成如图所示的正方形,用不同的方法计算图中阴影部分的面积,可得到一个关于a,b的等式为( )A.4a(a+b)=4a2+4ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a+b)2﹣(a﹣b)2=4ab【分析】由观察图形可得阴影部分的面积为4ab,也可以表示为(a+b)2﹣(a﹣b)2,可得结果.【解答】解:∵图形中大正方形的面积为(a+b)2,中间空白正方形的面积为(a﹣b)2,∴图中阴影部分的面积为(a+b)2﹣(a﹣b)2,又∵图中阴影部分的面积还可表示为4ab,∴(a+b)2﹣(a﹣b)2=4ab,故选:D.【变式3-2】(2021春•岚山区期末)现有四个大小相同的长方形,可拼成如图1和图2所示的图形,在拼图2时,中间留下了一个边长为4的小正方形,则每个小长方形的面积是( )A.3B.6C.12D.18【分析】设小长方形的长为a,宽为b,由图1可得a=3b,则(a﹣b)²=4b²=16,解得b=2即可就得最后结果.【解答】解:设小长方形的长为a,宽为b,由图1可得a=3b,则(a﹣b)²=(3b﹣b)²=(2b)²=4b²=4²=16,解得b=2或b=﹣2(不合题意,舍去),∴每个小长方形的面积为,ab=3b•b=3×2²=12,故选:C.【变式3-3】(2021春•深圳期中)有两个正方形A,B.现将B放在A的内部得图甲,将A,B并列放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B,如图丙摆放,则阴影部分的面积为( )A.28B.29C.30D.31【分析】设正方形A,B的边长各为a、b(a>b),得图甲中阴影部分的面积为(a﹣b)2=a²﹣2ab+b²=1,可解得a﹣b=1,图乙中阴影部分的面积为(a+b)2﹣(a2+b2)=2ab=12,可得(a+b)²=(a﹣b)²+4ab=1+2×12=25,可得a+b=5,所以图丙中阴影部分的面积为(2a+b)²﹣(3a²+2b²)=a²+4ab﹣b²=(a+b)(a﹣b)+4ab,代入就可计算出结果.【解答】解:设正方形A,B的边长各为a、b(a>b),得图甲中阴影部分的面积为(a﹣b)2=a²﹣2ab+b²=1,解得a﹣b=1或a﹣b=﹣1(舍去),图乙中阴影部分的面积为(a+b)2﹣(a2+b2)=2ab=12,可得(a+b)²=a²+2ab+b²=a²﹣2ab+b²+4ab=(a﹣b)²+4ab=1+2×12=25,解得a+b=5或a+b=﹣5(舍去),∴图丙中阴影部分的面积为(2a+b)²﹣(3a²+2b²)=a²+4ab﹣b²=(a+b)(a﹣b)+2×2ab=5×1+2×12=5+24=29,故选:B.【题型4 平方差公式的几何背景】【例4】(2021•庐江县开学)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是( )A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】分别表示图1、图2中阴影部分的面积,根据两者面积相等,即可得出结论.【解答】解:∵图1中的阴影部分面积为:a2﹣b2,图2中阴影部分面积为:12(2b+2a)(a﹣b),∴a2﹣b2=12(2b+2a)(a﹣b),即a2﹣b2=(a+b)(a﹣b),故选:D.【变式4-1】(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式( )A.(x﹣1)2=x2﹣2x+1B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1D.x(x﹣1)=x2﹣x【分析】用代数式分别表示出图1和图2中白色部分的面积,由此得出等量关系即可.【解答】解:图1的面积为:(x+1)(x﹣1),图2中白色部分的面积为:x2﹣1,∴(x+1)(x﹣1)=x2﹣1,故选:B.【变式4-2】(2021春•洪江市期末)如图(1),从边长为a的大正方形的四个角中挖去四个边长为b的小正方形后,将剩余的部分剪拼成一个长方形,如图(2),通过计算阴影部分的面积可以得到( )A.(a﹣2b)2=a2﹣4ab+b2B.(a+2b)2=a2+4ab+b2C.(a﹣2b)(a+2b)=a2﹣4b2D.(a+b)2=a2+2ab+b2【分析】利用大正方形面积减去4个小正方形面积即可得出图(1)中阴影部分的面积;根据矩形的面积公式可得图(2)的面积,据此可得结果.【解答】解:图(1)中阴影部分的面积为:a2﹣4b2;图(2)中长方形的长是a+2b,宽是a﹣2b,面积是(a+2b)(a﹣2b)=a2﹣4b2,∴(a﹣2b)(a+2b)=a2﹣4b2.故选:C.【变式4-3】(2020春•阳谷县期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式 a2﹣b2=(a+b)(a﹣b) .【分析】分别表示出两个图形的面积,再根据面积相等得出等式即可.【解答】解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).【题型5 乘法公式(求代数式的值)】【例5(2021春•邗江区校级期末)若xy=﹣1,且x﹣y=3.(1)求(x﹣2)(y+2)的值;(2)求x2﹣xy+y2的值.【分析】(1)原式利用多项式乘以多项式法则计算,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵xy=﹣1,x﹣y=3,∴(x﹣2)(y+2)=xy+2(x﹣y)﹣4=﹣1+6﹣4=1;(2)∵xy=﹣1,x﹣y=3,∴x2﹣xy+y2=(x﹣y)2+xy=9+(﹣1)=8.【变式5-1】(2021•宁波模拟)已知(2x+y)2=58,(2x﹣y)2=18,则xy= 5 .【分析】由(2x+y)2﹣(2x﹣y)2=4×2xy进行解答.【解答】解:∵(2x+y)2=58,(2x﹣y)2=18,∴(2x+y)2﹣(2x﹣y)2=4×2xy,∴58﹣18=8xy,∴xy=5.故答案是:5.【变式5-2】(2021春•驿城区期末)已知a﹣b=9,ab=﹣14,则a2+b2的值为 53 .【分析】运用完全平方公式(a﹣b)2=a2+b2﹣2ab可解决此题.【解答】解:∵a﹣b=9,ab=﹣14,∴(a﹣b)2=a2+b2﹣2ab=a2+b2﹣2×(﹣14)=81.∴a2+b2=81+(﹣28)=53.故答案为53.【变式5-3】(2021春•聊城期末)已知:a﹣b=6,a2+b2=20,求下列代数式的值:(1)ab;(2)﹣a3b﹣2a2b2﹣ab3.【分析】(1)把a﹣b=6两边平方,展开,即可求出ab的值;(2)先分解因式,再整体代入求出即可.【解答】解:(1)∵a﹣b=6,a2+b2=20,∴(a﹣b)2=36,∴a2﹣2ab+b2=36,∴﹣2ab=36﹣20=16,∴ab=﹣8;(2)∵a2+b2=20,ab=﹣8,∴﹣a3b﹣2a2b2﹣ab3=﹣ab(a2+2ab+b2)=﹣(﹣8)×(20﹣16)=32.【题型6 乘法公式的综合运算】【例6】(2020秋•东湖区期末)实践与探索如图1,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是 A ;(请选择正确的一个)A.a2﹣b2=(a+b)(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)(2)请应用这个公式完成下列各题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b= 4 .②计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.【分析】(1)分别表示图1和图2中阴影部分的面积即可得出答案;(2)①利用平方差公式将4a2﹣b2=(2a+b)(2a﹣b),再代入计算即可;②利用平方差公式将原式转化为1+2+3+…+99+100即可.【解答】解:(1)图1中阴影部分的面积为两个正方形的面积差,即a2﹣b2,图2中的阴影部分是长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:A;(2)①∵4a2﹣b2=24,∴(2a+b)(2a﹣b)=24,又∵2a+b=6,∴6(2a﹣b)=24,即2a﹣b=4,故答案为:4;②∵1002﹣992=(100+99)(100﹣99)=100+99,982﹣972=(98+97)(98﹣97)=98+97,…22﹣12=(2+1)(2﹣1)=2+1,∴原式=100+99+98+97+…+4+3+2+1=5050.【变式6-1】(2021•滦南县二模)【阅读理解】我们知道:(a+b)2=a2+2ab+b2①,(a﹣b)2=a2﹣2ab+b2②,①﹣②得:(a+b)2﹣(a﹣b)2=4ab,所以ab=(a b)24―(a b)24=(a b2)2―(a b2)2.利用上面乘法公式的变形有时能进行简化计算.例:51×49=(51492)2―(51492)2=502―12=2500﹣1=2499.【发现运用】根据阅读解答问题(1)填空:102×98= (102982) 2﹣ (102982) 2;(2)请运用你发现的规律计算:19.2×20.8.【分析】(1)根据规律解答即可;(2)根据规律计算19.2×20.8即可.【解答】解:(1)102×98=(102982)2―(102982)2;故答案为:(102982),(102982);(2)19.2×20.8=(19.220.82)2―(19.220.82)2=202﹣0.82=400﹣0.64=399.36.【变式6-2】(2021春•平顶山期末)我们将(a+b)2=a2+2ab+b2进行变形,如:a2+b2=(a+b)2﹣2ab,ab=(a b)2(a2b2)2等.根据以上变形解决下列问题:(1)已知a2+b2=8,(a+b)2=48,则ab= 20 .(2)已知,若x满足(25﹣x)(x﹣10)=﹣15,求(25﹣x)2+(x﹣10)2的值.(3)如图,四边形ABED是梯形,DA⊥AB,EB⊥AB,AD=AC,BE=BC,连接CD,CE,若AC•BC=10,则图中阴影部分的面积为 10 .【分析】(1)将a2+b2=8,(a+b)2=48代入题干中的推导公式就可求得结果;(2)设25﹣x=a,x﹣10=b,则(25﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab,再代入计算即可;(3)设AD=AC=a,BE=BC=b,则图中阴影部分的面积为12(a+b)(a+b)―12a²―12b²=12[(a+b)²﹣(a²+b²)]=12×2ab=ab=10.【解答】(1)∵a2+b2=8,(a+b)2=48,∴ab=(a b)2(a2b2)2=4882=20,(2)设25﹣x=a,x﹣10=b,由(a+b)2=a2+2ab+b2进行变形得,a2+b2=(a+b)2﹣2ab,∴(25﹣x)2+(x﹣10)2=[(25﹣x)+(x﹣10)]²﹣2(25﹣x)(x﹣10)=15²﹣2×(﹣15)=225+30=255,(3)设AD=AC=a,BE=BC=b,则图中阴影部分的面积为12(a+b)(a+b)―12(a²+b²)=12[(a+b)²﹣(a²+b²)]=12×2ab=ab=10【变式6-3】(2021春•滨江区校级期末)数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1: (a+b)2 ;方法2: a2+b2+2ab ;(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 (a+b)2=a2+b2+2ab ;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,(a﹣b)2=13,求ab的值;②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a﹣b)2=a2+b2﹣2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021﹣a=x,a﹣2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=﹣2,再求(2021﹣a)(a﹣2020)=﹣2即可.【解答】解:(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a﹣b)2=a2+b2﹣2ab=13①,(a+b)2=a2+b2+2ab=25②,由①﹣②得,﹣4ab=﹣12,解得:ab=3;②设2021﹣a=x,a﹣2020=y,∴x+y=1,∵(2021﹣a)2+(a﹣2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1﹣(x2+y2)=1﹣5=﹣4,解得:xy=﹣2,∴(2021﹣a)(a﹣2020)=﹣2.。
2023年初中数学培优竞赛讲座第讲乘法公式
第十八讲 乘法公式乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应当做到以下几点:1.熟悉每个公式的结构特性,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题【例1】 (1)已知两个连续奇数的平方差为2023,则这两个连续奇数可以是 .(江苏省竞赛题)(2)已知(2023一a)(1998一a)=1999,那么(2023一a)2+(1998一a)2= . (重庆市竞赛题) 思绪点拨 (1)建立两个连续奇数的方程组;(2)视(2023一a)·(1998一a)为整体,由平方和想到完全平方公式及其变形.注:公式是如何得出来的?一种是由已知的公式,通过推导,得到一些新的公式;另一种是从大量的特殊的数量关系入手,并用字母表达数来揭示一类数量关系的一般规律—一公式.从特殊到一般的过程是人类结识事物的一般规律,而观测、发现、归纳是发现数学规律最常用的方法. 乘法公式常用的变形有:(1)ab b a b a 2)(222 ±=+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++;(3) ab b a b a 4)()(22=--+; (4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( ) A .M>N B . M<N C . M=N D .无法拟定 思绪点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1; (天津市竞赛题)(2)1.345×0.345×2.69—1.3452一1.345×0.3452. (江苏省竞赛题)思绪点拨 若按部就班计算,显然较繁.能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特性,对于(2),由于数字之间有联系,可用字母表达数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特性.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值. (“希望杯”邀请赛试题) (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由. (河北省竞赛题)思绪点拔 对于(1),(2)两个未知数一个等式或不等式,须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表达,作差比较它们的大小.注: 有些问题经常不能直接使用公式,而需要发明条件,使之符合乘法公式的特点,才干使用公式.常见的方法是:分组、结合,拆添项、字母化等.完全平方公式逆用可得到两个应用广泛的结论: (1)0)(2222≥±=+±b a b ab a ;揭示式子的非负性,运用非负数及其性质解题. (2)ab b a 222≥+应用于代数式的最值问题.代数等式的证明有以下两种基本方法:(1) 由繁到简,从一边推向另一边; (2)相向而行,寻找代换的等量.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思绪点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明.学力训练1.观测下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= . (武汉市中考题) 2.已知052422=+-++b a b a ,则ba b a -+= . (杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ; (3)2199919991999199719991998222-+ .4.如图是用四张全等的矩形纸片拼成的图形,请运用图中空白部分的面积的不同表达方法写出一个关于a 、b 的恒等式 . (大原市中考题)5.已知51=+a a ,则2241aa a ++= . (菏泽市中考题) 6.已知5,3-=+=-cb b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 (扬州市中考题) 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 (重庆市竞赛题) 8.若4,222=+=-y x y x ,则20022002y x +的值是( ).A .4B .20232C . 22023D .420239.若01132=+-x x ,则441xx +的个位数字是( ). A .1 B .3 C . 5 D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+ (陕西省中考题)11.(1)设x+2z =3z ,判断x 2一9y 2+4z 2+4xz 的值是不是定值?假如是定值,求出它的值;否则请说明理由.(2)已知x 2一2x=2,将下式先化简,再求值:(x —1)2+(x+3)(x 一3)+(x 一3)(x 一1). (上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观测:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2023×2023×2023×2023+1的结果(用一个最简式子表达). (黄冈市竞赛题)14.你能不久算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n 为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n =3……这些简朴情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成 ;852=7225可写成 .(2)从第(1)题的结果,归纳、猜想得(10n+5)2= .(3)根据上面的归纳猜想,请算出19952= . (福建省三明市中者题)15.已知014642222=+-+-++z y x z y x ,则z y x ++= . (天津市选拔赛试题)16.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= .(2)若a-b=3,则a 3-b 3-9ab = .17.1,2,3,……,98共98个自然数中,可以表达成两整数的平方差的个数是 . (初中数学联赛)18.已知a-b=4,ab+c 2+4=0,则a+b=( ). A .4 B .0 C .2 D .一219.方程x 2-y 2=1991,共有( )组整数解. A .6 B .7 C .8 D .920.已知a 、b 满足等式)2(4,2022a b y b a x -=++=,则x 、y 的大小关系是( ).A .x ≤yB .x ≥yC .x<yD .x>y (大原市竞赛题)21.已知a=1999x+2023,b =1999x+2023,c =1999x+2023,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3 (全国初中数学竞赛题)22.设a+b=1,a 2+b 2=2,求a 7+b 7的值. (西安市竞赛题)23.已知a 满足等式a 2-a-1=0,求代数式487-+a a 的值. (河北省竞赛题)24.若b a y x +=+,且2222b a y x +=+,求证:1997199719971997b a y x+=+. (北京市竞赛题)25.有l0位乒乓球选手进行单循环赛(每两人间均赛一场),用xl ,y 1顺次表达第一号选手胜与负的场数;用x 2,y 2顺次表达第二号选手胜与负的场数;……;用x 10、y 10顺次表达十号选手胜与负的场数.求证:21022212102221y y y x x x +++=+++ .26.(1)请观测: 222233*********,335112225,351225,525====写出表达一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选此外两个类似26、53的数,使它们能表达成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?注:有人称这样的数“不变心的数”.数学中有许多美妙的数,通过度析,可发现其中的奥秘.瑞士数学家欧拉曾对26(2)的性质作了更进一步的推广.他指出:可以表达为四个平方数之和的甲、乙两数相乘,其乘积仍然可以表达为四个平方数之和.即(a 2+b 2+c 2十d 2)(e 2+f 2+g 2+h 2)=A 2+B 2+C 2+D 2.这就是著名的欧拉恒等式.第十八讲 乘法公式参考答案。
培优专题:整式的乘法公式
整式的乘法(二)乘法公式一.公式补充。
计算:(x +1)(Λ∙2- X + 1) = __________________练习:(X -1)( A√ + X +1) = _______________(2x +3)(4X2-6X +9)= _________________2 4 2(—a -b)(-a2 + —ab + b2) =39 3 ---------------计算:4≤-13^ + 46iχi3932.2二.例:已知"+b = 3, ab = 2 9求a2 +b29 (a -b)2 , a y +b^的值。
练习:L 已知“+" = 5, ab = 6,求a2+b2, (a-b)2 , a3+b3的值。
2.己知a2+⅛2=13, ab=β9求(a+⅛2, (a-∕>)2的值。
3.已知(a¼⅛2=7, (a-2>)2=4,求d+2Λ 胡的值。
4.己知x +j = l, X2 + J2 =3 ,求X3 +j3的值。
5.已知兀_丄=3,求X4+A的值。
三、例1:B⅛lx2-6x + y2 +10J = -34,求X』的值。
练习:L +j2+4x-12j+ 40 = 0,求x + 2y 的值。
2.已^x2 +2xy + y2 -6x-6j + 9 = 0,求x + y 的值。
3∙ BftJ</2+ b2 + l=ab+a + b f求&/一物的值。
4•已知",方,c 满足/+2Z> = 7, b1 -2c =-1 , C l -6ιι =-17,求“+b + c 的值。
例2.计算:(a +1)(«2 +1)(«4 +1)(“ — 1)练习:L 计算:6×(7 + l)×(72+l)×(74+l)×(78+l) + l2.计算:(2+1) (22+1) (24+1) (28+1)平方差公式专项练习题A卷: 基础丿一、选择题L平方差公式(a+b) (a-b) =a2-b2中字母a, b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A. (a+b) (b+a) B・(―a+b) (a—b)C. (Ia+b) (b-1a) D・(a?—b) (b2+a)3 33.下列计算中,错误的有()①(3a+4) (3a—4) =9a2~4:②(2a2-b) (2a2+b) =4a2-b2:③ (3—X)(x+3) =x2-9:④ (—x+y)・(x+y) =— (x—y) (x+y) =—x2-y2.A・1个B. 2个C・3个D・4个4.若X2—y2=3O,且x-y=-5,贝∣] x+y 的值是()A・5 B・6 C・—6 D・—5二、填空题5・(―2x+y) ( —2x—y) = ______ ・6.( — 3x2+2y2) ( _____ ) =9x4-4y4・7.(a+b-l) (a-b+l) = ( __________ ) 2- ( ______ ) 2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的而积减去较小的正方形的而积,差是_____ .三、计算题2 19.利用平方差公式计算:20-×21丄.3 310.计算:(a+2) (a2+4) (a4+16) (a-2).B卷:一、七彩题1.(多题一思路题)汁算:(1)(2+1) (22+l) (24+l ) ... (22n+l) +1 (n 是正整数);^4()16(2)(3+1) (32+l) (34+l) ... (32008+l) 一一・22.(一题多变题)利用平方差公式计算:2009×2007-20082.二、知识交叉题3・(科内交叉题)解方程:X (x+2) + (2x+l) (2χ-l) =5 (x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四.经典中考题5.(2007,泰安,3分)下列运算正确的是()A. a3+a3=3a6B. (—a) 3∙ (—a) 5=-a8C. ( — 2Qb) ・4a=—24a6t√ D・(一4b) ( — a—4b) =16b2- — a23 3 96 (2008,海南,3 分)计算:(a+l) (a-l) = ____________ ・文档从网络中收集,已重新整理排版.word版本可编借•欢迎下载支持.C卷:课标新型题1.(规律探究题)己知x≠l,计算(l+x) (1—X)=l-χ2, (1 —X)(l+x+x2) =1—X3,(1 —X)(∙ l+x+x2+x3) =I-X4・(1)观察以上各式并猜想:(I-X) (l+x+x2+...+x n) = _________ . (n为正整数)(2)根据你的猜想汁算:①(1-2) (l+2+22+23+24÷25) = ________ ・②2+22+23+...+2n= ____ (n 为正整数).③(X-I) (x w+x98+x97+...+x2+x+l) = __________ ・(3)通过以上规律请你进行下而的探索:①(a—b) (a+b) = ________ ・②(a—b) (a2+ab+b2) = ______ ・③(a—b) (a3+a2b+ab2+b3) = _______ ・2.(结论开放题)请写出一个平方差公式,使其中含有字母m, n和数字4.4、已知πΓ+rf-6m+10n+34=0,求m+n 的值文档从网络中收集,已重新整理排版.word 版本可编辑•欢迎下载支持.整式的乘法.平方差公式.完全平方公式.整式的除法(B 卷)综合运用题姓名:一、请准确填空1. 若 /+/-2M2H2二0,则『“+产5二 ________ ・2. 一个长方形的长为(2a+3b),宽为(2a-36),则长方形的面积为 ____________ •3. 5— (a —6):的最大值是 ________ ,当5— (a —6):取最大值时,a 与b 的关系是 _____4. 要使式子0・36√+i 長成为一个完全平方式,贝IJ 应加上 ______ ・45. (4a“ —6孑)j r2a *- ________ ・6. 29×31×(30s +D= ________ ・7. 己知 Y-5Λ÷1=0,则 f+A= _________ ・Jr8. 已知(2005 — Q (2003—a)=1000,请你猜想(2005 — a)'+(2003 — a)土 _____ ・二、相信你的选择9. 若 Y --Y-Zrf=(X —in) C 计 1)且-v≠0,则加等于A. — 1B. 0C. 1D. 210. (Mg)与(AH-I)的积不含X 的一次项,猜测g 间是5A. 5B. £C. — ξD. —511. 下列四个算式:①4f∕m 丄羽Qw;(D162九m8∕42a 话C ;③9<y÷3f 尸3玄兀4④ (12zπ+8∕zf -4zσ) ÷ (―2zσ)=-6/+4硏2,其中一正确的有 A.0个 B.1个 C.2个 D.3个 12. 设(√ I y rt ) ∙ (X a y S )-Xy t 则z/的值为A. 1B. -1C. 3D. -3 13•计算[&一刃(才+刃]:等于A. a ~2^b ,^b'B. a°+2aWFC. a ~2aD. a —2a 6,+∆w14. 已知(a÷∆)2=ll, aZ>=2,则(a~b)z 的值是 A. 11 B. 315. 若是一个完全平方式,那么"是A 7 SD 49 2A. — yB. —「2" 216•若為y 互为不等于0的相反数,力为正整数,你认为正确的是c. √∖芦一泄是互为相反数D ..Y 2Λ-∖ -Z-I -定相等・1・文档来源为:从网络收集整理.word 版本可编辑.C. 5D. 19D. 49/A. ΛΛ b —定是互为相反数B. (i)∖ (丄尸一定是互为相反数X y文档从网络中收集,已重新整理排版.word版本可编辑•欢迎下载支持.三S考査你的基本功17.计算(1) (a—2M∙3c)~-(a+2Z>—3c)(2)「ab(3 — b) —2a(b —丄Zf)] (―3a£);2(3)-2loo×0. 5ιcc× (-l)sooδ÷ (-1)(4)[ (∆÷2y) (-γ-2y)+4(A r—y)2—6.γ] ÷6x18.(6分)解方程*(9*一5) 一(3-Y-I) (3对1)二5・四.生活中的数学19.(6分)如果运载人造星球的火箭的速度超过11. 2 kπ√s(俗称第二宇宙速度),则人造星球将会挣脱地球的朿缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×IO6m∕h,请你推算一下第二宇宙速度是飞机速度的多少倍?文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.五、探究拓展与应用20.计算.(2+1) (2*1) (2s+l)= (2-1) (2+1) (2:+1) (2,+l) = (23-l) (25+l) (2*+l)= (2i-l) (2,+1) = (28-1).根据上式的计算方法,请计算(3+1) (33+l) (3t+l)…(352+l) 一—的值•2文档从网络中收集,已重新整理排版word 版本可编辑•欢迎下载支持.完全平方公式习题精选・.选择题1・下列各式中,能够成立的等式是()・ Z 9 s2 yl 2 ω ,2 (-Λ -⅛)2 = -a 2 +ab +hAe (2「刃 =4x -2D+y B. 24C. (X÷7)2=^2÷/D .(Nf)2=0p)22. 下列式了•:①(3"1)(3L 1) = (N-1)2 ②(X -37)2 =X 2-3^÷9j;2 ③A.①B.①②C.①②③D.④ 3.()A X 2÷2ZJ ; + /B -√-2zj;-/ c.兀2_2芋 + 丿2 D x 2 + 2z ιy-/ 4. 若("刃2 一M=(LyF ,则M 为().A. 2&B. ± 2卩C. 4& d . ±5. •个正方形的边长为αcm ,若边长增加6cm ,则新正方形的面积人增加了().A. 36cm 2 B- 12<scm 2 c . G&+ 12N )Cnl? D 以上都不对 6. 如果X+αx + l 是-个完全平方公式,那么a 的值是(). A ・ 2 B ・-2 C ・ ± 2 D. ±17. 若•个多项式的平方的结果为4/+12αB+滋2 ,则酬I=()A . 9沪 B. 3⅛2 C. -9戸 D. 3⅛&下列多项式不是完全平方式的是().1 2一十购十购π ααA. /—4兀一4 B e 4c. 2 +6ab +⅛2 D e 4/2 +12/+9X + — = 29.已知 X ,则下列等式成立的是(〉(i-2^)2=ι-4Xy ④ STf 十2十土中正确的是()文档从网络中收集,已重新整理排版.word版本可编辑•欢迎下载支持.Λ2÷4-=2^4÷Λ = 2护+4 = 2 "丄=C)①X ②X ③X④ 兀A.①B.①②C.①②③D.①Φ③④二、填空题1.(*b)2=_3.(2X-1)2+(2X +1)2= _____ 5. @ +疔-0-b)2 = ___________(4戲+ ”2 = [6型2 十 ________三、解答题1.运用完全平方公式计算:2. (3S)2=—4.(沪疔+S 7)2= _6.(-3X +47)2=()2 =aλ+⅛2 = {a+Λ)2 + ________(1) (卩爭(2)(-4X-I i y)2.运用乘法公式计算:(I) SZ ・P)?;⑵(x÷ l)2(x-l)2 Z ⑶◎*!) 文档从网络中收集,已重新整理排版.word 版本可编辑•欢迎下载支持.("刃2("刃:⑷(2"%+C)(C-2α + %)3. 计算:⑵(x+4)(x-4)-(x-4)2(l2m -3⅝)2(2Λ>2 + 3«)2(J)(3α -b+c)(3α ÷⅛ -C)参考答案:∙. 1・D 2・D 3・A 4・C 5・C 6. C 7・D 8・A 9・D•IΛ2÷4Λ⅛+4Λ29 9a2 - 6ab +⅛23 8^2 ÷ 2 42Λ2+2⅛25澎1. 3x-4ιy,9x2-24Λ^+16√: I朋十彳:8- -2ab .6-m1 - + -n216x2 + 4∑y -I- —ιy2三、1.⑴ 4 3 9 ;(2)4丿:■—十3&B _9护_ 2 (3) 4 :⑷ 39204 (提示:低一(2°°■ 2)).、、、.I} Am十?2 + P + Amn-AmP - 2wp2.3-√+Λ⅛-73J⑷ /一4护+12血一9护・(S) X3. ⑴Λ4-2CJ⅛2+δ4 : (2)8x-32.(3)16朋4 -72眈?泌十81刃4(4)9/- 炭 + 必匕 - / ;(5)⅛2-⅛2 -β⅛-9.(6)4诂-定+2碑-才(7) ' ■ 2今-2xz + / + 2yz +∑2(S) 400(3)-K 计算下列各式:(1) (x + 2Xx-2) (2) (l + 3dXl-3α) (3) (χ + 5yXx -5y)2^ 猜一猜:(α + bXα-Z?) = _____ - ____二、巩固练习:1、下列各式中哪些可以运用平方差公式计算 ________________ (1) (G + Z?Xd-C) (2) (X + yX-y + x) (3) (CIb -3x)(-3x-ab) (4) (-∕π-/7X777 +/?) (5) (2a+b)(2b-cι)(6) (-2χ-y)(-2x+y)2、判断:(3x- y ∖-3x+ y) = 9x 2 - y 2 ()4) (- 2x - yX~ 2x + y) = 4x 2 - y 2 ()5)(U + 2∖a -3)=Cr -6 () 6) (X + 3∖y -3)= Xy t -9 () 3、计算下列各式:(1) (4a-7b ∖4a + 7b)(2) (一 Im- n X2〃? 一 ")1 \ rι 1 、—a + —b 一 G ——b2丿 13 2丿平方差公式11) (2a + b ∖2J}-a) = 4a 2 ^b 2)3)4.填空:(1)(2x + 3y)(2x-3y)= ______________(2)(46/-1)( )=166∕2-1 (3) --- "心卜存讥9(4) (2x+ * -3y)= 4X2-9y2三、提髙练习:1、U + >'X-r-yXx2 + y2)2、X4-(2X2+1)(2X2-1)2、若疋一/=12 ,x+y = 6,求X, y的值。
乘法公式(题型拓展)
A. 4x 2x2 3x 1 8x3 12x2 4x
C. 4a 14a 1 1 16a 2
B. x y x 2 y 2 x3 y3
D. x 2 y2 x 2 2xy 4 y 2
例 2:多项式 4x 2 1 加上一个单项式后,使它能成为一个整式的完全平方,则加上的多项式可以是
(A)a4-1 (B)a4+1 (C)a4+2a2+1 (D)1-a4
2、若(x+m)(x-8)中不含 x 的一次项,则 m 的值为………………………( )
(A)8
(B)-8
(C)0
(D)8 或-8
3、下列计算正确的是( )
A、 3 2 3 3 2 3 9
B、 a b2 a 2 b2
例 6:已知 a b 3 , ab 1 ,求: 2
(1)a2+b2
(2)a2+ab+b2
(3)a4+b4
(二)思维重点突破
例 7 观察下列各式(x-1)(x+1)=x2-1,(x-1)(x2+x+l)=x3-l.(x-l)(x3+x2+x+l)=x4-1,
根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=
4、已知
x+
1 x
=2,求
x2+
1 x2
的值.
5、已知 a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab 的值.
AB=4a,MP=b,正方形 APCD 与正方形 PBEF 的面积之差为 S。 (1)用 a,b 的代数表示 S。 (2)当 a=4、b=1/2 时,S 的值是多少?当 a=S,b=1/4 时呢?
D
C
F
E
A
MP B
A 类作业: