酵母遗传
酵母遗传和细胞生物学

酵母遗传和细胞生物学酵母是一种单细胞真核生物,由于体积小、生命周期短、基因组相对简单且遗传工具成熟,因此成为了生物科学研究的一个热门对象。
在酿酒中功不可没的酵母菌,也是许多生物学家和遗传学家的长期研究对象之一。
在遗传学上,酵母菌是一个非常有用的模式生物,因为它们具有相对短的生命周期、容易进行突变和遗传实验、能够进行高通量遗传屏幕和分析,而这些都是其他生物难以比拟的。
在酵母的遗传研究中,有两个主要的遗传策略:自然遗传和基因改造遗传。
自然遗传是通过对酵母自然发生的遗传变异的分析来了解遗传信息的特性。
基因改造遗传是通过让酵母在实验室中发生人工干涉的基因改变,来了解特定基因和遗传信息对于细胞功能和生物学行为的影响。
酵母的遗传是以细胞为基础的。
每个酵母细胞都有核和质体,核内包含一套基因组,是核酸遗传信息的存储和传递中心。
在核内,基因信息呈线性排列,所以一个线性染色体的完整拷贝含有全套的基因。
酵母菌有16条染色体,其中仅有数百到上万个基因,因此酵母基因间距相对较大。
质体则负责维持酵母细胞结构和代谢,以及进行细胞分裂、生长等功能。
酵母的生殖方式是丝状菌的两性配子体,即两个细胞体融合形成的新细胞,它具有不同的细胞型态和大小,以及不同的染色体组成。
在配子体形成时,基因组重组和重分配会导致分生孢子具有不同的染色体和基因组组合,这是酵母遗传多样性的主要来源。
遗传实验中,我们可以通过敲除基因或者引入新的基因来分析不同基因的功能和相互作用。
如同人类基因组计划,酵母菌基因组也被分离和定序,因此我们可以利用基础遗传学方法以及高通量技术来对特定的基因进行研究。
敲除与添加基因只是遗传工具箱中的一部分,“诱发突变”也是遗传实验的一个常用策略。
实验者用不同的化合物或者条件诱发细胞突变,然后筛选出具有目标特性的突变体,这也是了解基因功能和相互作用的有效手段。
酵母的遗传观察需要进行细胞生物学的化验。
我们用细胞显微镜来观察酵母细胞内部结构以及细胞行为。
酵母遗传

图7-9 酵母中的嗜杀现象
第五节
接合型基因及其基因转换
图7-4 酵母端粒结构和相邻序列示意图
三、 复制起点 酵母染色体上控制DNA复制起始的短的DNA序列就是 酵 母 的 复 制 起 点 , 通 常 称 为 自 主 复 制 序 列 (autonomously replicatory sequences, ARS)。 将ARS克隆到质粒中,能使质粒DNA在酵母中自主复制。 自从1979年首次发现酿酒酵母的ARS以来,已经对ARS的结构 和功能进行了深入研究。 在酿酒酵母基因组中ARS总数约400,但使用频率不同,变 动在10%~100%。
图 几种生物着丝粒结构
图7-3 酵母着丝粒结构的模型
在酿酒酵母中,所有的着丝粒序列都含有大约130bp长的序 列,每条染色体的着丝粒序列(centromeric seguence,CEN)都分 为三个区,由5’→3’依次为CDEⅠ、CDEⅡ和CDEⅢ。
CDEⅠ和CDEⅢ是两个共有序列,位于两侧,中间是由78~ 86个核苷酸组成的CDEⅡ,CDEⅡ的核苷酸序列中>90%是 A+T序列,所以容易弯曲(图)。
140
4 1 1 0 0 1 0 0 1 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0
4 2 0 0 0 4 0 0 0 0 2 1 0 0 0
ⅩⅤ
XⅥ
1,091
948
微生物遗传第九章酵母菌遗传

将特定基因插入到酵母菌基因组的特定位置,以研究 基因表达和调控。
基因定点突变技术
通过寡核苷酸引物或锌指核酸酶,对特定基因进行定 点突变,以研究蛋白质结构和功能。
酵母菌功能基因组学研究
全基因组表达谱分析
01
通过高通量测序技术,对酵母菌全基因组表达情况进行检测和
分析,以研究基因表达调控机制。
蛋白质组学研究
02
对酵母菌蛋白质表达、修饰和相互作用进行研究,以揭示蛋白
质功能和调控机制。和变化进行研究,以揭示代谢
途径和调控机制。
酵母菌与其他生物的基因交流与进化
基因转移与重组
研究酵母菌与其他生物之间基因的转移和重组,以揭示基因进化 机制。
基因共进化
研究不同生物之间基因的共进化关系,以揭示生物协同进化的规 律。
生物质转化
酵母菌可以将木质纤维素等生物质转化为燃料和化学品。通过基因工程手段改良酵母菌的木质素降解酶系和代谢 途径,可以提高生物质的转化效率。例如,利用基因工程技术提高酵母菌对木质素的降解能力,可以用于生物质 转化的工业生产。
THANKS
感谢观看
酵母菌遗传
• 酵母菌概述 • 酵母菌的遗传基础 • 酵母菌的基因操作 • 酵母菌遗传学研究进展 • 酵母菌遗传学应用前景
01
酵母菌概述
酵母菌的形态与分类
形态
酵母菌通常为单细胞,呈圆形、椭圆 形或圆柱形,直径一般为2-3微米。
分类
酵母菌属于真菌界,是单细胞真菌, 有数百种之多,主要分为酿酒酵母、 毕赤酵母、假丝酵母等。
要点三
药物筛选
酵母菌在药物筛选中也具有应用价值 。通过基因工程技术构建能够模拟人 类疾病的酵母菌模型,可以用于新药 筛选和药物作用机制研究。例如,利 用酵母菌模拟帕金森病等疾病模型, 用于药物筛选和机制研究。
酵母遗传学

酵母遗传学
酵母遗传学是研究酵母菌基因遗传和表达的学科。
酵母菌是单细胞真核生物,其基因组结构、遗传机制和代谢途径与人类有许多相似之处,被广泛应用于基因功能研究、药物筛选等领域。
酵母遗传学主要研究以下几个方面:
1.基因型和表型的遗传关系。
通过对不同基因型酵母菌的表型特征进行比较,探究基因在表型形成过程中的作用和调控机制。
2.基因表达调控机制。
酵母菌基因表达的调控受到许多内在和外在因素的影响,如转录因子、信号通路等。
酵母遗传学研究通过分析这些调控机制,揭示基因表达的规律和机理。
3.基因功能研究。
酵母菌基因组中有许多基因的功能仍不清楚,酵母遗传学研究通过基因敲除、基因突变等方法,揭示基因的功能和作用机制。
4.酵母菌在实践中的应用。
酵母菌作为模式生物被广泛用于基因工程、药物筛选等领域,酵母遗传学研究可以为相关应用提供理论和技术支持。
总之,酵母遗传学在现代生物学研究中起着重要的作用,为我们深入了解基因功能和表达规律提供了新的途径和思路。
- 1 -。
酵母菌的遗传工程和表达系统

酵母菌的遗传工程和表达系统酵母菌是一种常见的单细胞真菌,广泛存在于自然界中。
由于其易于培养、生长速度快、基因组较小、剪接机制类似于哺乳动物细胞等优点,酵母菌成为了功能基因组学、代谢工程学、蛋白质工程学等领域中的重要模型生物。
而酵母菌的遗传工程和表达系统则为这些研究提供了基础和保障。
酵母菌的遗传工程主要包括基因克隆、拷贝数调控、基因敲除、基因组编辑、基因表达调控、代谢通路调控等方面。
其中,基因克隆是构建目的基因载体的重要步骤,一般通过 PCR 扩增或基于荧光报告基因的克隆方法来实现。
而拷贝数调控则指通过操纵载体的拷贝数,达到目的蛋白在酵母细胞中表达量的控制。
酵母菌具有高度重组能力以及泛素降解酶机制,因此基因敲除和基因组编辑等操作在酵母菌中较为容易实现。
基因表达调控则是酵母细胞酿酒业中的重要应用,通过调节转录、翻译后修饰等环节来实现产品的调控。
代谢通路调控则是通过调节酵母菌内一系列代谢酶的表达量或活性来增加特定产物的产量。
酵母菌的表达系统则包括基于质粒的表达和基于基因组的表达两种方式。
质粒表达是将目的基因克隆至质粒中,然后将质粒转化至酵母细胞中,通过调控拷贝数和选择适当的启动子及终止子等措施实现表达。
而基因组表达则是将基因克隆至某一位点上,在酵母菌表达生命周期较长的时期内带来更稳定的表达效果,尤其适用于连续表达大规模生物分子的场合。
同时,可以采用多个方面的策略来处理表达过程中可能出现的问题,从而进一步优化表达效率和表达质量。
例如在 translational initiation 上加入特定元件、利用内质网信号肽将蛋白定向到内质网,从而利用内质网发生的翻译后修饰增加表达质量等等。
总之,酵母菌的遗传工程和表达系统为现代生物技术研究和产业化提供了重要的平台,无论从理论研究还是实践应用的角度来看,都具有广泛的前景和应用价值。
我们期待,基于酵母菌的遗传工程和表达系统将吸引更多的生物学家、遗传学家、代谢工程师、蛋白质化学家等多个领域的专家和研究人员的关注,一起推进这一新兴领域的发展和进步。
酵母菌遗传多样性研究

酵母菌遗传多样性研究:探索酒精发酵的奥秘酿酒是人类文明历史的重要组成部分,而酵母菌则在酒精发酵过程中起到了重要的作用。
酵母菌在发酵过程中是以无性繁殖的方式进行的,通过遗传多样性研究,不仅可以深入了解酿酒的过程和机制,也可以为培育更加优良的酵母菌品种提供科学依据。
本文将从酵母菌遗传多样性的基础、研究方法、意义等方面进行探讨。
一、酵母菌遗传多样性的基础酵母菌是一类单细胞真菌,它们吸收有机物或者碳物质,进行发酵作用,产生酒精、二氧化碳等有用物质。
从基因组水平来看,酵母菌的核基因组呈现为一个二倍体状态,其次还存在一个质粒组分。
酵母菌的基因组大小一般为10-20Mb,在菌落的不同部位,其基因组序列也会发生不同。
尽管酵母菌的基因组存在一定的保守性,但是仍然具有较大的遗传多样性。
酵母菌主要以无性繁殖方式进行,这种繁殖方式称为分裂,能够保证其基因组的稳定性和完整性。
但是在环境、温度、压力等因素的影响下,酵母菌还会进行有性繁殖,这种繁殖方式会引发基因组的重组,进而导致酵母菌的遗传多样性进一步增加。
二、酵母菌遗传多样性的研究方法酵母菌的遗传多样性主要可以通过两种途径进行研究,一种是全基因组测序,另一种则是根据特定遗传标记位点进行基因型分析。
全基因组测序可以全面掌握酵母菌基因组序列的信息,这种方法可以在种属间、不同株系之间进行遗传多样性的比较。
较新的次代测序技术可以在较短时间内完成大规模的测序工作,且精度也得到了极大的提高。
目前,全基因组测序已经广泛应用于酵母菌在进化、毒理等领域的研究中。
基因型分析则是通过检测酵母菌的遗传标记分别检测个体之间的遗传差异,这种方法也是目前广泛应用于中的一种。
尽管这种方法的精度相对较低,但是其操作相对方便,数据量也较小,较容易处理,因此不失为一种有力的研究工具。
三、酵母菌遗传多样性对酿酒业的意义酵母菌的遗传多样性研究具有重要的理论和实践意义。
从理论上来说,探究酵母菌的遗传多样性可以揭示其进化、繁殖机制的奥秘,对生命科学领域的研究具有重要的参考意义。
酵母菌的遗传变异及其相关基因

酵母菌的遗传变异及其相关基因酵母菌是一种单细胞真菌,广泛存在于自然界中,包括土壤、水体、植物表面以及消化系统中等。
酵母菌在生物学研究中具有重要作用,是模式生物之一,几乎所有的有关基因表达和生化代谢调控的实验方法都可以在酵母菌上开展。
而酵母菌的遗传变异是构建酵母菌基因网络的必要过程,进而推动细胞生长和代谢的实现。
1. 酵母菌的遗传变异在自然界和实验室中,酵母菌可通过遗传变异来适应不同环境。
遗传变异包括基础性的点突变和复杂的染色体水平变异等。
其中,点突变是最常见的遗传变异形式,也是人们对遗传变异研究的重点。
点突变可分为错义突变和无义突变两类:错义突变是因为DNA序列发生了变化,让该基因表达的蛋白质发生了氨基酸的变异,从而使蛋白质结构和功能发生了改变;而无义突变则是该DNA序列变异后终止密码子生成一条截断的蛋白质链,导致细胞失能或者细胞死亡。
除此之外,酵母菌还可通过发生基因重组的方式来形成染色体水平的遗传变异。
这种变异形式通常会改变基因组的规模和染色体结构,并产生新的基因型或表型。
研究者们已通过染色体水平变异实现了酵母菌的进化人工控制,例如弱化或强化单一环境下的竞争能力、对环境毒性的适应能力等。
2. 酵母菌遗传变异相关基因(1)交叉交叉是酵母菌中基因重组的一种形式。
当酵母菌进行有性繁殖时,交叉会对基因组进行一定的乱序,从而生成不同的基因型。
正常的交叉作用需要受到遗传信号的诱导,这些信号来自酵母菌营养环境、细胞周期等不同因素。
恰当地配置这些因素可以控制交叉率,让繁殖酵母菌的下一代具有更加多样化的基因组。
事实上,随着研究进程不断深入,越来越多的基因被证明是直接或间接影响酵母菌交叉率的。
例如,环境因子下调的酵母菌细胞容易变得非常敏感,由此会减小交叉率和对外因的适应性;反之,高温和高氨基酸浓度等条件会刺激交叉率的上升。
(2)加工酵母菌的遗传变异在很大程度上是通过基因加工过程实现的。
基因加工是指对DNA进行重组、修饰、转录和翻译等一系列调节和加速基因转录的过程。
酵母遗传图谱的构建和应用

酵母遗传图谱的构建和应用酵母是一种广泛应用在生物科技领域的微生物,酵母遗传图谱的构建和应用是生物工程领域的一个重要分支,可以为基因工程和生物信息学研究提供有力的工具。
一、酵母遗传图谱的构建酵母遗传图谱是指基于基因之间的相互作用和途径来建立基因间联系的图谱。
构建酵母遗传图谱需要考虑到酵母基因之间的相互作用,这些相互作用包括蛋白质-蛋白质相互作用和基因表达的相互作用。
其中,蛋白质-蛋白质相互作用可以通过蛋白质互作网络来实现,基因表达的相互作用可以通过表达谱来实现。
通过这些相互作用,可以构成一个基因之间的联系网络。
建立酵母遗传图谱需要考虑多种功能模型,在常见的模型中,主要包括全基因组检测(GCT),修正全基因组检测(MGCT),结构方程模型(SEM)和其他混合模型。
在这些模型中,基于GCT的酵母遗传图谱是目前最为广泛采用的方法之一。
二、酵母遗传图谱的应用酵母遗传图谱在生物工程及生命科学领域有广泛的应用。
以下是几个应用方面的例子:1. 蛋白质功能分析蛋白质是酵母遗传图谱中最为常见的功能单元。
酵母遗传图谱可以为蛋白质的功能分析提供基础,通过分析蛋白质-蛋白质相互作用以及蛋白质基因表达谱,我们可以了解一个蛋白质在不同环境中的表达量变化,以及它与其他蛋白质或基因之间的关系,从而进一步研究其功能。
2. 定位基因和突变基因酵母遗传图谱可以定位基因和突变基因。
通过比较基因表达谱和相互作用网络,我们可以找到与特定生理过程相关的基因和蛋白质,并确定突变基因的位置。
3. 药物靶标分析酵母遗传图谱还可以用于药物靶标分析。
通过结合酵母遗传图谱和基因表达谱以及蛋白质-蛋白质相互作用网络,我们可以找到药物靶标候选物,并进一步研究它们与其他基因或蛋白质的相互作用,以及它们对特定生理过程和疾病的影响。
结论酵母遗传图谱的构建和应用是生物工程和生物信息学领域的重要研究方向。
酵母遗传图谱可以为生物学和药物研发提供有力的工具。
虽然酵母遗传图谱与其他生物物种的遗传图谱有相似之处,但由于酵母的广泛应用和其基因组研究的深入,酵母遗传图谱在生物和医疗研究中具有重要的地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ARS604 ARS605 ARS606
TTTTACGTTTT AaTTACGTTTT ATTTATATTTT
ARS607
ARS608 ARS609 RDNA ARS
gTTTATATTTA
TTTTACtTTTA TTTTATGTTTT gTTTATGTTTT
图7-5 酵母ARS的结构 a. ARS1的结构
在粟酒裂殖酵母的基因组中也有 ARS,平均约每20~ 50kb的染色体DNA上有一个ARS。
1. 自主复制序列ARS的结构: 酿酒酵母中, ARS是长度为100~200bp 、富含AT的DNA 片段。
根据其在质粒中稳定性的实验结果来看,可将ARS分为A、B、 C三个结构域,其中A和B最为重要。 A是由11bp核苷酸(A/T)TTTAT(A/G)TTT(A/T)组成的保 守序列,称为ARS共有序列(ARS consebsus sequence, ACS)。 所有的ARS都含有一个完全相同或非常相似的ACS。 ACS内单一碱基的突变能降低或消除起始功能。
粘菌
四膜虫 酿酒酵母 脉孢菌
TAGGG
TTGGGG TG1-3 TTAGGG
在酵母中,与端粒联合的DNA有两类: X和Y’。 X是保守性较差的序列,长度为0.3-3.7kb,存在于大多数染色 体上。 Y’高度保守,长度为6.7kb。三分之二的端粒含有1-4个拷贝的 Y’(图 )。 端粒联合的DNA X和Y’对于端粒来说并不是必需的,它们对 端粒的稳定、染色体断裂后的修复以及在减数分裂中染色体 联会起辅助作用。 在端粒联合DNA X和Y’之间还有一段端粒重复序列,约 50~130bp,这一段端粒重复序列可能是”备用”端粒,当染 色体断裂或从端粒处被降解时,这段序列可以作为端粒酶的 引物延伸端粒。 另外,X和Y’序列中都含有自主复制序列(ARS),能使质粒 DNA在酵母中自主复制,但对端粒的复制和功能不起很大作 用。
CDEⅠ
CDEⅡ
CDEⅢ
A
A
T
TCACTG---78~86bp(90%A+T)---TGTTT GNTTTCCGAAANNNAAAAA G G A
图 酵母着丝粒序列
二、端粒(telomere) 端粒是真核生物线性染色体两端的特殊DNA-蛋白质复合 体结构,这种复合体结构是由重复序列组成的DNA序列和与 之相结合的蛋白质分子构成。 端粒的功能一般认为有以下几点:(1)维持染色体结构的 完整性 如果失去端粒,则染色体的末端呈现高度的不稳定 性,并且使染色体末端与其它断裂片段相融合。 (2)保证染色体末端的完整性 端粒在DNA复制过程中有 不同于普通染色体DNA的复制行为,因而能够保证DNA在半 保留复制后,作为DNA复制引物的5’-RNA被DNA切去,而 不致于损失结构基因。 (3)端粒通过与核膜结合,使染色体末端定位于核膜边缘。
1,532
577 270 1,091 563 440 745 667 1,078 924 784
747
278 130 515 276 220 358 314 506 457 398
27
20 10 36 11 10 24 16 22 21 16 0 0 0
0
6 3 0 0 0
1 1 0 0 0 0 1 0 0 0
16
12,068
5885
275 140 33 13 2 3 1
第二节 酵母菌的染色体结构和特征
一、 着丝粒(centromere)
着丝粒是真核细胞染色体DNA上的一段特殊序列。在有丝 分裂和减数分裂时,纺锤丝(着丝粒结合蛋白)与着丝粒结合,将染 色体拉向细胞的两极。
着丝粒有两种主要类型: 第一种类型的着丝粒序列很短(~ 200bp),又叫点着丝粒(point centromere),芽殖酵母的着丝粒就属 于这种类型。 第二种类型的着丝粒也叫区域着丝粒(regional centromere),其 特征是着丝粒序列较长(从40kb到几个mb),含有很多重复序列, 真菌(如脉胞霉菌)、果蝇、哺乳动物和人的着丝粒都具有这种 结构特征,见图 。
140
4 1 1 0 0 1 0 0 1 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0
4 2 0 0 0 4 0 0 0 0 2 1 0 0 0
ⅩⅤ
XⅥ
1,091
948
566
461
20
17 0
0
2 2 0 0 0
4 0 0 1 0
总数
染色体 长度(kb) 基因数 (编码蛋白质) tRNA基因数 rRNA基因 Ty1 Ty2 Ty3 Ty4 Ty5
染色体 长度(kb) 基因数 (编码蛋白质) tRNA基因数 rRNA基因 Ty1 Ty2 Ty3 Ty4 Ty5 Ⅰ Ⅱ Ⅲ 230 813 315 107 392 160 2 13 10 0 0 0 1 0 0 0 0 2 1 0 0 0 0 1 0 0 1
Ⅳ
Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅩⅢ ⅩⅣ
b. ARS307的结构
c. ARS121的结构
2. ARS启动染色体复制的活性 在酿酒酵母基因组中约有400个ARS, 但是并不是所有 的ARS都具有染色体自主复制活性。当将这些染色体上的 ARS克隆到质粒上时,却具有自主复制的特性。 曾对第Ⅲ染色体上200kb的染色体片段(从染色体左臂端 粒到接合性基因MAT,占第Ⅲ染色体长度的62%)上的ARS 进行了系统分析,ARS编号从300到314。 其中305、306、307、309和310在大多数细胞循环中都 具有复制起始活性;ARS308仅在10-20%的细胞循环中能起 始复制;而其余的ARS则无染色体起始复制活性(图 )。 为何ARS在质粒中具有活性,而在原染色体上却无活性, 这一问题还有待于进一步探讨。
编码核糖体RNA(rRNA)的140个基因以大的串联形式排列 在第Ⅻ染色体上;编码小的核RNA分子(rnRNA)的40个基因分 散排列在16条染色体上;275个tRNA基因 (属于43个家族) 也 是分散于所有染色体中。 在酿酒酵母中约4%编码蛋白质的基因含有内含子,而在粟 酒裂殖酵母(Schizosaccharomyces pombe)中,40%有内含子。
一、酿酒酵母菌的生活史
在酵母的生活史中有单倍体和二倍体两种状态,单倍体和 二倍体都可以通过不对称的出芽方式进行营养体的增殖。 酿酒酵母的有性生殖有同宗配合和异宗配合之分。不论 哪一种类型的接合,接合子均又可通过出芽的方式进行二倍 体细胞的增殖。当环境条件变化时,二倍体细胞才发生减数 分裂,形成4个子囊孢子
在大多数生物中,端粒DNA由几个碱基组成的DNA重复 单位通过串联重复而形成,长度从20bp到几个kb不等(表 )。 酿酒酵母端粒的长度约为300bp,端粒的DNA重复单位为
5’C1-3A... 3’G1-3T..
表1. 端粒的DNA重复序列 生物种类 拟南芥 人 DNA重复序列 TTTAGGG TTAGGG
图 酿酒酵母的生活史
酿酒酵母的生活史
二、酵母接合型基因的遗传分析 (一) 两个不同接合型单倍体细胞的细胞质配合 酿酒酵母的单倍体细胞可分为a和α两种接合型, a接合型和α接合型细胞的交配过程是通过可扩散性的a因 子信息素和α-因子信息素的相互交换而起始的。 1. a-因子信息素 和α-因子信息素(α-factor pheromone) α接合型细胞:分泌α-因子信息素, α-因子信息素与a细胞中 STE2基因编码的受体蛋白结合。
图 几种生物着丝粒结构
图7-3 酵母着丝粒结构的模型
在酿酒酵母中,所有的着丝粒序列都含有大约130bp长的序 列,每条染色体的着丝粒序列(centromeric seguence,CEN)都分 为三个区,由5’→3’依次为CDEⅠ、CDEⅡ和CDEⅢ。
CDEⅠ和CDEⅢ是两个共有序列,位于两侧,中间是由78~ 86个核苷酸组成的CDEⅡ,CDEⅡ的核苷酸序列中>90%是 A+T序列,所以容易弯曲(图)。
图7-4 酵母端粒结构和相邻序列示意图
三、 复制起点 酵母染色体上控制DNA复制起始的短的DNA序列就是 酵 母 的 复 制 起 点 , 通 常 称 为 自 主 复 制 序 列 (autonomously replicatory sequences, ARS)。 将ARS克隆到质粒中,能使质粒DNA在酵母中自主复制。 自从1979年首次发现酿酒酵母的ARS以来,已经对ARS的结构 和功能进行了深入研究。 在酿酒酵母基因组中ARS总数约400,但使用频率不同,变 动在10%~100%。
表1 酿酒酵母中18种ACS序列的比较
ARS 因子
ARS1 HO ARS
ACS序列
TTTTATGTTTA TTTaATATTTT
H4 ARS
ARS307 ARS307 ARS121 HMR E ARS ARS601 ARS602 ARS603 ARS603
TTTTATGTTTT
ATTTATGTTTTa TTTTtTATTTAa TgTTtTGTTTA TTTTATATTTA ATTTcCATTTT TTaTACGTTTA TTTcATATTTTa TTTaAaGTTTTa
在嗜杀株中存在两种线状双链RNA(dsRNA):M-dsRNA 质 粒 的 分 子 量 为 1.0 ~ 1.7×106D, 决 定 嗜 杀 酵 母 的 嗜 杀 表 型;L-dsRNA质粒的分子量为2.5~3×106D,编码自身以及MdsRNA质粒的主要外壳蛋白。
图7-9 酵母中的嗜杀现象
第五节
接合型基因及其基因转换
图7-8 酵母2um质粒
二、嗜杀现象 生物界中广泛存在着相互杀死现象,借此以维持生物种属 的特性。1963年,Bevan和Makower发现 酿酒酵母中的某
些酵母可以产生毒素而杀死其它酵母,这种现象被称 为嗜杀现象。
一般的嗜杀酵母的嗜杀现象是由两种具有自我复制能力 的细胞遗传因子---双链线状RNA(dsRNA)决定的,它们通常 以蛋白质外壳包裹着的粒子状态存在于细胞质中,但不具有 体外侵染的特性,与病毒粒子不同,故称之为嗜杀质粒。