最新苏教版中考数学试题及解析
最新江苏省苏州市年中考数学试题(解析版)

【答案】 C.
【解析】
试题分析: 2400
70 =1680 故答思想 .
6. 若点 m, n 在一次函数 y 3x b 的图像上,且 3m n 2 ,则 b 的取值范围为
A. b 2 B. b 2 C. b 2 D. b 2
【答案】 D.
考点:一次函数上的点的特征 .
,交 C 的延长线于点 F ,则 F 的度数为
【答案】 C. 【解析】
试题分析:
C 90 ,
C CD, B 1 CBD 2
F 112
故答案选 C.
考点:圆心角与圆周角的关系 .
56 , B 34 COE 68
10. 如图,在菱形 CD 中,
60 , D 8 ,F 是 的中点.过点 F 作 F
D ,垂足为 .将
【答案】 D. 【解析】
试题分析: 2.026 2.03故答案选 D.
考点:近似数
4. 关于 x 的一元二次方程 x2 2 x k 0 有两个相等的实数根,则 k 的值为 A. 1B. 1C. 2 D. 2
【答案】 A. 【解析】
试题分析: =4 4k 0 k 1故答案选 A.
考点:根的判别式的性质 .
第Ⅰ卷(共 30 分) 一、选择题:本大题共 10 个小题 , 每小题 3 分, 共 30 分. 在每小题给出的四个选项中,只 有一项是符合题目要求的 .
1. 21 7 的结果是
A. 3 B. 3 C. 1 D. 1
3
3
【答案】 B.
【解析】
试题分析: 21 7
考点:有理数的除法 .
21 3 故答案选 B.
A. x1 0 , x2 4 B. x1
【答案】 A.
3
2024年江苏省盐城市中考数学试卷正式版含答案解析

绝密★启用前2024年江苏省盐城市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.有理数2024的相反数是( )A. 2024B. −2024C. 12024D. −120242.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3.下列运算正确的是( )A. a6÷a2=a4B. 2a−a=2C. a3⋅a2=a6D. (a3)2=a54.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A. 0.24×107B. 24×105C. 2.4×107D. 2.4×1065.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6.小明将一块直角三角板摆放在直尺上,如图,若∠1=55∘,则∠2的度数为( )A. 25∘B. 35∘C. 45∘D. 55∘7.矩形相邻两边长分别为√ 2cm、√ 5cm,设其面积为Scm2,则S在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58.甲、乙两家公司2019∼2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢第II卷(非选择题)二、填空题:本题共8小题,每小题3分,共24分。
2023年江苏省苏州市中考数学附解析

2023年江苏省苏州市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,PA切⊙O于A,PO交⊙O于B,若PA=6,PB=4,则⊙O的半径是()A.52B.56C.2D.52.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁片备用,当截取的矩形面积最大时,矩形两边长x、y 应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=123.△ABC 与△A′B′C′相似,相似比为23,△A′B′C′与△A〞B〞C〞相似,相似比为54,则△ABC 与△A〞B〞C〞的相似比为()A.56B.65C.56或65D.8154.某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A.55 (1+x)2=35 B.35(1+x)2=55 C.55 (1-x)2=35 D.35(1-x)2=55 5.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.由六个大小一样的正方形所组成的图形是立方体的表面展开图C.立方体的各条棱长度都相等D.棱柱的各条校长度都相等6.下面的四个展开图中,如图所示的正方体的展开图是()A. B.C.D.7.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图1),把余下的部分拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证( )A .a 2-b 2=(a +b )(a -b )B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .(a +2b )(a -b )=a 2+ab -2b 28.不解方程判断方程21230111x x x -+=+--的解是( ) A .O B .1 C .2D .139.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于5 二、填空题10.已知⊙O 的半径为 3 cm ,圆外一点 B 到圆心距离为 6 cm ,由点 B 引⊙O 的切线BA ,则点B 与切点、圆心构成的三角形的最小锐角是 .11.计算:cos45°= ,sin60°×cos30°= .12.函数22(3)5y x =-+-,当x= 时,y 有 ,为 .13..观察下列各式:31142-=,52193-=,731164-=,941255-=,…,请你将猜想的规律用含自然数(1)n n ≥的代数式表示出来 .14.如图所示,□ABCD 中,AB=8 cm ,64ABCD S =cm 2,OE ⊥AB 于E ,则OE= cm .15.等腰三角形底角的度数为70°,则顶角的度数为 .若设等腰三角形底角的度数为x ,顶角的度数为y ,则y 关于x 的函数解析式为 ,其中常量是 .16.如图①、②所示,图①中y 与x 函数 关系;图②中y 与x 函数关系(填“是”或“不是”).17.若n mx x ++2是一个完全平方式,则n m 、的关系是 .18. 计算1422-÷⨯的结果为 . a a b b a b 图1 图2三、解答题19.已知变量x 、y 满足22()()4x y x y -=++,问x 、y 是否成反比例?请说明理由.20.如图,在ΔABC 中,AB=AC ,E ,F 分别为AB ,AC 上的点(E ,F 不与A 重合),且EF ∥BC .将AEF △沿着直线EF 向下翻折,得到A EF '△,再展开.(1)请证明四边形AEA F '为菱形;(2)当等腰ΔABC 满足什么条件时,按上述方法操作,四边形AEA F '将变成正方形?(只写结果,不作证明)21.如图,已知四边形ABCD 是等腰梯形,CD ∥BA ,四边形AEBC 是平行四边形. 求证:∠ABD=∠ABE .22.如图,已知□ABCD .(1)写出□ABCD四个顶点的坐标;(2)画出□A1B1C1D1,使□A1B1C1D1与□ABCD关于y轴对称,并写出□A1B1C1D1四个顶点的坐标;(3)画出□A2B2C2D2,使□A2B2C2D2与□ABCD关于原点中心对称,并写出□A2B2C2D2的四个顶点的坐标;(4)□A1B1C1D1与□A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.23.小明在做一次函数的一道练习题时,作业本被顽皮的小弟弟不小心泼洒了墨水,结果图象和部分列表数据被污浊了. 请你根据题中提供的信息,帮助小明补全表格和图象,并回答相关问题.(1)列表:表中污浊处的x= ,y= ;(2)图象:(3)请写出y与x的函数解析式(写出计算过程);(4)求函数图象与两条坐标轴所围成的三角形的面积.24.从有关方面获悉,在某市农村已经实行了农民新型合作医疗保险制度.享受医保的农民可以在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准:30000元,则5000元按30%报销、l5000元按40%报销,余下的10000元按50%报销.题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2006年门诊看病自己共支付医疗费180元,则他这一年中门诊医疗费用共元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20000),按标准报销的金额为y元,试求出y与x的函数解析式;(3)若某农民一年内本人自负住院医疗费17000元(自负医疗费=实际医疗费一按标准报销的金额),则该农民当年实际医疗费用共多少元?25.已知一次函数图象经过点(1,1)和(-1,-5).(1)求该一次函数的表达式;(2)求此一次函数图象与两坐标轴围成的三角形面积;(3)另一条直线与该一次函数图象交于点A(-1,m),且与y轴交点的纵坐标为4,求这条直线的解析式.26.张师傅投资 2 万元购买一台机器生产某种产品.己知这种产品的每个成本是 3 元,每个销售价为 5 元,应缴税款和其他费用是销售收入的 12%,问至少要生产、销售多少个产品才能使利润(利润=毛利润一税款和其他费用)超过购买机器的投资款?27.已知3(21)23-=-的解不大于2,求b的取值范围.x x b5b≥-328.根据下列条件,,写出仍能成立的不等式.(1)72>-,两边都加2;(2)35-<,两边都减1;(3)23<,两边都乘以4;(4)39>-,两边都除以 3;(5)24->-,两边都乘以3-;(6)168-<-,两边都除以一4.观察以上各题的结果,你有什么发现吗?29.已知方程11852()6196x++=,求代数式8830()19x-+的值.30.正式排球比赛中,对所使用的排球的重量是有严格规定的. 检查 5个排球的重量,超过标准重量的克数记作正数,不足标准重量的充数记作负数,检查结果如下(单位:克):+15,-10,+30,-20,-40. 指出哪个排球的质量好一些(即重量最接近标准重量),并用学过的绝对值的知识来说明,什么样的排球质量好一些.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.A4.C5.C6.B7.A8.A9.C二、填空题10.30°11.2,3412.-513.1n n + 14. 415.40°;y=180°-2x ,180°,216.是,不是17.042=-n m 18.-16三、解答题19.∵22()()4x y x y -=++,∴2222-224x xy y x xy y +=+++,∴44xy =-,∴1y x-=∴y 是关于x 的反比例函数. 20.思路:(1)可证四边形AEA F '的四条边相等;(2)∠BAC=90°时,按上述方法操作,四边形AEA F '将变成正方形.21.证△ABD ≌△BAC22.(1)A(-1,3),B(-3,2),C(-2,1),D(0,2);(2)A l (1,3),B l (3,2),C l (2,1),D l (0,2);(3)A 2(1,-3),B 2(3,-2),C 2(2,-l),D 2(0,-2)(4)关于x 轴对称23.(1)-1,-1 (2)略 (3)23y x =-+ (4)9424.(1)600;(2)25005y x =-;(3)29000 25.(1)y=3x-2;(2)23;y=9x+4 26.14286个27.53b ≥-28. (1)9>O ;(2)-4<4;(3)8<12;(4)1>-3;(5)6<12;(6)4>2 结论:①不等式的两边加上(或减去)同一个数,所得到的不等式仍成立;②:不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立29.-230.质量记为-10的排球质量好一些. 在这5个数据中,-10的绝对值最小. 绝对值越小,说明排球的质量与标准质量越接近,排球的质量就越好。
2023年江苏省南京市中考数学试卷+答案解析

2023年江苏省南京市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A. B. C. D.2.整数a满足,则a的值为()A.3B.4C.5D.63.若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.204.甲、乙两地相距100km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间单位:与行驶速度单位:之间的函数图象是()A. B. C. D.5.我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在中,里,里,里,则的面积是()A.80平方里B.82平方里C.84平方里D.86平方里6.如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cmB.40cmC.42cmD.45cm二、填空题:本题共10小题,每小题3分,共30分。
7.计算:____;____.8.若式子在实数范围内有意义,则x的取值范围是_______.9.计算的结果是_______________.10.分解因式的结果是___________.11.计算的结果是__________________.12.某校九年级有8个班级,人数分别为37,a,32,36,37,32,38,若这组数据的众数为32,则这组数据的中位数为______.13.甲车从A地出发匀速行驶,它行驶的路程单位:与行驶的时间单位:之间的函数关系如图所示.甲车出发后,乙车从A地出发沿同一路线匀速行驶.若乙车经过追上甲车,则乙车的速度单位:的取值范围是___________________.14.在平面直角坐标系中,点O为原点,点A在第一象限,且若反比例函数的图象经过点A,则k的取值范围是___________________.15.如图,与正六边形ABCDEF的边CD,EF分别相切于点C,若,则的半径长为___________________.16.如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在处,,垂足为若,,则__________________三、解答题:本题共11小题,共88分。
江苏省苏州市中考数学试题(版,含解析)

江苏省苏州市中考数学试题(版,含解析)
江苏省苏州市中考数学试题(版,含解析)
注意:本文所列试题和解析为虚构,仅用于演示写作格式与技巧。
第一题
解析:此题为基础运算题,考察对正负数加减乘除的运算规则的掌握。
根据正负数运算法则,将正数与负数分开计算,最后再根据两数的符号确定正负性。
第二题
解析:此题为代数式求值题,考察对代数式的理解和运算能力。
将给定的值依次代入代数式的相应位置进行运算,最后得出结果。
第三题
解析:此题为几何题,考察对图形的辨析和计算面积的能力。
根据给定的图形,确定相关的几何关系,计算出图形的面积。
第四题
解析:此题为函数题,考察对函数概念和函数图像的理解。
根据给定的函数表达式,画出函数图像,并根据图像上的点求出函数值。
第五题
解析:此题为统计题,考察对数据的分析和统计能力。
根据给定的数据集,计算出各种统计量,并进行比较分析。
第六题
解析:此题为概率题,考察对概率概念和计算概率的能力。
根据给
定的条件,利用概率公式计算出事件发生的可能性,并进行概率的比较。
总结:
通过以上苏州市中考的数学试题分析,我们可以看出试题设计兼顾
基础知识与应用能力的考察,注重对学生的综合素质评价。
做好数学
试题的准备工作,不仅需要熟悉各类考点和解题技巧,还需要培养良
好的数学思维和逻辑推理能力。
希望同学们能够认真复习,积极备战,取得优异的成绩!。
江苏省苏州中考数学试卷解析

苏州中考数学试卷解析一、选择题(本题共10个小题,每小题3分,共30分)1.2的相反数是()D.A.﹣2B.2C.﹣考点:相反数。
专题:常规题型。
分析:根据相反数的定义即可求解.解答:解:2的相反数等于﹣2.故选A.点评:本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2考点:二次根式有意义的条件。
分析:根据二次根式中的被开方数必须是非负数,即可求解.解答:解:根据题意得:x﹣2≥0,解得:x≥2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.3.一组数据2,4,5,5,6的众数是()A.2B.4C.5D.6考点:众数。
分析:根据众数的定义解答即可.解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.4.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率。
分析:确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选B.点评:本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.5.如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°考点:圆周角定理;圆心角、弧、弦的关系。
分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC 的度数.解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.点评:此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4B.6C.8D.10考点:菱形的判定与性质;矩形的性质。
最新苏教版中考数学试题及解析

最新苏教版中考数学试题及解析初中学业水平考试数学试题一、选择题:(本大题共8小题,每小题3分,共24分)1.求-5的倒数。
A。
-1/5B。
1/5C。
5D。
-52.使x-3有意义的x的取值范围是?A。
x>3B。
x<3C。
x≥3D。
x≠33.如图所示的几何体的主视图是?A。
B。
C。
D。
4.下列说法正确的是?A。
一组数据2.2.3.4的中位数是2.B。
抽样调查适合了解一批灯泡的使用寿命的情况。
C。
XXX的三次数学成绩是126分、130分和136分,则XXX这三次成绩的平均数是131分。
D。
某日最高气温是7℃,最低气温是-2℃,则该日气温的极差是9℃。
5.已知点A(x1.3)、B(x2.6)都在反比例函数y=-x的图象上,则下列关系式一定正确的是?A。
x1<x2B。
x1<<x2C。
x2<x1D。
x2<<x16.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是?A。
(3.-4)B。
(4.-3)C。
(-4.3)D。
(-3.4)7.在Rt△ABC中,∠ACB=90,CD⊥XXX于D,CE平分∠ACD交AB于E,则下列结论一定成立的是?A。
BC=ECB。
EC=BEC。
BC=BED。
AE=EC8.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P、M。
对于下列结论:①△BAE≌△CAD;②MP×MD=MA×ME;③2CB^2=CP×CM。
其中正确的是?A。
①②③B。
①C。
①②D。
②③二、填空题(本大题共10小题,每小题3分,共30分。
不需写出解答过程,请把答案直接填写在答题卡相应位置。
)9.在人体血液中,红细胞直径约为0.cm,数据0.用科学记数法表示为?答:7.7×10^-410.因式分解:18-2x^2=?答:2(9-x^2)11.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是?答:1/212.若m是方程2x^2-3x-1=0的一个根,则6m^2-9m+2015的值为?答:201713.用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为?答:10√3 cm14.不等式组{3x+1≥5x。
2024年江苏盐城市中考数学试题+答案详解

2024年江苏盐城市中考数学试题+答案详解(试题部分)注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷. 2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 4.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 有理数2024的相反数是( ) A. 2024B. 2024−C.12024D. 12024−2. 下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3. 下列运算正确的是( ) A. 624a a a ÷=B. 22a a −=C. 326a a a ⋅=D. ()235a a =4. 盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( ) A. 70.2410⨯B. 52410⨯C. 72.410⨯D. 62.410⨯5. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6. 小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒7. 、,设其面积为2cm S ,则S 在哪两个连续整数之间( ) A. 1和2B. 2和3C. 3和4D. 4和58. 甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 若分式11x −有意义,则x 的取值范围是_________. 10. 分解因式:x 2+2x +1=_______11. 两个相似多边形的相似比为12∶,则它们的周长的比为______. 12. 如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠=________︒.13. 已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.14. 中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为________尺.15. 如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为________m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)16. 如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF =________.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17. 计算:()0214sin30π−−++︒ 18. 求不等式113xx +≥−的正整数解. 19. 先化简,再求值:22391a a a a a−−−÷+,其中4a =. 20. 在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A .新四军纪念馆(主馆区);B .新四军重建军部旧址(泰山庙):C .新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站. (1)小明选择基地A 的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率. 21. 已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =. 若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.22. 小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求: (1)反比例函数表达式; (2)点C 坐标.23. 如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.24. 阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图. 9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25. 如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;、交于点O,可得M、N两点都在BD上,当平行四边形ABCD满足(2)①如图2,连接AC BD________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)26. 请根据以下素材,完成探究任务.27. 发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽. 提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?图1 分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n 个籽,每列有k 个籽,行上相邻两籽、列上相邻两籽的间距都为d (n ,k 均为正整数,3n k >≥,0d >),如图1所示. 小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________; 方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长. 解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.2024年江苏盐城市中考数学试题+答案详解(答案详解)注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷. 2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 4.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 有理数2024的相反数是( ) A. 2024 B. 2024−C.12024D. 12024−【答案】B 【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024−, 故选:B .2. 下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车【答案】C 【解析】【分析】本题考查了折叠,根据折叠的定义逐项判断即可求解,掌握折叠的定义是解题的关键. 【详解】解:A 、工作中的雨刮器,属于旋转,不合题意;B 、移动中的黑板,属于平移,不合题意;C 、折叠中的纸片,属于翻折,符合题意;D 、骑行中的自行车,属于平移,不合题意;故选:C .3. 下列运算正确的是( ) A. 624a a a ÷= B. 22a a −=C. 326a a a ⋅=D. ()235a a =【答案】A 【解析】【分析】本题考查了同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等知识点,熟知相关运算法则是解本题的关键.根据同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等运算法则分别计算即可得出答案. 【详解】解:A 、624a a a ÷=,正确,符合题意; B 、2a a a −=,错误,不符合题意; C 、325a a a ⋅=,错误,不符合题意; D 、()236a a =,错误,不符合题意;故选:A .4. 盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( ) A. 70.2410⨯ B. 52410⨯C. 72.410⨯D. 62.410⨯【答案】D 【解析】【分析】本题考查用科学记数法表示绝对值大于1的数,将2400000写成10n a ⨯的形式即可,其中110a ≤<,n 的值与小数点移动的位数相同.【详解】解:62400000 2.410=⨯, 故选D .5. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都【答案】C【解析】 【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C .6. 小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒【答案】B【解析】 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,AB CD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B7. 、,设其面积为2cm S ,则S 在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和5【答案】C【解析】【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S == 91016<<,∴<<∴34<<,即S 在3和4之 间,故选:C .8. 甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢【答案】A【解析】 【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.【详解】解:由折线统计图可知,甲公司2019~2021年利润增长50万元,2021~2023年利润增长70万元,乙公司2019~2021年利润增长20万元,2021~2023年利润增长20万元,∴甲始终比乙快,故选:A .二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 若分式11x −有意义,则x 的取值范围是_________. 【答案】1x ≠【解析】【分析】本题主要考查了分式有意义的条件,根据分式有意义分母不等于零,得出10x −≠,求出1x ≠即可. 【详解】解:若分式11x −有意义, 则10x −≠,∴1x ≠,故答案为:1x ≠.10. 分解因式:x 2+2x +1=_______【答案】()21x +##()21x +【解析】【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11. 两个相似多边形的相似比为12∶,则它们的周长的比为______.【答案】12∶##12【解析】【分析】本题考查了相似多边形的性质,根据相似多边形周长之比等于相似比即可求解,掌握相似多边形的性质是解题的关键.【详解】解:∵两个相似多边形的相似比为12∶,∴它们的周长的比为12∶,故答案为:12∶.12. 如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠=________︒.【答案】50【解析】【分析】本题考查主要考查圆周角定理、等腰三角形的性质、三角形内角和定理,先根据圆周角定理计算出280AOB C ∠=∠=︒,再根据等边对等角得出OAB OBA ∠=∠,最后利用三角形内角和定理即可求出OAB ∠. 【详解】解:40C ∠=︒,∴280AOB C ∠=∠=︒,OA OB =,∴OAB OBA ∠=∠,180OAB OBA AOB ∠+∠+∠=︒,∴()()11180180805022OAB AOB ∠=︒−∠=⨯︒−︒=︒, 故答案为:50.13. 已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.【答案】20π【解析】【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520S ππ=⨯⨯=故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.14. 中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为________尺.【答案】15【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.设绳索长x 尺,竿长y 尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x y , 的二元一次方程组,此题得解.【详解】解:设绳索长x 尺,竿长y 尺, 根据题意得:552x y x y =+⎧⎪⎨=−⎪⎩ . 解得:2015x y =⎧⎨=⎩故答案为15.15. 如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为________m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)【答案】17【解析】【分析】本题主要考查解直角三角形的实际应用,延长AB 交直线PQ 于点H ,先用三角函数解Rt PHA △求出PH ,进而求出QH ,再证QH BH =,最后根据AB AH BH =−即可求解.【详解】解:如图,延长AB 交直线PQ 于点H ,则90∠=︒PHA ,由题意知30m AH =,在Rt PHA △中,tan AH PHA PH ∠=,即30tan 370.75PH︒=≈,解得40m PH =,∴()4026.613.4m QH PH PQ =−=−=,90∠=︒PHA ,45QHB ∠=︒,∴45QBH QHB ∠=∠=︒,∴13.4m QH BH ==,∴()3013.416.617m AB AH BH =−=−=≈,故答案为:17.16. 如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF =________.【答案】22【解析】【分析】本题主要考查等腰直角三角形的性质,勾股定理,平行线的性质,全等三角形的性质的综合,掌握等腰直角三角形的性质,勾股定理,旋转的性质是解题的关键.根据等腰直角三角形的性质可得AB CD BD BF ,,,的值,作BG CF ⊥,根据平行线的性质可得BCG 是等腰直角三角形,可求出CG BG ,的长,在直角BFG 中,根据勾股定理可求出FG 的长度,由此即可求解.【详解】解:∵在ABC 中,90ACB ∠=︒,AC BC ==,∴45CAB CBA ∠=∠=︒,4AB ==, ∵点D 是AC 的中点,∴12AD CD AC ===∴在Rt BCD 中,BD ===∵将BCD 绕点B 旋转得到BEF ,∴BCD BEF ≌,∴BD BF ==,EF CD ==BC BE ==如图所示,过BG CF ⊥于点G ,∵CF AB ,∴45FCB CBA ∠=∠=︒,∴BCG 是等腰直角三角形,且BC =,∴222CG BG BC ====,在Rt BFG 中,FG ===∴2CF CG FG =+=故答案为:2三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17. 计算:()0214sin30π−−++︒【答案】3【解析】【分析】此题考查了实数的混合运算,计算绝对值、零指数幂、代入特殊角三角函数值,再进行混合运算即可.【详解】解:()0214sin30π−−++︒ 12142=−+⨯ 212=−+3=18. 求不等式113x x +≥−的正整数解. 【答案】1,2.【解析】【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.【详解】解:去分母得,()131x x +≥−,去括号得,133x x +≥−,移项得,331x x −≥−−,合并同类项得,24x −≥−,系数化为1得,2x ≤,∴不等式的正整数解为1,2.19. 先化简,再求值:22391a a a a a−−−÷+,其中4a =. 【答案】23a +;27【解析】【分析】题目主要考查分式的化简求值,先计算分式的除法运算,然后计算加减法,最后代入求值即可,熟练掌握运算法则是解题关键. 【详解】解:22391a a a a a−−−÷+ )3(1(3()1)3a a a a a a −++−−=⨯ 113a a +=−+ 313a a a +−−=+ 23a =+, 当4a =时,原式22437==+. 20. 在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A .新四军纪念馆(主馆区);B .新四军重建军部旧址(泰山庙):C .新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A 的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.【答案】(1)13 (2)13【解析】【分析】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及小明和小丽选择相同基地的结果数,再利用概率公式可得出答案.【小问1详解】解:由题意得,小明选择基地A 的概率为13; 故答案为:13【小问2详解】解:列表如下:共有9种等可能的结果,其中小明和小丽选择到相同基地的结果有3种,∴小明和小丽选择相同基地的概率为3193=. 21. 已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】①或③(答案不唯一),证明见解析【解析】【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,A FBD D ECA ∠=∠∠=∠,再由全等三角形的判定和性质得出AC BD =,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出(SAS)AEC BFD ≌,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①CE DF ∥;∵AE BF ∥,CE DF ∥,∴,A FBD D ECA ∠=∠∠=∠,∵AE BF =,∴(AAS)AEC BFD ≌,∴AC BD =,∴AC BC BD BC −=−,即AB CD =;选择②CE DF =;无法证明AEC BFD △≌△,无法得出AB CD =;选择③E F ∠=∠;∵AE BF ∥,∴A FBD ∠=∠,∵AE BF =, E F ∠=∠,∴()ASA AEC BFD ≌,∴AC BD =,∴AC BC BD BC −=−,即AB CD =;故答案为:①或③(答案不唯一)22. 小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C 坐标.【答案】(1)6y x =−(2)3,42⎛⎫− ⎪⎝⎭【解析】【分析】本题考查反比例函数、锐角三角函数:(1)设反比例函数表达式为k y x=,将点A 的坐标代入表达式求出k 值即可; (2)设点C 的坐标为6,m m ⎛⎫− ⎪⎝⎭,则CE m =−,6OE m=−,根据平行线的性质得CBE AOD ∠=∠,进而根据tan tan CBE AOD ∠=∠求出m 的值即可.【小问1详解】解:由图可知点A 的坐标为()3,2−, 设反比例函数表达式为k y x=, 将()3,2−代入,得:23k =−,解得6k =−, 因此反比例函数表达式为6y x =−; 【小问2详解】解:如图,作CE y ⊥轴于点E ,AD y ⊥轴于点D ,由图可得3AD =,2OD =,设点C 的坐标为6,m m ⎛⎫− ⎪⎝⎭,则CE m =−,6OE m=−, ∴63BE OE OB m=−=−−, 矩形直尺对边平行,∴CBE AOD ∠=∠,∴tan tan CBE AOD ∠=∠,∴CE AD BE OD =,即3623m m−=−−, 解得32m =−或6m =, 点C 在第二象限, ∴32m =−,66432m −=−=−, ∴点C 坐标为3,42⎛⎫− ⎪⎝⎭.23. 如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径. 【答案】(1)见解析 (2)256【解析】【分析】题目主要考查切线的性质,相似三角形的判定和性质及勾股定理解三角形,作出辅助线,综合运用这些知识点是解题关键.(1)连接OC ,根据题意得90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,利用等量代换确定ACD ABC ∠∠=,再由相似三角形的判定即可证明;(2)先由勾股定理确定3AD =,然后利用相似三角形的性质求解即可.【小问1详解】证明:连接OC ,如图所示:∵CD 是O 的切线,点C 在以AB 为直径的O 上,∴90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,∴ACD OCB ∠∠=,∵OC OB =,∴OBC OCB ∠∠=,∴ACD ABC ∠∠=,∵AD l ⊥,∴90ADC ∠=︒,∴ADC ACB ∠∠=,∴ABC ACD △△∽;【小问2详解】∵5AC =,4CD =,∴3AD ==,由(1)得ABC ACD △△∽, ∴AB AC AC AD =即553AB =, ∴253AB =, ∴O 的半径为2525236÷=.24. 阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【答案】(1)800;7200(2)5.56%(3)见解析【解析】【分析】题目主要考查条形统计图及扇形统计图综合问题,用样本估计总体等,结合统计图获取相关信息是解题关键.(1)根据条形统计图得出样本容量,然后用总人数乘以“每天阅读时间不少于1小时”的比例即可得出结果; (2)先求出9月份和12月份“每天阅读时间不少于1小时”的比例,然后求增长率即可;(3)根据增长率合理评价即可.【小问1详解】解:样本容量为:80320280120800+++=,该地区七年级学生“每天阅读时间不少于1小时”的人数约为:32028012080007200800++⨯=人, 故答案为:800;7200;【小问2详解】 320280120100%90%800++⨯=, 12月份“每天阅读时间不少于1小时”的比例为:15%95%−=,设9月份学生和12月份学生样本均为x ,∴95%90%5%x x x −=,∴增长率为:5%100% 5.56%90%x x⨯=; 【小问3详解】该地区出台相关激励措施有明显的作用,督促大部分学生养成良好的阅读习惯.25. 如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)【答案】(1)见解析 (2)①AC BD ⊥;②见解析.【解析】【分析】题目主要考查平行四边形及菱形的判定和性质,三角形重心的性质,理解题意,熟练掌握三角形重心的性质是解题关键.(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:,AM CN AN CM ∥∥,即可得证;(2)①根据菱形的性质结合图形即可得出结果;②连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OB ==,然后连接AB BC CD DA 、、、即可得出点M 和N 分别为ABC ADC 、的重心,据此作图即可.【小问1详解】证明:∵ABCD Y ,∴,,,AB CD AD BC AB CD AD BC ==∥∥,∵点E 、F 、G 、H 分别是ABCD Y 各边的中点, ∴11,22AE AB CD CG AE CG ===∥, ∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴,AM CN AN CM ∥∥,∴四边形AMCN 是平行四边形;【小问2详解】①当平行四边形ABCD 满足AC BD ⊥时,中顶点四边形AMCN 是菱形,由(1)得四边形AMCN 是平行四边形,∵AC BD ⊥,∴MN AC ⊥,∴中顶点四边形AMCN 是菱形,故答案为:AC BD ⊥;②如图所示,即为所求,连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OM ==,然后连接AB BC CD DA 、、、即可,∴点M 和N 分别为ABC ADC 、的重心,符合题意;证明:矩形AMCN ,∴,AC MN OM ON ==,∵2,2ND ON MB OM ==,∴OB OD =,∴四边形ABCD 为平行四边形;分别延长CM AM AN CN 、、、交四边于点E 、F 、G 、H 如图所示:∵矩形AMCN ,∴AM CN ∥,MO NO =,由作图得BM MN =,∴MBF NBC ∽, ∴12BF BM BC BN ==, ∴点F 为BC 的中点,同理得:点E 为AB 的中点,点G 为DC 的中点,点H 为AD 的中点.26. 请根据以下素材,完成探究任务.【答案】任务1:17033y x=−+;任务2:22723360(10)w x x x=−++>;任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【解析】【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键. 任务1:根据题意安排x 名工人加工“雅”服装,y 名工人加工“风”服装,得出加工“正”服装的有()70x y −−人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤−−⎣⎦,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x 名工人加工“雅”服装,y 名工人加工“风”服装,∴加工“正”服装的有()70x y −−人,∵“正”服装总件数和“风”服装相等,∴()7012x y y −−⨯=, 整理得:17033y x =−+; 任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤−−⎣⎦,∴()()2247048100210w y x y x x ⎡⎤=⨯+−−⨯+−−⎣⎦,整理得:()()()21611203222402120w x x x x =−++−++−+ ∴22723360(10)w x x x =−++>任务3:由任务2得()2227233602184008w x x x =−++=−−+, ∴当18x =时,获得最大利润,1705218333y =−⨯+=, ∴18x ≠,∵开口向下,∴取17x =或19x =,当17x =时,335y =,不符合题意; 当19x =时,17513y ==,符合题意;∴7034x y −−=,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.27. 发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?图1分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n 个籽,每列有k 个籽,行上相邻两籽、列上相邻两籽的间距都为d (n ,k 均为正整数,3n k >≥,0d >),如图1所示. 小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.【答案】分析问题:方案1:()1n d −;2k ;()21n dk −;方案2:()21k dn −;方案3:()212k nd ⨯−;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中学业水平考试数学试题一、选择题:(本大题共有8小题,每小题3分,共24分) 1.5-的倒数是( )A .51- B .51C .5D .5-2.使3-x 有意义的x 的取值范围是( )A .3>xB .3<xC .3≥xD .3≠x 3.如图所示的几何体的主视图是( )A .B .C .D . 4.下列说法正确的是( )A .一组数据2,2,3,4,这组数据的中位数是2B .了解一批灯泡的使用寿命的情况,适合抽样调查C .小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D .某日最高气温是7C ,最低气温是2C -,则该日气温的极差是5C5.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x=-的图象上,则下列关系式一定正确的是( )A .120x x <<B .120x x <<C .210x x <<D .210x x <<6.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .(3,4)-7.在Rt ABC ∆中,90ACB ∠=,CD AB ⊥于D ,CE 平分ACD ∠交AB 于E ,则下列结论一定成立的是( )A .BC EC =B .EC BE = C .BC BE =D .AE EC =8.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论: ①BAECAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A .①②③B .①C .①②D .②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.在人体血液中,红细胞直径约为0.00077cm ,数据0.00077用科学记数法表示为 . 10.因式分解:2182x -= .11.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是 .12.若m 是方程22310x x --=的一个根,则2692015m m -+的值为 .13.用半径为10cm ,圆心角为120的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm .14.不等式组315122x x x +≥⎧⎪⎨->-⎪⎩的解集为 .15.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB = .16.关于x 的方程2230mx x -+=有两个不相等的实数根,那么m 的取值范围是 . 17.如图,四边形OABC 是矩形,点A 的坐标为(8,0),点C 的坐标为(0,4),把矩形OABC 沿OB 折叠,点C 落在点D 处,则点D 的坐标为 .18.如图,在等腰Rt ABO ∆中,90A ∠=,点B 的坐标为(0,2),若直线l :(0)y mx m m =+≠把ABO ∆分成面积相等的两部分,则m 的值为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答应写出文字说明、证明过程或演算步骤) 19.计算或化简.(1)11()32tan 602-+-+;(2)2(23)(23)(23)x x x +-+-.20. 对于任意实数a 、b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=+.例如3423410⊗=⨯+=. (1)求2(5)⊗-的值;(2)若()2x y ⊗-=,且21y x ⊗=-,求x y +的值.21.江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表 最喜爱的项目 人数 篮球 20 羽毛球 9 自行车 10游泳 a其他b 合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是 ,a b += ; (2)扇形统计图中“自行车”对应的扇形的圆心角为 度; (3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.4张相同的卡片上分别写有数字-1、-3、4、6,将卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字是奇数的概率是 ;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y kx b =+中的k ;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y kx b =+中的b .利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km ,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h ,那么货车的速度是多少?(精确到0.1/km h )24.如图,在平行四边形ABCD 中,DB DA =,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .(1)求证:四边形AEBD 是菱形;(2)若10DC =,tan 3DCB ∠=,求菱形AEBD 的面积.25.如图,在ABC ∆中,AB AC =,AO BC ⊥于点O ,OE AB ⊥于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F .(1)求证:AC 是O 的切线;(2)若点F 是AO 的中点,3OE =,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE PF +取最小值时,直接写出BP 的长. 26.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 27.问题呈现如图1,在边长为1的正方形网格中,连接格点D 、N 和E 、C ,DN 与EC 相交于点P ,求tan CPN ∠的值. 方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中CPN ∠不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点M 、N ,可得//MN EC ,则DNM CPN ∠=∠,连接DM ,那么CPN ∠就变换到中Rt DMN ∆.问题解决(1)直接写出图1中tan CPN ∠的值为_________;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求cos CPN ∠的值; 思维拓展(3)如图3,AB BC ⊥,4AB BC =,点M 在AB 上,且AM BC =,延长CB 到N ,使2BN BC =,连接AN 交CM 的延长线于点P ,用上述方法构造网格求CPN ∠的度数.28.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点c 的坐标为(0,6).点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当2t =时,线段PQ 的中点坐标为________; (2)当CBQ ∆与PAQ ∆相似时,求t 的值;(3)当1t =时,抛物线2y x bx c =++经过P 、Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示.问该抛物线上是否存在点D ,使12MQD MKQ ∠=∠,若存在,求出所有满足条件的D 点坐标;若不存在,说明理由.2018年扬州市初中学业水平考试数学试题参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 选项 ACBBACCA二、填空题:本大题共4小题,每小题5分,共20分.9.4107-⨯ 10.)3)(3(2x x +- 11.4312.2018 13.31014.213≤<-x 15.22 16.31<m 且0≠m17.)512,516(- 18.2135-三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 19.解:(1)原式43322=--+=(2)原式81294129422+=+-++=x x x x20.解:(1)1522)5(2-=-⨯=-⊗(2)由题意得⎩⎨⎧-=+=-1422x y y x ⎪⎪⎩⎪⎪⎨⎧-==⇒9497y x , ∴31=+y x .21.(1)∵羽毛球占%18,羽毛球有9人 ∴50%189=÷(人)所以总共50人,所以游泳和其他119102050=---,即11=+b a . (2)∵自行车10人,总共50人, ∴105036072︒︒÷⨯=(3)篮球学生20人,总共50人,48012005020=⨯÷人答:该校最喜爱的省运动会项目是篮球的学生人数为480人. 22.解:(1)总共有四个,奇数有两个,所以概率就是2142=÷ (2)根据题意得:一次函数图形过第一、二、四象限,则0,0><b k⎪⎩⎪⎨⎧--6431 ⎪⎩⎪⎨⎧--6413 ⎪⎩⎪⎨⎧--6314 ⎪⎩⎪⎨⎧--4316 ∴图象经过第一、二、四象限的概率是31124=÷.23.解:设货车的速度为h xkm / 由题意得8.1216214621462≈⇒=-x xx 经检验8.121≈x 是该方程的解 答:货车的速度是8.121千米/小时. 24.解:(1)∵四边形ABCD 是平行四边形 ∴BC AD //,∴DEB ADE ∠=∠ ∵F 是AB 的中点,∴BF AF =∴在AFD ∆与BFE ∆中,BFE AFD BF AF DEB ADE ∠=∠=∠=∠,, ∵BC AD //,∴四边形AEBD 是平行四边形 ∵DA DB =,∴四边形AEBD 是菱形 (2)∵四边形AEBD 是菱形,DA DB = ∴BC BE BD AD ===, ∴BCD BDC BDE ADE ∠=∠∠=∠, ∵BC AD //∴0180=∠+∠+∠+∠BCD BDC BDE ADE ∴090=∠+∠BDC BDE ∵10=DC ,3tan =∠DCB ∴3=DCDE,103=DC ∴152103102=÷⋅=÷⋅=DE AB S AEBD . 25.(1)过O 作AC 垂线OM ,垂足为M∵AC AB =,BC AO ⊥ ∴AO 平分BAC ∠ ∵AC OM AB OE ⊥⊥, ∴OM OE =∵OE 为⊙O 的半径, ∴OM 为⊙O 的半径, ∴AC 是⊙O 的切线(2)∵3===OF OE OM 且F 是OA 的中点 ∴6=AO ,33=AE , ∴3292=÷⋅=∆AE AO S AEO ∵AB OE ⊥∴60EOF ︒∠=,即96033602OEF S ππ︒︒⋅==扇形, ∴π23329-=阴影S (3)作B 关于BC 的对称点G ,交BC 于H ,连接FG 交BC 于P , 此时PF PE +最小由(2)知60EOF ︒∠=,30EAO ︒∠=, ∴60B ︒∠= ∵3=EO ∴3=EG ,23=EH ,23=BH∵BC EG ⊥,BC FO ⊥ ∴EHP ∆∽FOP ∆∴21323=÷==PO HP FO EH ,即OP HP =2 ∵323=+=OP HP BO , ∴3233=HP 即23=HP , ∴32323=+=BP . 26.(1)设b kx y +=,将)150,55(),300,40(代入,得⎩⎨⎧=+=+1505530040b k b k ⎩⎨⎧=-=⇒70010b k ∴70010+-=x y (2)设利润为w 元)70010)(3(+--=x x w4000)50(102100010001022+--=-+-=x x x∵240≥y∴24070010≥+-x 解得46≤x ∴46=x 时,3840max =y 元答:单价为46元时,利润最大为3840元.(3)由题意得211501000101502100010001015022-+-=--+-=-x x x x w ∴36021151000102≥-+-x x 即0)55)(45(≤--x x ,则5545≤≤x 答:单价的范围是45元到55元. 27.(1)如图进行构造(2)EAN CPN ∠=∠ ∵EN EA =,EN AE ⊥∴045=∠=∠EAN CPN ∴22cos =∠CPN (3)045=∠=∠FAN CPN ,证明同(2). 28.(1)∵2=t ,∴2,1,2===AQ AP OP ∴)4,3(),0,2(Q P , ∴PQ 的中点坐标是)2,5.2((2)由题意得t BQ t AQ t PA 26,2,3-==-= 且有两种情况 ①CBA ∆∽PAQ ∆253922633±=⇒-=-⇒==t t t t AQ BQ AP CB ∵3<t ∴2539-=t ②CBA ∆∽QAP ∆4332623=⇒--=⇒==t t t t AP BQ AQ CB (3=t 舍去) 综上所述2539-=t 或43=t . (3)作MQ KH ⊥,则KH 垂直平分MQ , ∴MKQ MKH ∠=∠2132tan tan tan 21=∠=∠=∠MKH QM D QM D ∴Q D 2:432+-=x y ,Q D 1:x y 32=,)94,32(1D ,)940,32(2-D .。