6-1方向控制阀与单缸控制回路

6-1方向控制阀与单缸控制回路
6-1方向控制阀与单缸控制回路

成都市技师学院理论课教案首页

成都市技师学院理论课教案副页方向控制阀

方向控制阀有进气口、工作口和排气口。初始位置时,阀芯隔断进气口与工作口之间的通道,两口不相通。此时,工作口与

单气控3/2换向阀实物及工作原理

C、压缩空气输入12口记忆位置压缩空气输入14口

间接控制方式直接控制方式

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

变量泵性能及方向控制回路设计实验(2)

一、实验步骤及过程 (一)变量泵性能实验 液压系统原理图1、按照图接好液压回路。

2、全部打开节流阀和溢流阀,接通电源,启动变量泵,让变量泵空载运转几分钟,排除系统内的空气。注:节流阀和溢流阀逆时针方向拧到头完全打开,顺时针方向拧到头完全关闭。 3、关闭节流阀,慢慢调调整溢流阀,将压力P调至作为系统安全压力,然后用锁母将溢流阀锁紧。 4、全部打开节流阀,使被试泵的压力最低,测出此时的流量,即为空载流量。 和流5、逐渐关小节流阀的通流截面,作为泵的不同负载,测出对应不同压力P i 量q,将所测数据填入表1-1。注意,节流阀每次调节后,须运转一、两分钟后,再测有关数据。 6、实验完成后,将节流阀,溢流阀全部打开,再关闭液压泵,关闭电源。(二)变量泵方向控制回路设计 实验步骤

(1)将设计好的液压基本回路原理图交给实验指导老师进行检查; (2)按照液压基本回路原理图用液压胶管总成在QCS014实验台上搭建回路,并连接各位置传感器; (3)起动主机,进入万能自编界面,按事先设计好电磁阀的动作顺序表编程。(4)搭建好的回路必须经过实验指导老师检查,以确认无误且回路完全符合实验要求和实验目的; (5)将溢流阀的调节手柄完全松开(逆时针转动); (6)起动实验台,打开变量泵开关; (7)调溢流阀使回路的压力为P1(P1≤3Mpa); (8)点击手动开关,检查动作顺序是否正确,之后点击自动开关,看回路和程序是否满足实验要求。 二、实验记录及数据处理 1、填写液压泵性能实验数据记录表

2、根据以上实验记录表,在实验报告中绘制q-P, -P曲线图,要求用坐标纸绘制。

第五章 方向控制阀

第五章方向控制阀 方向控制阀(方向阀)是控制液压系统中的液流方向的阀,用来对系统中各个支路的液流进行通、断的切换,以适应工作的要求。一个液压系统所应用的各个控制阀中,方向阀占的数量相当多。 §5-1 方向阀的功能及分类 常规方向阀的基本作用是对液流进行通、断(开、关)切换。因此,工作原理比较简单,它的结构也并不复杂。但是,为了满足不同液压系统对液流方向的控制要求,方向阀的品种规格名目繁多。 一、分类 方向阀按其功能,大致可分成以下几种类型: 有时把压力表开关也归到方向控制阀中。 除了上述一般的方向控制阀外,还有可以进行阀芯位置连续控制的电液比例方向阀。 从阀芯的结构特征来区分,又有锥阀式、球阀式、滑阀式和转阀式等。 (一)单向阀 单向阀类似于电路中的二极管。在液压系统中单向阀只允许液流沿一个方向通过,反方向流动则被截止。它是一种结构最简单的控制阀。图5-1(图5-1省略p89)分别是钢球式直通单向阀和锥阀式直通单向阀。 液流从1P流入时,克服弹簧力而将阀芯顶开,再从2P流出。当液流反向流入时,由于阀芯被压紧在阀座密封面上,所以流动被截止。 钢球式单向阀的结构简单,但密封性不如锥阀式,并且由于钢球没有导向部分,所以工作时容易产生振动,一般用在流量较小的场合。锥阀式应用最多,虽然加工要求较钢球式高一些,但是它的导向性好,密封可靠。 图5-1所示单向阀是管式结构,尺寸小巧紧凑,可以直接安装在管路中。此外还有板式结构的单向阀(图5-2)(图5-2省略p90),它的装拆维修比较方便,不过需要另行设置安装底板。此外,由于板式单向阀内的流道有转弯,所以流动阻力损失较管式结构大。 单向阀中的弹簧主要是用来克服摩擦力、阀芯的重力和惯性力,使阀芯在液流反方向流动时能迅速关闭。但弹簧过硬会影响阀的开启压力并造成过大的流动损失。一般单向阀的开启压力大约0.03~0.05MPa,并可根据需要更换弹簧。例如,单向阀作为背压阀使用时,需要具有与系统工作相适应的开启压力,因此采用较硬的弹簧。 单独应用的单向阀,其符号见图5-3a(图5-3省略p90)。设置在阀块中或与其它元件组合应用的单向阀,其符号见图5-3b。 对单向阀的基本要求是:正向流动阻力损失小,反向时密封性好,动作灵敏。 液控单向阀是可以根据需要来实现逆向流动的单向阀。图5-4(图5-4省略p91)是具有卸载阀的外泄式液控单向阀。它除了进油口1p和出油口2p外,还有一个控制油口c p。在通常情况下,它的作用与一般单向阀相同,只允许液流从1p流向2p,反向时截止。当需要允许反向流动时,接通控制压力c p,控制活塞上移而顶开单向阀阀芯,使液流可以反向流动。采用具有卸载小阀芯的复式单向阀芯结构时,控制活塞

方向控制回路教案

安岳县职教中心20XX年上期公开课 教案 学科名称:汽车机械基础 课题名称:液压基本回路之方向控制回路授课教师:安岳县职教中心李晓林授课时间:20XX年04月18日 授课地点:2014春11班

【课题名称】方向控制回路 【教学目标】 掌握方向控制回路的工作原理及应用。 【教学重点】 换向回路和锁紧回路的工作原理。 【教学难点】 分析换向回路和锁紧回路。 【教学教具准备】 电脑多媒体 【课时安排】 1节课 【教学流程设计】 复习巩固→新课引入→新课讲解→课堂总结→课后练习【教学过程设计】 一复习巩固 教师:1、液压系统的四大组成部分? 学生:动力、执行、控制、辅助部分。 教师:2、画出三位四通换向阀H、O、M型。 学生:

二导入新课 请同学们观察图片,找出图片中哪些地方运用了液压系统知识。然后请同学们思考登车桥支腿、车载升降平台支架和起重机支腿是如何实现升、降及停止的? 三课程的讲解 方向控制回路 概念:指控制液压油通、断或流动方向的回路统称。 功能:控制执行元件的启动、停止及换向(进、退)。 分类:一般分为换向回路和锁紧回路。 (一)换向回路 二位四通电磁换向阀的换向回路。如图(详) 回路构成:(学生) 核心元件:二位四通电磁换向阀 工作原理(教师分析):当换向阀电磁铁断电时 换向阀3右位工作 进油路:泵→换向阀右位→液压缸无杆腔,活塞向左移动。 回油路:液压缸有杆腔→换向阀右位→油箱。

当换向阀电磁铁通电时 换向阀3左位工作 进油路:泵→换向阀左位→液压缸有杆腔,活塞向右移动。 回油路:液压缸无杆腔→换向阀左位→油箱 换向回路特点及应用:使用方便,易于实现自动化,但换向时间短,冲击大,一般用于小流量、平稳性要求不高的场合。 (二)锁紧回路 锁紧:是指液压缸活塞两端的压力油被封住不能流动。 作用:使执行元件能停留在任意位置上,且停留后不会因外力作用而移动位置。 锁紧回路如何实现? 1、最常用的是采用液控单向阀(又称双向液压锁)的锁紧回路。 2、换向阀中位机能为O形或M组成锁紧回路。 1)、采用液控单向阀的锁紧回路。(详)如图: 学生分析:回路构成 教师分析:锁紧回路工作原理

8路彩灯控制器实验报告

《8路彩灯控制电路设计》课程设计报告 专业: 班级: 姓名: 学号: 同组成员: 指导教师:赵玲 2015年1 月7 日

目录 一、课程设计目的 (3) 二、课程设计要求 (3) (一)、彩灯控制器设计要求 (3) (二)、课程设计总体要求 (3) 三、课程设计内容 (3) (一)、设计原理分析 (3) (二)、器件选择 (5) (三)、具体电路连线及设计思路 (6) 1、时钟控制电路 (6) 2、花色控制电路 (7) 3、花色演示电路 (8) 4、总体电路图 (10) 四、实际焊接电路板思路及过程 (11) (一)、设计思路及电路图 (11) (二)、设计及焊接过程 (11) (三)、电路板展示 (12) 五、课程设计总结与体会 (13)

一、课程设计目的 1.巩固数字电路技术基础课程所学的理论知识,将学习到的理论知识落实到实际,所谓学以致用。并且将模拟电路技术基础和电路分析基础等课程的所学知识加以强化。 2.熟悉几种常用集成数字芯片74LS161、74LS194等的功能和应用,并掌握其工作原理,并将这几种芯片的应用结合起来。从而学会使用常用集成数字芯片进行电路设计。 3.学会使用protues软件进行模拟电路仿真,并且学会将仿真电路实现。 4.了解数字系统设计的基本思想和方法,学会科学分析和解决问题,学会使用基本元器件其进行电路设计。 5.培养自己的动手能力,团队协作能力。 二、课程设计要求 (一)、彩灯控制器设计要求 设计并制作8路彩灯控制电路,用以控制8个LED按照不同的花色闪烁,要求如下: 1.接通电源,电路开始工作,LED灯闪烁; 2.LED灯按照事先设计的方式工作,要求闪烁的模式不能少于三种模式; 3.(选做内容)闪烁时实现快慢两种节拍的变换。 (二)、课程设计总体要求 (1)根据设计任务,每人独立完成一份设计电路图,并要求仿真实现;(2)根据设计的电路图,两人一组,利用万能板完成电路的焊接,并调试成功; (3)每人独立完成一份设计报告。 三、课程设计内容 (一)、设计原理分析 1.基本原理如下:总体电路共分三大块。第一块实现时钟信号的产生和控制,利用555定时器连接电路实现该功能;第二块实现花型的控制及节拍控制,利用

继电保护实验报告

电力系统继电保护 实验报告 姓 名 学 号 指导教师 专业班级 学 院 信息工程学院 实验二:方向阻抗继电器特性实验 一、实验目的 1. 熟悉整流型LZ-21型方向阻抗继电器的原理接线图,了解其动作特性; 2. 测量方向阻抗继电器的静态()?f Z pu =特性,求取最大灵敏角; 3. 测量方向阻抗继电器的静态()r pu I f Z =特性,求取最小精工电流; 4. 研究方向阻抗继电器记忆回路和引入第三相电压的作用。 二、实验内容 1.整流型阻抗继电器的阻抗整定值的整定和调整 前述可知,当方向阻抗继电器处在临界动作状态时,推证的整定阻抗表达式如式4-3所示,显然,阻抗继电器的整定与LZ-21中的电抗变压器DKB 的模拟阻抗Z I 、电压变换器YB 的变比n YB 、电压互感器变比n PT 和电流互感器n CT 有关。 例如,若要求整定阻抗为Zset =15Ω,当n PT =100,n CT =20,Z I =2Ω(即DKB 原

方匝数为20匝时),则10 15 = yb n ,即YB n 1=0.67。也就是说电压变换器YB 副方线 圈匝数是原方匝数的67%,这时插头应插入60、5、2三个位置,如图4-10所示。 (1,检查电抗变压器DKB 原方匝数应为16(2)计算电压变换器YB 的变比6 .15 =yb n ,YB 副方线圈对应的匝数为原方匝数的32%。 (3)在参考图4-10阻抗继电器面板上选择20匝、10匝,2匝插孔插入螺钉。 表4-3 DKB 最小整定阻抗范围与原方线圈对应接线

(4)改变DKB原方匝数为20匝(Z I=2Ω)重复步骤(1)、(2),在阻抗继电器面板上选择40匝、0匝,0匝插孔插入螺钉。 (5)上述步骤完成后,保持整定值不变,继续做下一个实验。 2.方向阻抗继电器的静态特性Z pu=f(?)测试实验 实验步骤如下: (1)熟悉LZ-21方向阻抗继电器和ZNB-Ⅱ智能电秒表的操作接线及实验原理。认真阅读LZ-21方向阻抗继电器原理接线图4-2和实验原理接线图(图4-11)(2)按实验原理图接线,具体接线方法可参阅LG-11功率方向继电器实验中所介绍的内容。 (3)逆时针方向将所有调压器调到0V,将移相器调到0°,将滑线电阻的滑动触头移至其中间位置,将继电器灵敏角度整定为72°,整定阻抗设置为5Ω。 ( ( ( 为1A (7)调节单相调压器的输出电压,保持方向阻抗继电器的电流回路通过的电流为I m=2.0A; (8)按照LG-11功率方向继电器角度特性实验中步骤(7)至(12)介绍的方法,测量给定电压分别为表4-4中所确定数值下使继电器动作的两个角度?1、?2,并将实验测得数据记录于表4-4中相应位置。 (9)实验完成后,将所有调压器输出调至0V,断开所有电源开关。

调节阀几种典型气路图

Accessory Schematics These drawings are helpful in determining what accessories are needed and their proper arrangement for a particular application. The following engineering schematics are used by Valtek when attaching accessories to control valves. Standard Positioner Control Air Filter Schematic 19-1A: Positioner Signal-to-open, Fail-closed Air Filter Schematic 19-1B: Positioner Signal-to-close, Fail-open 19-11

19-12 Supply EB P A B Supply EB P A B Air Filter Air Filter Schematic 19-2B: Four-way Solenoid, De-energize-to-open, Fail-open Schematic 19-2A: Four-way Solenoid, De-energize-to-close, Fail-closed ASCO 8345 - Typ ASCO 8345 - Typ Solenoid Operated On-Off EA EA

19-13 Schematic 19-3A: Signal-to-open, Fail-closed, I/P 2000 SOV Signal Interrupt, De-energize-to-close De-energizing solenoid valve interrupts the signal to the positioner and drives the actuator to the low signal position. This is dependent on the proper functioning of the positioner and the integrity of the feedback linkage. Schematic 19-3B: Signal-to-close, Fail-open, I/P 2000-SOV Signal Interrupt, De-energize-to-open Supply Supply

液压及电磁阀知识培训

液压及电磁阀应用培训教程 2009年1月21日 -24日

目录 第一章液压控制阀 (3) 第一节液压控制阀的分类 (3) 第二节压力控制阀 (4) 第三节方向控制阀 (9) 第四节流量控制阀 (12) 第五节比例控制阀(含高频响阀) (14) 第六节伺服控制阀 (22) 第二章液压原理图和基本回路分析 (25) 第一节TM区域液压原理图及阀件分布简介 (25) 第二节伺服控制回路 (25)

第一章液压控制阀 第一节液压控制阀的分类 1. 概述 在液压系统中,用于控制和调节工作压力的高低、流量大小以及改变流量方向的元件,统称为液压控制阀。液压控制阀通过对工作液体的压力、流量以及流液方向的控制与调节,从而可以控制液压执行元件的开启、停止和换向,调节其运动速度和输出扭矩(或力)。 2. 液压控制阀的分类 按功能分类 (1) 压力控制阀用于控制或调节液压系统或回路压力的阀,如溢流阀、减压阀、顺序阀压力继电器等; (2) 方向控制阀用于控制或调节液压系统或回路中方向及其通和断,从而控制执行元件的运动方向及其启动、停止的阀。如单向阀、换向阀等; (3) 流量控制阀用于控制或调节液压系统或回路中工作液体流量大小的阀。如节流阀、调速阀、分集流阀等 按阀的控制方式分类 液压控制阀按控制方式可分为: (1) 开关(或定值)控制阀:借助于通断型电磁铁及手动、机动、液动等方式,将阀芯位置或阀芯上的弹簧设定在某一工作状态,使液流的压力、流量或流向保持不变的阀。这类阀属于常见的普通液压阀 (2) 比例控制阀:采用比例电磁铁(或力矩马达)将输入信号转换成力或阀的机械位移,使阀的输出(压力、流量)也按照其输入量连续、成比例地进行控制的阀,比例控制阀一般属于开环控制阀,现在也很多用在闭环系统中。 (3) 伺服控制阀:其输入信号(电量、机械量)多为偏差信号(输入信号与反馈信号的差值),阀的输出量(压力、流量)也按照其输入量连续、成比例地进行控制的阀。这类阀的工作性能类似于比例控制阀,但具有较高的动态瞬应和静态性能,多用于要求较高的、响应快的闭环液压控制系统。 (4) 数字控制阀:用于数字信息直接控制的阀类。

计算机控制系统实验报告

《计算机控制系统》实验报告 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 姓名:*** 学号:************

一、实验课程教学目的与任务 通过实验设计或计算机仿真设计,使学生了解和掌握数字PID控制算法的特点、了解系统PID参数整定和数字控制系统的直接设计的基本方法,了解不同的控制算法对被控对象的控制特性,加深对计算机控制系统理论的认识,掌握计算机控制系统的整定技术,对系统整体设计有一个初步的了解。 根据各个实验项目,完成实验报告(用实验报告专用纸)。 二、实验要求 学生在熟悉PC机的基础上,熟悉MATLAB软件的操作,熟悉Simulink工具箱的软件编程。通过编程完成系统的设计与仿真实验,逐步学习控制系统的设计,学习控制系统方案的评估与系统指标评估的方法。 计算机控制系统主要技术指标和要求: 根据被控对象的特性,从自动控制系统的静态和动态质量指标要求出发对调节器进行系统设计,整体上要求系统必须有良好的稳定性、准确性和快速性。一般要求系统在振荡2~3次左右进入稳定;系统静差小于3%~5%的稳定值(或系统的静态误差足够小);系统超调量小于30%~50%的稳定值;动态过渡过程时间在3~5倍的被控对象时间常数值。 系统整定的一般原则: 将比例度置于较大值,使系统稳定运行。根据要求,逐渐减小比例度,使系统的衰减比趋向于4:1或10:1。若要改善系统的静态特性,要使系统的静差为零,加入积分环节,积分时间由大向小进行调节。若要改善系统的动态特性,增加系统的灵敏度,克服被控对象的惯性,可以加入微分环节,微分时间由小到大进行调节。PID控制的三个特性参数在调节时会产生相互的影响,整定时必需综合考虑。系统的整定过程是一个反复进行的过程,需反复进行。

方向控制阀

.-方向控制阀

————————————————————————————————作者:————————————————————————————————日期:

教案首页课程名称液压与气动技术 课题 第5章液压控制元件5.1 液压控制元件的概述5.2 方向控制阀 课型理论 周次 学时 2 授课时间月日月日月日月日月日班级(人数) 教学目的【知识目标】了解液压控制阀的功用、分类和结构 掌握换向阀位通滑阀机能 【能力目标】掌握换向阀位、通、滑阀机能 【德育目标】培养学生用理论知识解决简单的实际问题的能力。 教学重点1、换向阀的位、通、滑阀机能的概念2、换向阀符号的含义 教学难点换向阀工作原理 教学方法讲授+练习 教具/设备 作业 教学后记 授课教师冯莉2012年月日审签年月日

组织教学:提示学生上课,集中学生注意力,检查学生出勤情况 复习旧课:1、液压缸的密封装置有哪些? 2、液压缸为什么要缓冲?缓冲方法有哪些? 讲授新课:第五章液压控制阀 5.1概述 一、定义:液压控制元件也叫液压控制阀(液压阀)。 二、功用:控制和调节液压系统中液体流动的方向、压力的高低、流量的大小,以满足执行元件的工作要求。 三、对液压控制阀的基本要求 ①动作灵敏、性能好、工作可靠、冲击振动和噪声小; ②油液通过阀时的液压损失要小;③密封性能好; ④结构简单、紧凑,体积小,重量轻,安装、维修方便,成本低。 四、分类 (1)按机能(用途)分类 压力控制阀:溢流阀、减压阀、顺序阀、卸荷阀、缓冲阀、限压切 断阀、压力继电器等 流量控制阀:节流阀、单向节流阀、调速阀、分流阀、排气节流阀 等 方向控制阀:单向阀、换向阀、行程减速阀、比例方向控制阀、快 速排气阀、脉冲阀等 (2)按连接方式分类 管式连接阀:将板式阀用螺钉固定在连接板(或油路板、集成块)上。 如:螺纹式联接、法兰式连接。 板式或叠加式连接:单层连接板式、双层连接板式、叠加阀、多路阀。 插装式连接:螺纹式插装(二、三、四通插装阀)、盖板式插装(二通)。 (3)按操纵方法分类: 手动阀:手把及手轮、踏板、杠杆 机动阀:档块及碰块、弹簧 液/气动阀:液动阀、气动阀 电液/气动阀:电液动阀、电气动阀 电动阀:普通/比例电磁铁控制、步进电动机控制、伺服电动机控制(4)按输出参数可调性分类: 开关控制阀:方向控制阀、顺序阀、限速切断阀、逻辑元件 输出参数连续可调的阀:溢流阀、减压阀、节流阀、调速阀、各类 电液控制阀(比例阀、伺服阀) 5.2 方向控制阀 作用:方向控制阀(简称方向阀),用来控制液压系统的油流方向,接通或断开油路,从而控制执行机构的启动、停止或改变运动方向。 分类:单向阀普通单向阀:只允许油液正向流动,不许反流。教学方法及授课要点随记

方向控制回路

理论课课堂教学安排教学过程主要教学内容及步骤 复习回顾: (5`) 提问 新课:1、常见的液压辅助元件有哪些,七对液压系统的性能有何影响? 2、油箱、过滤器、蓄能器、管接头有何作用? 第一节压力控制回路 定义: 利用压力控制阀来控制系统整体或局部压力,以使执行元件获得所需的力或转矩、或者保持受力状态的回路。 类型: 一、调压回路二、减压回路三、增压回路四、卸荷回路五、保压回路六、平衡回路 一、调压回路 功能:使液压系统整体或某一部分的压力保持恒定或者不超过某个数值。主要元件:溢流阀 方法:液压泵出油口处并联溢流阀 常用回路: (一)单级调压回路 (二)多级调压回路 (一)单级调压回路 说明:系统压力只有一种 特点: 1、由溢流阀和定量泵组合在一起构成; 2、当系统压力小于溢流阀调整压力时,溢流阀关闭不溢流,系统压力 保持不变。 3、当系统压力大于溢流阀调整压力时, 溢流阀开启溢流,系统压力保持为溢 流阀的调整压力不变。 应用: 如图所示,在液压泵的出口处并联溢流 阀来控制回路的最高压力。在该过程中,由 于系统压力超过溢流阀的调整压力,所以溢 流阀是常开的,液压泵的工作压力保持为溢 流阀的调整压力不变。 (二)多级调压回路 说明:系统压力有两种或两种以上。 应用: 单级调压回路

引导读书 提问 1、两级调压回路 如图所示,在图示状态下,当两位 两通电磁换向阀断电时,液压泵的工作 压力由先导溢流阀1调定为最高压力; 当两位两通电磁换向阀通电后,液压泵 工作压力由远程调压阀2(溢流阀)调 定为较低压力。(其中,远程调压阀2 的调整压力必须小于溢流阀1的调整压 力。) 2、三级调压回路 如图所示,在图示状态,当电磁换 向阀4断电中位工作时,液压泵的工作 压力由先导溢流阀1调定为最高压力; 当电磁换向阀4右边电磁铁通电右位 时,液压泵工作压力由远程调压阀2(溢 流阀)调定为较低压力。当电磁换向阀 4左边电磁铁通电左位时,液压泵工作 压力由远程调压阀3(溢流阀)调定为 较低压力。(其中,远程调压阀2和3 的调整压力必须小于溢流阀1的调整压 力。) 二、减压回路 功能:使液压系统中的某一部分油路具有较低的稳定压力。 应用场合:控制油路、夹紧回路、润滑油路主要元件:定值 减压阀方法:在需要减压的油路前串联一个减压阀常用回路: (一)单向 减压回路 (二)二级减压回路 三、增压回路 功能:使液压系统中的某一部分支路的压力高于系统压力。主要元件: 增压器方法:在需要增压的油路前串联一个增压器常用回路: (一)单作 用增压器的增压回路(二)双作用增压器的增压回路 四、卸荷回路 【设置原因】液压系统在工作循环中短时间间歇时,为减少功率损耗, 降低系统发热,避免因液压泵频繁启停影响液压泵的寿命,需设置卸荷回 路 【液压泵卸荷的概念】指液压泵以很小的输出功率(接近于零)运转。 即液压泵以很低的压力(接近于零)运转或输出很少流量(接近于零)的 压力油。 两级 三级调压回路

电路实验报告

目录 实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性与齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

实验一电位、电压的测定及电路电位图的绘制 一.实验目的 1.学会测量电路中各点电位与电压方法。理解电位的相对性与电压的绝对性; 2.学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 二.原理说明 在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则就是不变的,这一性质称为电位的相对性与电压的绝对性。据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该平面中标出,并把标出点按顺序用直线条相连接,就可得到电路的电位图,每一段直线段即表示该两点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定,对于不同的参考点,所绘出的电位图形就是不同,但其各点电位变化的规律却就是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2.恒压源(EEL-I、II、III、IV均含在主控制屏上,可能有两种配置(1)+6V(+5V),+12 V,0~30V可调或 (2)双路0~30V可调。) 3.EEL-30组件(含实验电路)或EEL-53组件 四.实验内容 实验电路如图1-1所示,图中的电源U S1用恒压源中的+6V(+5V)输出端,U S2用0~+30V可调电源输出端,并将输出电压调到+12V。 1.测量电路中各点电位 以图1-1中的A点作为电位参考点,分别测量B、C、D、E、F各点的电位。 用电压表的黑笔端插入A点,红笔端分别插入B、C、D、E、F各点进行测量,数据记入表1-1中。 以D点作为电位参考点,重复上述步骤,测得数据记入表1-1中。 图1-1 2.电路中相邻两点之间的电压值 在图1-1中,测量电压U AB:将电压表的红笔端插入A点,黑笔端插入B点,读电压表读数,记入表1-1中。按同样方法测量U BC、U CD、U DE、U EF、及U FA,测量数据记入表1-1中。

方向控制阀的拆装训练

3.方向控制阀的拆装训练 一、本项目知识点与能力点 本项目知识点与能力点见表1.1-1。 表1.1-1 方向控制阀的拆装训练 能力点知识点 1、会根据拆装流程示意图 2、会根据注意事项进行无图拆装 3、拆装液压元件常用工具的使用方法1、三位四通换向阀内部结构 2、三位四通换向阀的工作原理 3、拆装液压元件注意事项 二、所需元件及器具 实训所需液压元件、器具见表1.1-2。 表1.1-2 实训所需液压元件、器具 序号元件、器具名称规格数量备注 1 三位四通换向阀8 2 钳工台虎钳150mm 8 3 内六角扳手 6 mm 8 4 内六角扳手8 mm 8 5 内六角扳手10 mm 8 6 活口扳手200mm 8 7 螺丝刀200mm 8 8 游标卡尺150mm 8 9 润滑油32﹟适量 化纤布料适量 三、实训内容及操作注意事项 1、拆装34DO-B10-H-T型电磁换向阀。 34DO-B10-H-T型电磁换向阀主要参数见(表1.1-3) 表1.1-3 34DO-B10-H-T型电磁换向阀主要参数 规格型号额定压力MPa 额定流量L/min质量kg 34DO-B10-H-T 21 30 1.6 2、参考:3 WE6型电磁换向阀内部结构图(图1.1-1)

3、参考:拆装流程见1-2示意图 4、拆装注意事项: (1)有拆装流程示意图时,请参考图进行拆与装; (2)无图拆装时,请记录解体零件的拆装顺序和方向; (3)拆下的零件按次序摆放,不应落地、划伤、锈蚀等; (4)拆、装螺栓组时应对角依次拧松或拧紧; (5)需顶出零件时,应使用铜棒适度击打,切忌用钢、铁棒; (6)安装前的零件清洗后应晾干,切忌用棉纱擦拭; (7)应更换老化的密封; (8)安装时应参照图或拆卸记录,注意定位零件; (9)安装完毕,推动应急按钮,检查阀芯滑动是否顺利; (10)请检查现场有无漏装零件。 四、思考题 (1)试分析在电磁铁工作情况下,电磁换向阀阀芯的动作过程和油路沟通状况。 (2)电磁换向阀阀体内有几个沉割槽?阀体上有几个通向外部的油口?各口一般应连接什么液压元件? (3)电磁换向阀阀芯的结构是怎样的?这种设计有何特点? (4)你拆装的阀采用了什么样的电磁铁?其特点是什么?

第五章方向控制阀 习题答案

习题解答 5.1 如何判断稳态液动力的方向? 解答:(1)作用在圆柱滑阀上的稳态液动力指向阀口关闭的方向。 (2)作用在锥阀上的稳态液动力: ①外流式锥阀稳态液动力指向阀口关闭方向。 ②内流式锥阀态液动力指向阀口开启方向。 5.2 液压卡紧力是怎样产生的?它有什么危 害?减小液压卡紧力的措施有哪些? 解答:由于阀芯和阀孔的几何形状及相对位置均有误差,使液体在流过阀芯与阀孔间隙时,产生了径向不平衡力,从而引起阀芯移动时的轴向摩擦力,称之为卡紧力。 危害:卡紧力加速阀件的磨损,当阀芯的驱动力不足以克服这个阻力时,会发生卡死现象。影响阀芯运动。

减小液压卡紧力的措施: (1)严格控制阀芯和阀控的锥度; (2)在阀芯凸肩上开均压槽; (3)采用顺锥; (4)在阀芯的轴向加适当频率和振幅的颤振; (5)精密过滤油液。 5.3 O型机能的三位四通电液换向阀中的先导电磁阀一般选用何种中位机能?由双液控单向阀组成的锁紧回路中换向阀又选用什么机能? 为什么? 解答:O型中间位置时:P、A,B、O四口全封闭,液压缸闭锁,可用于多个换向阀并联工作。 M型中间位置时:P、O口相通,A与B口均封闭,活塞闭锁不动,泵卸荷,也可用多个M型换向阀串联工作。 P型中间位置时:P、A、B口相通,O封闭,泵与缸两腔相通,可组成差动回路。

H型中间位置时:P、A,B、O口全通,活塞浮动,在外力作用下可移动,泵卸荷,不能用于多个换向阀并联工作。 5.4 球式换向阀与滑阀式换向阀相比,具有哪些优点? 解答:球形阀结构简单。滑阀式换向阀结构复杂,加工精度要求高,否则容易出现卡死现象。 5.5 O型机能的三位四通电液换向阀中的先导电磁阀一般选用何种中位机能?由双液控单向阀组成的锁紧回路中换向阀又选用什么机能? 为什么? 解答:O型机能的三位四通电液换向阀中的先导电磁阀一般选用Y型中位机能。因为Y型中位机能在中位时可以使液换向阀的阀芯两端控制油回油箱,便于弹簧使阀芯复位。 由双液控单向阀组成的锁紧回路中换向阀可选用H、M、O型中位机能,这些机能滑阀在中位时不给液控单向阀提供控制油,使液控单向阀可靠地关闭。

方向控制阀工作原理

第13章气动控制阀(Pneumatic control valves) 气动控制阀是控制、调节压缩空气的流动方向、压力和流量的气动元件,利用它们可以组成各种气动回路,使气动执行元件按设计要求正常工作。 13.1常用气动控制阀(Common pneumatic control valves) 和液压控制阀类似,常用的基本气动控制阀分为:气动方向控制阀、气动压力控制阀和气动流量控制阀。此外还有通过改变气流方向和通断以实现各种逻辑功能的气动逻辑元件。 13.1.1 气动方向控制阀(Pneumatic direction control valves) 气动方向控制阀是用来控制压缩空气的流动方向和气流通、断的气动元件。 13.1.1.1 气动方向控制阀的分类 气动方向控制阀和液压系统的方向控制阀类似,也分为单向阀和换向阀,其分类方法也基本相同。但由于气压传动具有自己独有的特点,气动方向控制阀可按阀芯结构、控制方式等进行分类。 1.截止式方向控制阀 芯的关系如图13.1 阀口开启后气流的流动方向。 点: 1) 构紧凑的大口径阀。 2 胶等)密封,当阀门关闭后始终存在背压,因此,密封性好、泄漏量小、勿须借助弹簧也能关闭。 3)因背压的存在,所以换向力较大,冲击力也较大。不适合用于高灵敏度的场合。 4)比滑柱式方向控制阀阻力损失小,抗粉尘能力强,对气体的过滤精度要求不高。 2. 滑柱式方向控制阀 滑柱式气动方向控制阀工作原理与滑阀式液压控制元件类似,这里不具体说明。 滑柱式方向控制阀的特点: 1)阀芯较截止式长,增加了阀的轴向尺寸,对动态性能有不利影响,大通径的阀一般不易采用滑柱式结构; 2)由于结构的对称性,阀芯处在静止状态时,气压对阀芯的轴向作用力保持平衡,容易设计成气动控制中比较常用的具有记忆功能的阀; 3)换向时由于不受截止式密封结构所具有的背压阻力,换向力较小;

PLC控制交流异步电动机正反转实验报告

实验总结报告题目:PLC控制交流异步电动机正反转 学院:信息与通信工程学院指导老师:涂兵老师 专业:自动化 班级:11级自动化2Bf 学号:14112101440 姓名:魏龙 序号:27

PLC控制交流异步电动机正反转 一、实验目的 1、学会用可编程序控制器实现交流异步电动机正反转过程的变成方法,并对电动机正 反转进行接线; 2、加深对PLC控制系统的各种保护、自锁、互锁等环节的理解; 3、学会分析并排除控制线路故障的方法; 4、能进行软件和硬件的调试,熟悉实验设备的操作; 5、能自行设计带有电气互锁或机械互锁的正反转电路。 二、实验原理 在三相鼠笼式异步电动机连锁正反转控制中,通过PLC程序和接线相序的更换来改变电动机的旋转方向。 三、实验设备 本实训用到的设备如表所示。 四、程序编写 1、方案一 1.1 I/O分配表格如下:

1.2 梯形图如下所示: 图1、1电机正反转梯形图1.3程序说明: 1.按下正转按钮,电机正转启动。 2.按下反转按钮,电机反转启动。 3.按下停止按钮,电机立即停止工作。 1.4 仿真结果 1)当按下I0.1时仿真结果如下: 图1、2 正转仿真2)当按下I0.2时仿真结果如下: 图1、3反转仿真

3)当按下I0.0时,仿真结果如下: 图1、4停止仿真2、方案二 2.1 I/O分配表格如下: 2.2 梯形图如下所示: 图2、1网络一 图2、2网络二

图2、3网络三 2.3程序说明: 1.按下I0.1,Q0.1置1正转启动; 2.按下I0.2,Q0.2置1反转启动,同时Q0.1复位正转停止。 3.按下I0.0,如果是正转,则Q0.1复位,停止正转;如果是反转,则Q0.2复位,停止反转。 2.4 仿真结果: 1)当按下I0.1时仿真结果如下: 图2、4正转仿真 2)当按下I0.2时仿真结果如下: 图2、5反转仿真 3)当按下I0.0时,仿真结果如下:

方向控制阀的原理和区别

今天为大家带来多种方向控制阀的原理和区别。控制阀由两个主要的组合件构成,阀体组合件和执行机构组合件(或执行机构系统),分为四大系列:单座系列控制阀、双座系列控制阀、套筒系列控制阀和自力式系列控制阀。四种类型阀门的变种可导致许许多多不同的应用结构,每种结构有其特点和优、缺点。我们一起来看吧~ 液压阀是用来控制液压系统中油液的流动方向或调节其流量和压力的。 方向控制阀作为液压阀的一种,利用流道的更换控制着油液的流动方向。 单向型方向控制阀是只允许气流沿一个方向流动的方向控制阀,如单向阀、梭阀、双压阀等。 换向型方向控制阀是可以改变气流流动方向的方向控制阀,简称换向阀。 按照控制方式还可分为电磁阀,机械阀,气控阀,人控阀。

单向型方向控制阀1.单向阀

单向阀是气流只能朝一个方向流动,而不能反向流动的阀。单向阀常与节流阀组合,用来控制执行元件的速度。 组成:阀体、阀芯、弹簧等。 作用:只允许液流一个方向流动,反向则被截止。 工作原理:正向导通、反向截止。 应用:常被安装在泵的出口,一方面防止压力冲击影响泵的正常工作,另一方面防止泵不工作时系统油液倒流经泵回油箱。被用来分隔油路以防止高低压干扰。

2.液控单向阀 液控单向阀是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。 液控单向阀与普通单向阀不同之处是多了一个控制油路K,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。 当控制油路有控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。 组成:普通单向阀+小活塞缸内泄式和外泄式。 工作原理: a. 无控制油时,与普通单向阀一样 b. 通控制油时,正反向都可以流动。 应用:a、保持压力。b、液压缸的“支承”。c、实现液压缸锁紧。d、大流量排油。 e、作充油阀。 f、组合成换向阀。

声光控制实验报告书

声光控制实验报告书 X X 学院 课程设计说明书(论文) 课程设计题目:声光控制开关电路 学生姓名: 学号: 院系: 专业班级: 指导教师姓名及职称: 起止时间:2011年3月——2011年6月 一、课题名称:声光控制开关电路 二、内容摘要: 一种声光控制开关装置,它包括:声光控制电路、延时电路、可控硅开关电路等。本实验采用新型分离元件,且电路设计简单,克服了现有的声光控制开关成本高、体积大等缺点,优点是一、省电,灯泡大部分时间不工作,因此节电效率很高,达80%左右;二是方便,工作时不用接触,全自动智能控制;另外,接线简单、安装方便,是一种家庭及公共场所理想的照明开关。 三、设计内容及要求: 1.内容 用声与光控制路灯,白天光线强,路灯不亮,只有光线暗时,通过声音触发路灯亮,并且灯点亮一定时间后,自动熄灭。 2.主要要求 (1)电路稳定性和可靠性要高。这是控制电路性能的最基本要求,否则自控能力弱,严重时会失去自动控制功能。

(2)功耗要小。控制电路一直接于交流220伏电路上,若功耗特别是静态功耗大,则不利于节能,甚至还会大大缩短控制电路的寿命。 (3)灵敏度要能调节。这是控制电路正常工作时,对声光控制信息信号的最低要求,控制信号的灵敏度应满足不同的环境要求。 (4)带负载能力要强。被控灯的功率不尽相同,因此要求控制电路的一定范围的驱动能力。 (5)触发延时时间要能按要求调节。延时时间至少在1分钟内可以调节。 四、比较和选定设计的系统方案,画出系统框图: 如图1 所示,全波整流电路将交流220V电压变为约 200V的直流电压,为后面的控制电路供电,例如桥式整流电路;受控开关受触发延时电路输出信号的控制,从而控制加于灯上的交流电压,达到控制开关灯的目的。例如可控硅,继电器触头等;降压滤波电路将输出的直流200V电压进行降压后滤波,从而为其后的电路提供平滑直流工作电压,如电阻降压,电容滤波;声光控制元件将声光控制信息变成电信号,为放大触发延时电路提供输入控制信号,例如,驻极体话筒和蜂鸣器等声控元件,光敏二极管和光敏电阻等光控元件;放大电路将较微弱的声光控制信号进行放大,以推动触发延时电路工作,例如各种放大电路;触发延时电路将放大电路输出的电压去推动触发延时电路工作,控制受控开关的闭合,达到控制灯亮时间长短的目的,实现声光控制功能。 五、单元电路设计、参数计算和元器件选择说明: I C选用CO MS数字集成电路CD4069,CD4069有四个独立的与非门电路,VCC是电源的正极。可控硅T选用B T169型,如负载电流大可选3A、6A、10A 等规格的单向可控硅,它的测量方法是:用RX1档,将红表笔接可控硅的负极,黑表笔接正极,这时表针无读数,然后用黑表笔接触一下控制极K,这时表有读数,黑表笔马上离开这时表仍有读数(注意触控制极时正负表笔是始终连接的)说明可控硅是完好的。选用收录音机的小话筒,;光敏电阻选用的是R9,有光照时电阻为20K以下,无光时电阻值大于100M,说明该元件是完好的。二极管采用普通D1-D4 组成桥式整流电路。总之,元件的选择可灵活掌握,参数可在一定的范围内选用。其他原件按设计电路图选择。

气动阀门的控制常识

气动阀门的控制常识 点击次数:360发布时间:2009-12-6 11:33:52 气动阀门的控制常识 概述 一、气动控制阀的分类 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。控制和调节压缩空气压力的元件称为压力控制阀。控制和调节压缩空气流量的元件称为流量控制阀。改变和控制气流流动方向的元件称为方向控制阀。 除上述三类控制阀外,还有能实现一定逻辑功能的逻辑元件,包括元件内部无可动部件的射流元件和有可动部件的气动逻辑元件。在结构原理上,逻辑元件基本上和方向控制阀相同,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。 从控制方式来分,气动控制可分为断续控制和连续控制两类。在断续控制系统中,通常要用压力控制阀、流量控制阀和方向控制阀来实现程序动作;连续控制系统中,除了要用压力、流量控制阀外,还要采用伺服、比例控制阀等,以便对系统进行连续控制。气动控制阀分类如图4.1。 二、气动控制阀和液压阀的比较

(一)使用的能源不同 气动元件和装置可采用空压站集中供气的方法,根据使用要求和控制点的不同来调节各自减压阀的工作压力。液压阀都设有回油管路,便于油箱收集用过的液压油。气动控制阀可以通过排气口直接把压缩空气向大气排放。 (二)对泄漏的要求不同 液压阀对向外的泄漏要求严格,而对元件内部的少量泄漏却是允许的。对气动控制阀来说,除间隙密封的阀外,原则上不允许内部泄漏。气动阀的内部泄漏有导致事故的危险。 对气动管道来说,允许有少许泄漏;而液压管道的泄漏将造成系统压力下降和对环境 的污染。 (三)对润滑的要求不同 液压系统的工作介质为液压油,液压阀不存在对润滑的要求;气动系统的工作介质为空气,空气无润滑性,因此许多气动阀需要油雾润滑。阀的零件应选择不易受水腐蚀的材料,或者采取必要的防锈措施。 (四)压力范围不同 气动阀的工作压力范围比液压阀低。气动阀的工作压力通常为10bar以内,少数可达到40bar以内。但液压阀的工作压力都很高(通常在50Mpa以内)。若气动阀在超过最高容许压力下使用。往往会发生严重事故。 (五)使用特点不同 一般气动阀比液压阀结构紧凑、重量轻,易于集成安装,阀的工作频率高、使用寿命长。气动阀正向低功率、小型化方向发展,已出现功率只有0.5W的低功率电磁阀。可与微机和PLC可编程控制器直接连接,也可与电子器件一起安装在印刷线路板上,通过标准板接通气电回路,省却了大量配线,适用于气动工业机械手、复杂的生产制造装配线等场合 三、气动控制阀的结构特性 气动控制阀的结构可分解成阀体(包含阀座和阀孔等)和阀心两部分,根据两者的相对位置,有常闭型和常开型两种。阀从结构上可以分为:截止式、滑柱式和滑板式三类阀。 (一)截止式阀的结构及特性 截止式阀的阀心沿着阀座的轴向移动,控制进气和排气。图4.2所示为二通截止式阀的基本结构。图4.2a中,在阀的P口输入工作气压后,阀芯在弹簧和气体压力作用下紧压在阀座上,压缩空气不能从A口流出;图4.2b为阀杆受到向下的作用力后,阀芯向下移动,脱离阀座,压缩空气就能从P口流向A口输出。

相关文档
最新文档