ANSYS接触问题的计算方法及参数设置

合集下载

《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文

《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文

《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着计算机技术的飞速发展,有限元分析软件在工程领域的应用越来越广泛。

ANSYS软件作为一款广泛使用的有限元分析软件,在接触问题分析和解决方面发挥着重要作用。

本文将详细介绍基于ANSYS软件的接触问题分析及在工程中的应用。

二、ANSYS软件中的接触问题分析1. 接触问题的基本概念接触问题是一种典型的非线性问题,涉及两个或多个物体在接触面上相互作用的力学行为。

在ANSYS软件中,通过定义接触对来模拟这种相互作用。

2. ANSYS软件中接触问题的分析方法ANSYS软件采用有限元法对接触问题进行数值分析。

首先,将接触问题离散化为有限元网格,然后通过迭代法求解接触问题中的非线性方程组。

在ANSYS中,可以通过定义接触单元、设置接触刚度、摩擦系数等参数来模拟真实的接触行为。

三、ANSYS软件在工程中的应用1. 机械工程领域的应用在机械工程领域,ANSYS软件被广泛应用于各种机械零件的接触问题分析。

例如,齿轮传动中的齿面接触、轴承中的滚动体与内外圈的接触等。

通过ANSYS软件的分析,可以了解接触区域的应力分布、变形情况等,为机械零件的设计和优化提供依据。

2. 汽车工程领域的应用在汽车工程领域,ANSYS软件被用于汽车零部件的接触问题分析和整车性能仿真。

例如,在汽车碰撞过程中,车身与零部件之间的接触力、应力分布等都需要通过ANSYS软件进行分析。

此外,ANSYS还可以用于汽车悬挂系统、制动系统等的仿真分析,为汽车设计和优化提供支持。

3. 航空航天领域的应用在航空航天领域,ANSYS软件被广泛应用于飞机、卫星等航天器的结构分析和优化。

例如,在飞机起降过程中,机翼与机身之间的连接处的应力集中和变形情况需要通过ANSYS软件进行分析。

此外,ANSYS还可以用于航空航天领域的热力耦合问题、流体动力学问题等的仿真分析。

四、结论本文介绍了基于ANSYS软件的接触问题分析及在工程中的应用。

ansys高级接触分析高级选项设置

ansys高级接触分析高级选项设置
...处理刚体运动
Training Manual
• 如果求解中两物体发生分离,那么刚度矩阵将变得奇异.
– ANSYS 将给出警告信息
• ANSYS中提供了几种克服初始未接触体接触问题的方法:
– 在即将接触位置建立几何模型 – 动力学分析 – 位移控制 – 弱弹簧 – 使用无分离接触 ( KEYOPT(12) ) – 调整初始接触条件
目标面
接触面
第7页/共62页
接触属性高级选项设置
…初始穿透- Workshop
• 可参考WORKSHOP中的相关章节: • W6A. 初始穿透.
Training Manual
Advanced Contact & Fasteners
第8页/共62页
Advanced Contact & Fasteners
第27页/共62页
Advanced Contact & Fasteners
接触属性高级选项设置
C. 对称与不对称
Training Manual
• 不对称接触被定义为:一个面上存在所有的接触单元,另一个面上 存在所有的目标单元
– 一个接触对 – 最有效
• 对称接触:每个面都被指定为目标面和接触面
– 通常为两个接触对,也有可能为一个(自接触) – 当目标面和接触面很难区分或两个面的网格都较粗时,采用对称接触 – 接触算法为罚函数法时可采用对称接触
• 否则,非零的加速度和速度将会产生假的阻尼力从而影响平衡
第12页/共62页
Advanced Contact & Fasteners
接触属性高级选项设置
...处理刚体运动
• 位移控制
– 使用强制位移使两物体进入接触状态. – 然后通过使用一个空的载荷步把位移控制转为力控制.

ansys接触应力计算公式

ansys接触应力计算公式

ansys接触应力计算公式
ANSYS软件中接触应力的计算公式可能会因具体的模型和算法而有所不同。

在ANSYS的罚函数法中,假设零件之间的接触假设成两个节点之间通过弹簧连接,通过以下计算公式来求解两个接触面之间的接触压力:
FNormal = KNormal × penetration
其中,KNormal为两个接触面之间的接触刚度,penetration为两个接触
面之间的穿透量。

这种算法的精度较依赖于接触刚度和穿透量的大小。

在实际情况下,两个零件表面是不会有穿透的,这是一种为增强收敛性而进行的数值近似方法,因此,穿透量越小,计算结果精度越高,但同时收敛性较差。

另外,在ANSYS的拉格朗日算法中,接触压力作为一个自由度来满足接触兼容性。

不需要计算接触刚度和穿透量来计算接触压力,而是将他看做一个自由度。

以上内容仅供参考,如需更具体的信息,建议咨询专业的工程师或查阅ANSYS软件的使用手册。

ANSYS接触问题(42页,详细)(图文)

ANSYS接触问题(42页,详细)(图文)

接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。

在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。

接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。

――罚函数法。

接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。

三种接触单元:节点对节点、节点对面、面对面。

接触单元的实常数和单元选项设置:FKN:法向接触刚度。

这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。

FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。

FTOLN:最大穿透容差。

穿透超过此值将尝试新的迭代。

这是一个与接触单元下面的实体单元深度(h)相乘的比例系数XX省为0.1。

此值太小,会引起收敛困难。

ICONT:初始接触调整带。

它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。

当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。

可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的) PMIN和PMAX:初始容许穿透容差。

这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。

初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。

ANSYS Mechanical 接触分析

ANSYS Mechanical 接触分析
试用fkn01接触刚度选择一个好的刚度值可能需要一些试验下面的步骤可以用于静态相关分析的指南改变接触单元选项允许接触刚度在重启动期间可以修改开始时采用一个软的fkn可以帮助克服收敛困难运行此分析直到最终载荷增大fkn并重启动求解重复步骤5和6直到达到所预期的收敛seqvfkn寻找fkn超过此值结果不发生显著的改变接触刚度作为一个例子对于一个轴上套环的过盈配合分析fkn化的等效vonmises应力的最大值被监控
--这是一个相对因子,一般变形问题建议使用1.0. 对弯曲支配情况, 如果收敛困难的话,小于 0.1的值可能是有用的。 --接触刚度在求解中可自动调整。如果收敛困难,刚度自动减小。
接触刚度
接触刚度WB-Mechanical系统默认自动设定。
– 用户可以输入“接触刚度因子Normal Stiffness Factor” (FKN) 它是计算刚 度代码的乘子。因子越小,接触刚度就越小。
然而, 值太大会引起收敛困难.
基本概念
如果接触刚度太大, 一个微小的穿透将会产生一个过大的 接触力, 在下一次迭代中可能会将接触面推开。
F
F
F接触
F
迭代 n
迭代 n+1
迭代 n+2
用太大的接触刚度通常会导致收敛振荡, 并且常会发散。
基本概念
接触协调 – Lagrange乘子法
另外一种方法, Lagrange乘子 法, 增加一个附加自由度 (接触压力),来 满足不可穿透条件。
F
基本概念
接触协调 – 增广 Lagrange法
多数 ANSYS 接触单元可以将罚函数法和 Lagrange乘子法结合起来强 制接触协调,称之为增广 lagrange法。 在迭代的开始, 接触协调基于惩罚刚度确定。一旦达到平衡, 检查穿 透容差。此时, 如果有必要, 接触压力增加, 迭代继续。

Ansys接触问题处理方法与参数设置

Ansys接触问题处理方法与参数设置

Ansys接触问题处理方法接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。

法向关系:在法向,必须实现两点:1)接触力的传递。

2)两接触面间没有穿透。

ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。

1.罚函数法是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:对面面接触单元17*,接触刚度由实常数FKN来定义。

穿透值在程序中通过分离的接触体上节点间的距离来计算。

接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。

但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。

以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。

并不改变总刚K的大小。

这种罚函数法有以下几个问题必须解决:1)接触刚度FKN应该取多大?2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。

3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。

当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。

对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。

它们会需要更多的迭代次数,并有可能不收敛。

可以使用直接法求解器,例如稀疏求解器等。

这些求解器可以有效求解病态问题。

穿透的大小影响结果的精度。

用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。

如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。

(完整word版)ansys接触应力计算例子

过盈配合的应力分析概述接触问题分为两种基本类型:刚体—-柔体的接触、柔体——柔体的接触。

在刚体-—柔体的接触问题中,接触面的一个活多个被当做刚体(与它接触的变形体相比,有大的多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被鉴定为刚体-—柔体的接触,许多金属成形问题归为此类接触。

另一类,柔体-—柔体接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面,而把另一个作为“接触”面。

对刚体—-柔体的接触,“目标”面总是刚性的,“接触"面总是柔性的,这两个面合起来叫做“接触对”。

问题描述当轴与孔有过盈配合时,因为轴比孔稍大,这样它们之间由于接触就会产生应力应变。

材料性质:EX=30e6(杨氏弹性模量)NUXY=0。

25(泊松比)f=0。

2 (摩擦系数)几何尺寸:轴半径R1=0。

5 长L1=3孔模型外圆R2=1。

5内圆R3=0.45 长L2=2问题分析由于对称性,可以只取模型的四分之一来进行分析,并分成两个载荷步来求解。

第一个载荷步是观察轴接触面的应力;第二个载荷步是观察轴拔出孔的过程中的应力、接触压力和反力等。

一、建立模型并划分网格1.定义单元类型2.定义材料性质3.生成模型4.体分解操作5.划分网格二、定义接触对1.创建目标面及接触面2.设置接触面3.接触面的生成三、施加载荷并求解1.施加对称位移约束2.施加面约束条件3.设定第一个载荷步并进行求解4.设定第二个载荷步并进行求解四、后处理1.设置扩展模式2.读入第一个载荷步的计算结果并显示应力云图3.读入某时刻计算结果4.选择单元5.接触面压力云图6.读入第二个载荷步的计算结果并显示应力云图五、小结接触问题是一种高度非线性行为,需要较大的计算资源,为了进行有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:1。

在求解问题之前,不知道接触区域,表面之间是接触还是分开是未知的、突然变化的,这些随载荷、材料、边界条件和其他因素而定。

《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文

《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中扮演着越来越重要的角色。

ANSYS软件作为一种强大的工程仿真工具,被广泛应用于解决各种复杂的工程问题,包括接触问题。

本文将详细介绍基于ANSYS软件的接触问题分析,并探讨其在工程中的应用。

二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种高度非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。

在ANSYS软件中,接触问题主要通过定义接触对、设置接触面属性、设定接触压力等参数进行模拟。

2. ANSYS软件中接触问题的分析步骤(1)建立模型:根据实际问题,建立相应的几何模型和有限元模型。

(2)定义接触对:在ANSYS软件中,需要定义主从面以及相应的接触类型(如面-面接触、点-面接触等)。

(3)设置接触面属性:根据实际情况,设置接触面的摩擦系数、粘性等属性。

(4)设定载荷和约束:根据实际情况,设定载荷和约束条件。

(5)求解分析:进行求解分析,得到接触问题的解。

3. 接触问题分析的难点与挑战接触问题分析的难点主要在于高度的非线性和不确定性。

此外,还需要考虑多种因素,如接触面的摩擦、粘性、温度等。

这些因素使得接触问题分析变得复杂且具有挑战性。

三、ANSYS软件在工程中的应用1. 机械工程中的应用在机械工程中,ANSYS软件被广泛应用于解决各种接触问题。

例如,在齿轮传动、轴承、连接件等部件的设计和优化中,ANSYS软件可以模拟出部件之间的接触力和应力分布,为设计和优化提供有力支持。

2. 土木工程中的应用在土木工程中,ANSYS软件可以用于模拟土与结构之间的接触问题。

例如,在桥梁、大坝、建筑等结构的分析和设计中,ANSYS软件可以模拟出结构与土之间的相互作用力,为结构的设计和稳定性分析提供依据。

3. 汽车工程中的应用在汽车工程中,ANSYS软件被广泛应用于模拟汽车零部件之间的接触问题。

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置设置实常数和单元关键选项程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。

参见《ANSYS Elements Reference》中对接触单元的描述。

实常数在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。

剩下的用来控制接触面单元。

R1和R2 定义目标单元几何形状。

FKN 定义法向接触刚度因子。

FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。

ICONT 定义初始闭合因子。

PINB 定义“Pinball"区域。

PMIN和PMAX 定义初始穿透的容许范围。

TAUMAR 指定最大的接触摩擦。

CNOF 指定施加于接触面的正或负的偏移值。

FKOP 指定在接触分开时施加的刚度系数。

FKT 指定切向接触刚度。

COHE 制定滑动抗力粘聚力。

TCC 指定热接触传导系数。

FHTG 指定摩擦耗散能量的热转换率。

SBCT 指定Stefan-Boltzman 常数。

RDVF 指定辐射观察系数。

FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。

DC 静、动摩擦衰减系数。

命令:RGUI:main menu> preprocessor>real constant对实常数FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和FKT,用户既可以定义一个正值,也可以定义一个负值。

程序将正值作为比例因子,将负值作为绝对值。

程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和PMIN 的参考值。

例如ICON = 表明初始闭合因子是“*下层单元的厚度”。

然而,ICON = 则表示真实调整带是单位。

如果下伏单元是超单元,则将接触单元的最小长度作为厚度。

参见图5-8。

图5-8 下层单元的厚度在模型中,如果单元尺寸变化很大,而且在实常数如ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。

接触参数设置

Superelement usage (超单元用法)接触属性:刚性目标使用Rigid target 标签为接触分析设置以下选项:Boundary condition on target nodes (目标节点上的边界条件)Area elements have (有面单元时)Pilot Node (引导节点)接触属性:热使用Thermal 标签为热接触分析指定以下设置:Thermal Contact Conductance (热接触导热性)Stephan-Boltzmann constant (Stephan-Boltzmann常数)Radiation View factor (辐射视角因子)Emissivity (发射率)Frictional heating factor (摩擦加热因子)Dissipation weight factor (耗散权因子)Thermal contact behavior (热接触行为)如果选择自由面接触行为,ANSYS 在探测到分开的接触时,它是考虑自由面辐射和对流。

对这种情况,在接触面和目标面之间没有对流和辐射热传递。

接触属性(约束类型):约束Constraint (约束) 标签包含用于基于表面的约束接触对的一般参数。

基于表面的约束用于将接触面节点的运动耦合到目标面上的一个引导节点。

基于表面的约束需要采用:多点约束(MPC) 接触算法(KEYOPT(2) = 2)。

(在使用接触向导创建接触对时,这一KEYOPT 是自动设置的)。

Constraint surface type (约束面类型)Boundary conditions on target (目标面上的边界条件)Constrained DOF set on target (目标面上的约束自由度组)Pilot Node (引导节点)接触属性:编号ID使用Identification 标签指定接触对的ID 编号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS接触问题的计算方法及参数设置
接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系
法向关系:
在法向,必须实现两点:1)接触力的传递。

2)两接触面间没有穿透。

ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。

1.罚函数法
是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力
对面面接触单元17*,接触刚度由实常数FKN来定义。

穿透值在程序中通过分离的接触体上节点间的距离来计算。

接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。

但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。

以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F 中去。

并不改变总刚K的大小。

这种罚函数法有以下几个问题必须解决:
1)接触刚度FKN应该取多大?
2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。

3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?
因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN 取0.1到1中间的值。

当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。

对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。

它们会需要更多
的迭代次数,并有可能不收敛。

可以使用直接法求解器,例如稀疏求解器等。

这些求解器可以有效求解病态问题。

穿透的大小影响结果的精度。

用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。

如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。

因为较小的FKN
有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。

FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。

解决此矛盾
的办法是在接触算法中采用扩展拉格朗日乘子法。

此方法在接触问题的求解控制中可以有更多更灵活的控制。

可以更快的实现一个需要的穿透极限。

2.拉格朗日乘子法与扩展拉格朗日乘子法
拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是
把接触力作为一个独立自由度。

因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。

Kx=F+Fcontact
从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。

使用拉格朗日乘子法有下列注意事项:
1)刚度矩阵中将有零对角元,使有些求解器不克使用。

只能使用直接法求解器,例如波前法或系数求解器。

而PCG之类迭代求解器是不能用于有零主元问题的。

2)由于增加了额外的自由度,刚度阵变大了。

3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。

如何控制这种
chattering,是纯粹拉格朗日法所难以解决的。

因此,为控制chattering,ANSYS采用的是罚函数法与拉格朗日法混合的扩展
拉格朗日乘子法。

在扩展拉格朗日法中,可以采用实常数TOLN来控制最大允许穿透值。

还有最大允许拉力FTOL。

这两个参数只对扩展拉格朗日乘子法有效。

在扩展拉格朗日乘子法里,程序按照罚函数法开始,与纯粹拉格朗日法类似,用TOLN来控制最大允许穿透值。

如果迭代中发现穿透大于允许的TOLN值,(对178单元是TOLN,而对面面接触单元171-174则是FTOLN)则将各个接触单元的接触刚度加上接触力乘以拉格朗日乘子的数值。

因此,这种扩展拉格朗日法是不停更新接触刚度的罚函数法,这种更新不断重复,直到计算的穿透值小于允许值为止。

尽管与拉格朗日法相比,扩展拉格朗日法的穿透并不是零,与罚函数法相比,可能迭带次数会更多。

扩展拉格朗日法有下列优点:
1)较少病态,个接触单元的接触刚度取值可能更合理。

2)与罚函数法相比较少病态,与单纯的拉格朗日法相比,没有刚度阵零对角
元。

因此在选择求解器上没有限制,PCG等迭代求解器都可以应用。

3)用户可以自由控制允许的穿透值TOLN。

(如果输入了TOLN,而使用罚函数法,则程序忽略它)
切向关系:
摩擦的处理与法向接触力类似。

由于摩擦是非对称的,使问题变的更为复杂。

ANSYS缺省是做对称求解,即使用对称求解器作近似求解。

但是可以改变几个选项
强迫做非对称求解。

非对称求解更精确,但是计算量大许多。

参数设置
实常数FKN,FTOLN,ICONT,PINB,PMAX,和PMIN,你既可以定义一个正值也可以
定义一个负值。

既然程序将正值作为比例因子,将负值作为真实值,程序将下面覆盖原单元的厚度作为ICON,FTOLN,PINB,PMAX和PMIN的参考值。

那么:单位改变后,你只要保证你的FKN,FTOL的物理值大小不变就可以了。

作为非线性的接触问题,FKN与FTOLN取值没有公式可套,只能慢慢试出个合
适的值来。

由于FKN越小越容易收敛,你可以先用一个比较小的FKN开始计算,收敛后再改大些,由于接触刚度FKN越大则穿透越小,结果越合理,因此在适当时应该把FKN改大些重新计算直到一个满意的结果。

(可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小)注意:FKN与穿透值大小总是一对矛盾,在矛盾中达到合理
的平衡是做接触分析的关键。

理论上接触问题的穿透应该是零,所以穿透越小则越精确,也即FKN越大则越精确,但是实际上不可能使穿透变为零,FKN太大了计算就
会不收敛。

如果只改FKN得到的穿透值总是太大,不能满意,再加大FKN就不收敛了。


么可以把求解方法改为扩展拉格朗日乘子法。

(用KEYOPT改),再使用FTOLN参数来控制允许最大穿透值。

(FTOLN只对扩展拉格朗日法有效)。

这样的计算量会大很多,但是可以实现在不大的FKN下控制穿透不至于太大,保证结果的合理性。

(注意:对面面接触单元171-174实常数中的允许穿透值是FTOLN,而对178单元则是实常数TOLN)。

相关文档
最新文档