对流换热与准则数
对流换热计算式

关系式返回到上一层以下汇总了工程中最常见的几类对流换热问题的对流换热计算关系式,适用边界条件,已定准则的适用范围,特征尺寸与定性温度的选取方法。
一、掠过平板的强迫对流换热应注意区分层流和湍流两种流态 ( 一般忽略过渡流段 ) ,恒壁温与恒热流两种典型的边界条件,以及局部 Nu 数和平均 Nu 数。
沿平板强迫对流换热准则数关联式汇总注意:定性温度为边界层的平均温度,即。
二、管内强迫对流换热(1) 流动状况不同于外部流动的情形,无论层流或者湍流都存在流动入口段和充分发展段,两者的长度差别很大。
计算管内流动和换热时,速度必须取为截面平均速度。
(2) 换热状况管内热边界层也同样存在入口段和充分发展段,只有在流体的 Pr 数大致等于 1 的时候,两个边界层的入口段才重合。
理解并准确把握两种典型边界条件 ( 恒壁温与恒热流 ) 下流体截面平均温度的沿程变化规律,对管内对流换热计算有着特殊重要的意义。
(3) 准则数方程式要注意区分不同关联式所针对的边界条件,因为层流对边界条件的敏感程度明显高于湍流时。
还需要特别指出,绝大多数管内对流换热计算式 5f 对工程上的光滑管,如果遇到粗糙管,使用类比率关系式效果可能更好。
下表汇总了不同流态和边界条件下管内强迫对流换热计算最常用的一些准则数关联式。
(4) 非圆截面管道仅湍流可以用当量直径的概念处理非圆截面管道的对流换热问题。
层流时即使用当量直径的概念也无法将不同截面形状管道换热的计算式全部统一。
常热流层流,充分发展段,常壁温层流,充分发展段,充-充分发展段,气体,-充分发展段,液体,;紊流,充分发展段,紊流,粗糙管紊流,粗糙管三、绕流圆柱体的强迫对流换热流体绕圆柱体流动时,流动边界层与掠过平板时有很大的不同出现脱体流动和沿程局部 Nu 数发生大幅度升降变化的根本原因。
横掠单根圆管的对流换热计算式还被扩展到非圆管的情形。
关联式:定性温度为主流温度,定型尺寸为管外径,速度取管外流速最大值。
biot 准则用于某个热物体的对流散热过程求解

biot 准则用于某个热物体的对流散热过程求解一、引言热传导、对流和辐射是热传递的三种主要方式。
在许多实际问题中,对流往往是最重要的传热方式之一。
本文将介绍使用biot准则求解某个热物体的对流散热过程。
二、什么是biot准则biot准则描述了一个物体的表面温度与内部温度之间的关系,它是用于判断一个物体是否可以被视为无限大的重要指标。
当一个物体足够大时,它的表面温度会受到周围环境的影响而变化,但内部温度不会受到影响。
因此,当物体足够大时,其内部和外部温度可以分别视为常数。
三、biot准则的公式biot准则可以用下面这个公式表示:Bi = hL/k其中,Bi表示biot数;h表示对流换热系数;L表示特征长度(例如球形物体的直径);k表示材料导热系数。
四、如何使用biot准则求解1. 确定特征长度:首先需要确定要计算的物体的特征长度。
例如,如果要计算球形物体的散热情况,则特征长度为球的直径。
2. 确定材料导热系数:根据需要计算的物体的材料确定材料导热系数。
例如,对于金属球体,可以使用金属的导热系数。
3. 确定对流换热系数:对流换热系数是指物体表面和周围环境之间传递热量的速率。
这个值通常需要通过实验来测量。
如果没有实验数据可用,则可以使用经验公式来估算对流换热系数。
4. 计算biot数:使用上述公式计算biot数。
如果biot数小于0.1,则可以认为物体足够大,内部温度可以视为常数;如果biot数大于10,则可以认为物体太小,内部和外部温度之间存在明显差异。
5. 解决问题:根据biot准则得出的结论,可以选择合适的方法来解决问题。
例如,在一个足够大的物体中,内部温度可以视为常数,因此可以使用稳态传热方程来求解散热问题;如果物体太小,则需要考虑内部和外部温度之间的差异,并采取相应措施来解决问题。
五、案例分析现在我们以一个球形金属物体为例来说明如何使用biot准则求解对流散热问题。
1. 确定特征长度:球的直径为0.1m。
第五章 对流换热概述

在x方向上流入的净热量
2t 2 dxdy y
u t ucptdy c p u dx t dx dy x x u t u t ucp tdy c p dy ut tdx udx dxdx x x x x u t u t c p t dxdy c p u dxdy c p dxdxdy x x x x
二、对流传热的基本公式 ( h 的确定方式)
q ht
W m2 Leabharlann qA hAt无滑移边界条件
W
t A y
y 0
令上两式相等则有
t Ah t A y
t h t y
y 0
则
y 0
§5-2
一、假设条件
对流换热问题的数学描述
为简化分析,对于常见影响对流换热问题的主要因素,做如 下假设: (1) 流动是二维的; (2) 流体为不可压缩的牛顿流体; (3) 流体物性为常数,无内热源; (4) 流速不高,忽略粘性耗散(摩擦损失) ; (5) 流体为连续性介质
v ~ 01 y
导数的数量级由因变量与自变量的数量级确定,所以
u ~ 01 x
a~02 的数量级为1,
这样可以对微分方程组进行简化(数量级一致)
u v 0 x y
1 1
2u 2u u u p u v 2 x y x x y 2
§5-3 边界层分析及边界层微分方程组
一.边界层的概念
1. 流动(速度)边界层: 靠近壁面处流体速度发生显著变化的薄层 边界层的厚度(boundary layer thickness): 达到主流速度的99%处至固体壁面的垂直距离
对流换热与准则数

单相流体对流换热及准则关联式部分一、基本概念主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。
1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。
试判断这种说法的正确性答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。
因此表面传热系数必与流体速度场有关。
2、在流体温度边界层中,何处温度梯度的绝对值最大为什么有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。
由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。
3、简述边界层理论的基本论点。
答:边界层厚度δ、δt与壁的尺寸l相比是极小值;边界层内壁面速度梯度及温度梯度最大;边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层;流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域);对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。
答:依据对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。
传热学第六章对流换热

6个未知量::速度 u、v、w;温度 t;压力 p;对流 换热系数h
6个方程:换热微分方程式、能量微分方程、x、y、z 三个方向动量微分方程、连续性微分方程
1 能量微分方程 微元体的能量守恒: ——描述流体温度场 假设:(1)流体的热物性均为常量,流体不做功 (2)无化学反应等内热源 由导热进入微元体的热量Q1 +由对流进入微元 体的热量Q2 = 微元体中流体的焓增H
2t 2t 2t 微元体导热热量:Q1 x 2 y 2 z 2 dxdydzd
微元体对流换热收支情况:
在d时间内, 由 x处的截面热对流进入微元体的热量为
' Qx c tudydzd
在d时间内, 由 x dx处的截面热对流流出微元体的热量为
由连续性方程知此项为0
t t t Q2 c u v w dxdydzd x y z
在d时间内, 微元体中流体 温度改变了(t / ) d , 其焓增为
t H c dxdydzd
能量微分方程
t t t t 2t 2t 2t u v w 2+ 2 2 x y z c x y z
boundary layer)
由于粘性作用,流体流速在靠近壁面 处随离壁面的距离的减小而逐渐降低; 在贴壁处被滞止,处于无滑移状态。
流场可以划分为两个区:边界层区与主流区 边界层区:流体的粘性作用起主导作用
主流区:速度梯度为0,τ=0;可视为无粘性理想流体
u , 牛顿粘性定律 y
2)热边界层(Thermal boundary layer) 热边界层:当壁面与流体间有温差时,会产生温度梯度很大的 温度边界层 热边界层厚度t (温度边 界层):过余温度(t -tw ) 为来流过余温度(tf - tw ) 的99%处定义为t的外边 界
传热学bi、fo、nu、re、pr、gr准则数的定义式及其物理意义

传热学bi、fo、nu、re、pr、gr准则数的定义式及其物理意义摘要:一、传热学基本概念介绍二、Bi准则数的定义及物理意义三、Fo准则数的定义及物理意义四、Nu准则数的定义及物理意义五、Re准则数的定义及物理意义六、Pr准则数的定义及物理意义七、Gr准则数的定义及物理意义八、总结正文:传热学是研究物体间热量传递规律的一门学科,其中Bi、Fo、Nu、Re、Pr、Gr准则数是传热学中重要的无量纲数,它们在描述热传递过程有着重要的应用。
一、Bi准则数(毕托管数):Bi = q/(kA),其中q为热流密度,k为导热系数,A为传热面积。
Bi数描述了热流在物体内部分布的均匀性,当Bi数远小于1时,热流在物体内部分布均匀,传热过程可视为稳态;当Bi数远大于1时,热流在物体内部分布不均匀,传热过程趋向于非稳态。
二、Fo准则数(福克数):Fo = Re/(Pr),其中Re为雷诺数,Pr为普朗特数。
Fo数描述了流体流动对传热的影响,当Fo数远小于1时,流体流动对传热的影响较小;当Fo数远大于1时,流体流动对传热的影响较大。
三、Nu准则数(努塞尔数):Nu = q/(kA),其中q为热流密度,k为导热系数,A为传热面积。
Nu数描述了热传导过程的特性,当Nu数远小于1时,热传导过程可视为稳态;当Nu数远大于1时,热传导过程趋向于非稳态。
四、Re准则数(雷诺数):Re = ul/(kρ),其中u为流体速度,l为特征长度,k为导热系数,ρ为流体密度。
Re数描述了流体流动的特性,当Re数远小于1时,流体流动呈层流状态;当Re数远大于1时,流体流动呈湍流状态。
五、Pr准则数(普朗特数):Pr = k/(ρcp),其中k为导热系数,ρ为流体密度,cp为流体比热容。
Pr数描述了流体热传导与对流换热的相对重要性,当Pr数远小于1时,热传导作用占主导地位;当Pr数远大于1时,对流换热作用占主导地位。
六、Gr准则数(格拉特数):Gr = q/(kA),其中q为热流密度,k为导热系数,A为传热面积。
对流换热

第八讲对流换热convection heat transfer§8-1 对流换热基本概念一、对流换热过程:对流:是指物体各部分之间发生相对位移,冷热流体相互掺混所引起的能量传递方式,必有导热。
对流换热:流体流过一物体表面时对流与导热联合作用的热量传递过程。
牛顿冷却定律Newton’s law of coolingwt ft 如:f w t t t -=∆th q ∆=hAtt Ah qA Φ1∆=∆==为对流传热热阻hA R 1=二、流动边界层1. 流动(速度)边界层:靠近壁面处流体速度发生显著变化的薄层边界层的厚度(boundary layer thickness):达到主流速度的99%处至固体壁面的垂直距离边界层的特点(1) 有层流(laminar flow),紊流(turbulent flow)之分.•分界点Re c=3X105~3X106,一般可取Re c=5X105•在湍流区,贴壁面还有一极薄的层流底层(粘性底层)(2) δ=δ(x) x↑δ(x)↑(3) δ(x) << x δ(L) << L(4) 流场分为: 主流区(undisturbed flow regime)(potential)边界层区(boundary regime)三、换热微分方程无滑移边界条件(傅里叶定律)0=∂∂-=y yt A λΦ变化率贴壁处流体的法向温度式中:→∂∂=0y y t 联立,得与牛顿冷却公式t hA ∆=Φ0=∂∂-=y y t t h ∆λ四、影响对流换热的因素⏹流动产生的原因:受迫流动,自然对流⏹流体流动情况:层流(Re<2300),紊流(Re>10000)⏹流体的物性:ρ、λ、η等⏹换热面的形状和位臵⏹流体集态的改变§8-2 对流换热基本方程组1.连续性方程(continuity equation)0=∂∂+∂∂yv x u •2.动量方程(momentum equation)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂22222222y v x v y p F y v v x v u v y u x u x p F y u v x u u u y x ητρητρ惯性力(inertial force)体积力(body force)压力梯度(pressuregradient)粘性力(viscous force)3.能量守恒方程(energy equation)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂+∂∂2222y t x t a y t v x t u t τ能量变化对流项导热项以此五个量为分析基础。
传热与传质学第十四章 对流传质

τ=τl-τt
(14-7)
式中τl——层流切应力,即μdu/dy;
τt ——紊流切应力。
引入普朗特混合长度假说可以证明:
t
u'yu'x
l
2
du dy
2
E M
du dy
EM
l2
du dy
紊流动量扩散系数
(
EM
) du dy
q
c
p
(a
EH
当Pr=1(cp=λ /μ )
qs Ts T s u
对于Pr=1的流体来说,层流底层与紊流核心
中的qs/τs是相等的。雷诺类比就可以应用了。
qs
s
c
p
Ts
T u
qs Ts T s u
紊流
qs scp
Ts T u
层流
类比可以得到:
jD
StD=kc/ u∞ = cf/2=jM
(14-13)
jD称为质量传递的j因子 jD = StD=kc/ u∞
在Pr=1和Sc=1的情况下有:
St=StD =jM = cf/2
jH
jD
(二)普朗特类比
普朗特假设紊流流动是由层流底层和紊 流核心组成。
ShL
cf 2
Re Sc
StD=Sh/(Re·Sc)=kc/u
14-4质量、动量和热量传递的类比
一、紊流质扩散系数 紊流流动的特点:脉动和由脉动带来的横向掺混。 紊流中任一点的流动方向和速度均是不规则的, 涡流运动引起整个紊流核心的混和,这一过程称 为“涡流扩散”。 时均值:虽然变动,但是始终围绕一个值上下波
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相流体对流换热及准则关联式部分返回一、基本概念主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。
1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。
试判断这种说法的正确性?答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。
因此表面传热系数必与流体速度场有关。
2、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗?答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。
由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。
3、简述边界层理论的基本论点。
答:边界层厚度δ、δt与壁的尺寸l相比是极小值;边界层内壁面速度梯度及温度梯度最大;边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层;流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域);对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。
答:依据对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。
5、确定对流换热系数h有哪些方法?试简述之。
答:求解对流换热系数的途径有以下四种:(1)建立微分方程组并分析求解___应用边界层理论,采用数量级分析方法简化方程组,从而求得精确解,得到了Re,Pr及Nu等准则及其准则关系,表达了对流换热规律的基本形式。
(2)建立积分方程组并分析求解___先假定边界层内的速度分布和温度分布然后解边界层的动量和能量积分方程式求得流动、热边界层厚度,从而求得对流换热系数及其准则方程式。
以上两法目前使用于层流问题。
(3)根据热量传递和动量传递可以类比,建立类比律,借助于流动摩擦阻力的实验数据,求得对流换热系数。
此法较多用于紊流问题。
(4)由相似理论指导实验,确定换热准则方程式的具体形式,提供工程上常用准则方程式,求解准则关联式得到对流换热系数。
6、为什么热量传递和动量传递过程具有类比性?答:如果用形式相同的无量纲方程和边界条件能够描述两种不同性质的物理现象,就称这两种现象是可类比的,或者可比拟的。
把它们的有关变量定量地联系起来的关系式就是类比律。
可以证明,沿平壁湍流时的动量和能量微分方程就能够表示成如下形式:其中:7、有若干个同类物理现象,怎样才能说明其单值性条件相似。
试设想用什么方法对以实现物体表面温度恒定、表面热流量恒定的边界条件?答:所谓单值条件是指包含在准则中的各已知物理量,即影响过程特点的那些条件──时间条件、物理条件、边界条件。
所谓单值性条件相似,首先是时间条件相似(稳态过程不存在此条件)。
然后,几何条件、边界条件及物理条件要分别成比例。
采用饱和蒸汽(或饱和液体)加热(或冷却)可实现物体表面温度恒定的边界条件,而采用电加热可实现表面热流量恒定的边界条件。
8、管内紊流受迫对流换热时,Nu数与Re数和Pr数有关。
试以电加热方式加热管内水的受迫对流为例,说明如何应用相似理论设计实验,并简略绘制出其实验系统图。
答:⑴模型的选取依据判断相似的条件,首先应保证是同类现象,包括单值性条件相似;其次是保证同名已定准则数相等。
选取无限长圆管;圆管外套设有电加热器。
属于管内水的纯受迫流动。
⑵需要测量的物理量准则数方程式形式为。
由Re、Nu、Φ=IU、牛顿冷却公式,以及,可确定需要测量的物理量有:q v,d,,L,,,I,U。
所有流体物性由定性温度查取水的物性而得。
⑶实验数据的整理方法根据相似准则数之间存在由微分方程式决定的函数关系,对流传热准则数方程式形式应为,实验数据整理的任务就是确定C和n的数值。
为此必须有多组的实验数据。
由多组的实验数据,得:(Re、Pr)i→Nu i将转化为直线方程:;由(Re、Pr)i→Nu i得Xi→Yi,确定系数n和C。
确定系数n和C的方法有图解法(右图)和最小二乘法。
图中的直线斜率即准则关联式的n,截距即式中的lgC,即,。
注意:为保证结果的准确性,直线应尽量使各点处在该线上,或均匀分布在其两侧。
⑷实验结果的应用根据相似的性质,所得的换热准则数式可以应用到无数的与模型物理相似的现象群,而不仅仅是实物的物理现象。
之所以说是现象群,是因为每一个Re均对应着一个相似现象群。
简单的实验系统如图所示。
9、绘图说明气体掠过平板时的流动边界层和热边界层的形成和发展。
答:当温度为t f的流体以u∞速度流入平板前缘时,边界层的厚度δ=δt=0,沿着X方向,随着X的增加,由于壁面粘滞力影响逐渐向流体内部传递,边界层厚度逐渐增加,在达到X c距离(临界长度X c由Re c来确定)之前,边界层中流体的流动为层流,称为层流边界层,在层流边界层截面上的流速分布,温度分布近似一条抛物线,如图所示。
在X c之后,随着边界层厚度δ的增加,边界层流动转为紊流称为紊流边界层,即使在紊流边界层中,紧贴着壁面的薄层流体,由于粘滞力大,流动仍维持层流状态,此极薄层为层流底层δt,在紊流边界层截面上的速度分布和温度分布在层流底层部分较陡斜,近于直线,而底层以外区域变化趋于平缓。
二、定量计算主要包括:类比率的应用;相似原理的应用;外掠平板的强制对流换热。
1、空气以40m/s的速度流过长宽均为0.2m的薄板,t f=20℃,t w=120℃,实测空气掠过此板上下两表面时的摩擦力为0.075N,试计算此板与空气间的换热量(设此板仍作为无限宽的平板处理,不计宽度z方向的变化)。
解应用柯尔朋类比律其中ρ、cp用定性温度查教材附录2(P309)“干空气的热物理性质”确定。
,,,带入上式,得,换热量:,2、在相似理论指导下进行实验,研究空气在长圆管内稳态受迫对流换热的规律,请问:(1)本项实验将涉及哪几个相似准则?实验中应直接测量哪些参数才能得到所涉及的准则数据?(3)现通过实验并经初步计算得到的数据如下表所示,试计算各试验点Re数及Nu数?(4)实验点1、2、3、4的现象是否相似?(5)将实验点标绘在lgNu及lgRe图上。
(6)可用什么形式的准则方程式整理这些数据?并确定准则方程式中的系数。
(7)现有另一根长圆管,d=80mm,管内空气速度28.9m/s,t w=150℃;t f=50℃,试确定管内换热现象与上述表中哪个现象是相似的?并用上表实验结果确定此管内的表面传热系数。
(8)又一未知流体的换热现象,已知其热扩散率a=30.2×10-6m2/s,λ=0.0305W/(mK);ν=21.09×10-6m2/s;d=65mm,管内流速23m/s,它是否与上表中的实验现象相似?是否可以用上表实验结果计算它的表面传热系数?为什么?如果能用,请计算其Nu数和表面传热系数?解:㈠定性温度为为t f⑴由于是空气在长管内稳态受迫对流换热,所以涉及到的相似准则是Re 和Nu 。
⑵由Re=ud/ν、Nu=hd/λ、Φ=IU 及Φ=hA(tw -tf )知道需要测量的物理量有u 、d 、A=πdL 、tf 、tf 、I 、U 。
⑶计算结果见下表:(1-4:t f =10℃;5:t f =50℃,定性温度为t f )⑷由于,所以现象1-4不相似。
⑸图略(参考教材P140图5-26)⑹准则方程式形式为根据现象1-4数据,利用最小二乘法(也可以用图解法确定C 和n ),确定()中的C 和n 如下:,现象序号 t w℃ λ W/m ℃ ν m 2/s d m u m/sh W/m 2℃ Re Nu lgRe lgNu 1 30 2.51 ×10-2 14.16 ×10-6 50 ×10-3 3.0115 10628.5 29.88 4.02 1.48 2 50 8.0031.5 28248.6 62.74 4.45 1.80 3 70 17.057.5 60028.2 114.5 4.78 2.06 4 90 35.9 106 126765.5211.2 5.102.32 5 1502.83 ×10-217.95 ×10-6 80 ×10-3 28.9128802.2 63.05 ×10-2 21.09 ×10-6 65 ×10-3 23 70886.7所以准则方程式为,其中⑺因现象5雷诺数(Re=128802.2)与现象1-4雷诺数均不相等,所以现象5不与现象1-4均不相似;且由于其雷诺数已超出了现象1-4的实验范围,所以无法用上述实验结果确定现象5的表面换热系数。
⑻因现象6雷诺数(Re=70886.7)与现象1-4雷诺数均不相等,所以现象6不与现象1-4均不相似;但由于其雷诺数处于现象1-4的实验范围,所以可以用上述实验结果确定现象6的表面换热系数,方法如下:3、温度为50℃,压力为1.01325×105Pa的空气,平行掠过一块表面温度为100℃的平板上表面,平板下表面绝热。
平板沿流动方向长度为0.2m,宽度为0.1m。
按平板长度计算的Re数为4×l04。
试确定:(1)平板表面与空气间的表面传热系数和传热量;(2)如果空气流速增加一倍,压力增加到10.1325×105Pa,平板表面与空气的表面传热系数和传热量。
解:本题为空气外掠平板强制对流换热问题。
(1)由于Re=4×104<5×105,属层流状态。
故:空气定性温度:℃空气的物性参数为,Pr=0.70故:W/(m2.K)散热量W(2)若流速增加一倍,,压力,则,,而:,故:所以:,属湍流。
据教材式(5—42b)=961W/(m2·K)散热量:W三、本章提要以下摘自赵镇南著,高等教育出版社,出版日期:2002年7月第1版《传热学》1、对流换热是一种非常复杂的物理现象。