美与物理学
物理学中的美

物理学中的美物理学固然不是美学,但物理学中包含着美。
由于物理学所反映的是自然界丰富多彩的运动形式及规律性,因而它也就同时展现了自然界在结构上的对称、和谐与韵律美。
由于科学理论的首要目的是表达人们发现的自然界中存在的和谐。
所以,我们一眼就能看到这些理论具有美学价值。
对于一个科学理论的成功与否的衡量,事实上就是对它的美学价值的衡量,因为这就是衡量它给原本是混乱的东西带来了多少和谐。
自然科学美的主体成分理性美,是自然界的固有结构与人的认识、人类心灵深处的渴望在本质上的吻合。
它是通过科学的理想化、抽象化,以概念、定理、公式、理论的方式显示出来的。
由历代物理学家所精心雕琢的物理学大厦,可谓是一座辉煌壮丽的科学殿堂。
它集诸种基本形式美与内容美于一体,不仅向人们提供了对物质世界规律性的认识,同时也把一种令人心旷神怡的美景奉献给了人类。
只要步入这个“和谐的宇宙”,就一定能使具有一定科学素养的人领略和体味到这种理性美。
物理学所描述的对象是非常广泛的,因而它的美也在多方面有所体现。
从浩瀚无边的宇宙到微观世界的基本粒子,无不是物理学家的研究对象;从星系到夸克,全部都遵循着基本的物理规律。
结合美学的基本原则以及科学美的评价和判断标准,我们可以从以下几方面来欣赏物理世界的美:物理学中的逻辑简单性;物理定律的内在对称性;物理规律的复杂整体性;物理原理的并协互补性;物理理论的普遍性;物理学中的延伸性。
一个科学理论体系,“首要的是它的前提的简单性”,“唯一事关紧要的是基础的逻辑简单性。
”表达物理规律的语言是数学,而且往往是非常简单的数学。
这也正是一种微妙的美。
2000多年来,“以严格的数学关系来表示自然界一切事物的简单性与和谐性”一直绵延不断地支配着物理学家的头脑,被后人称为“物理学之父”的阿基米德,从数学上证明了杠杆原理、浮力定律等,从而使他的静力学闪烁着数学美的曙光。
哥白尼的日心说体系,由于提供了用圆周运动和匀速运动解释天体现象的最简单、最经济的方案,使得天文学上的测算变得更加容易,并且在他巧妙的构思下,“宇宙里有一种奇妙的对称,轨道的大小与运动都有一定的和谐关系。
美学、物理

物理、美学一、起源物理学(physics)一词起源于古希腊,拉丁文原意是“自然”。
自公元前七世纪,物理学就以自然哲学的形式从人类的生产劳动中萌芽出来,先后经历了古代物理学、经典物理学、近代物理学和现代物理学四个阶段。
然而物理学在这近三千年的发展历程中却存在着一些起过作用的、科学之外的,并且在一定程度上为非理性的、有价值的动力因素,它们与美学有关。
美学是一门既古老又年轻的科学。
从古代到现代,随着人类思维能力的发展和审美领域的扩大,人们开始对审美经验进行思考;于是美学思想便逐步形成。
西方美学思想亦发源于古希腊;但是早期的美学思想大都依附于自然科学,往往是在探究宇宙本源时涉及美的问题。
其代表人物就是柏拉图和亚里士多德。
亚里士多德关于美的理论是建立在对柏拉图唯心主义理式论的批判基础上的,他认为美不存在于超感性的理式世界;美只存在于具体的美的事物中。
物理学固然不是美学,但物理学中包含着美。
物理美应包含三部分:自然物理现象的美;物理创造的美;物理学作为一门科学的美——物理学美。
由于物理学所反映的是自然界丰富多彩的运动形式及规律性,因而它也就同时展现了自然界在结构上的对称、和谐与韵律美。
物理美的主要表现形式是用其具有的性质来表现的,这种表现反映了物理世界、物理学内部的规律性,这就使得这些性质之间具有相互联系,因而没有非常明显的界限,也就是说物理学美蕴涵了简单美,对称美,和谐美的统一二、美、延伸简单深刻美在一个艺术家眼里简单是一种美。
自然现象错综复杂,物理学则力求用简单的方程或定律去概括自然规律,但其反映的内在规律确是非常深刻的。
如能量的转化和守恒定律反映了各种不同形式的能量的转化,牛顿的三大定律更是概括了宏观低速条件下各种机械运动的规律,麦克斯韦电磁方程组将复杂的电磁现象统一其中,爱因斯坦相对论中的基本原理简单凝练,但其中内涵确是丰富而深刻的。
对称守恒美对称是自然界中广泛存在的也是人们很乐于接受的一种美学形式,物理学在对自然的表述中处处显现出了这种对称的美:引力和斥力,“电生磁”与“磁生电”,粒子与反粒子,物质与反物质、圆孔或单缝衍射图样的对称、无限长直导线周围磁场的轴对称等等。
美与物理学【打印】

【教学目的】1、学会用研究和讨论的方法,探究创新精神的内涵。
2.学习科学家孜孜屹屹探求真理的精神,领略科学家石破天惊的创造才能。
【教学重点】了解科学家们孜孜矿务局探求真理的精神,领略到科学家们石破天惊的创造才能,欣赏到物理世界基本结构的非常之美、非常之妙,认识到创新的动力很大程度上来自对美的执着追求【教学难点】学会用研究和讨论的方法,解读文章丰富而深刻的内涵。
【教学方法】讨论法【教学课时】2课时第一课时一、导入课文这篇文章也是谈科学创新的有关问题的。
阅读这篇文章要了解科学家们孜孜探求真理的精神,领略到科学家们石破天惊的创造才能,欣赏到物理世界基本结构的非常之美、非常之妙,认识到创新的动力很大程度上来自对美的执着追求。
文章涉及了物理学方面的一些专业知识,学生在阅读时可能看不懂,但这不妨碍我们理解整篇文章的精髓。
二、预习指导本课的教学以研究和讨论为主。
教师可以先布置一些题目,让学生带着问题去研究教材,去展开讨论。
下边的问题可供参考。
1.科学家的创新精神表现在哪些方面?2.科学家的创新精神以及对美的追求,在科学研究中有什么意义?对我们每个人有什么启示?三、通读课文思考问题1、科学家的风格不同,但可以发现他们的共同之处,风格有何不同,又有何共同之处?2、物理学是美的,它的美表现在哪里呢?3、科学家的创新精神表现在哪些方面?第二课时一、研读讨论(一)科学家的风格不同,但可以发现他们的共同之处,风格有何不同,又有何共同之处?文章从科学家的风格谈起。
"狄拉克的简洁",显示出他最独特的风格,谈他的文章,你会"惊叹他的独创力",又有一种"秋水文章不染尘"的感受。
海森堡的风格是在独创力之中又有一种"朦胧、不清楚"的感觉。
从他们不同的风格中,可以发现他们的共同之处。
那就是他们的独创力以及探求真理的精神。
狄拉克"于1928年以后四年间不顾玻尔、海森堡、泡利等当时的大物理学家的冷嘲热讽,始终坚持他的理论,而最后得到全胜,正合'风骨超常伦…;海森堡1925年夏在"雾中"摸索前进,"开创了一个摸索前进的方向";写出了300年来物理学史上继牛顿《自然哲学的数学原理》以后影响最深远的一篇文章,"引导出了量子力学的发展"。
美与物理学观后感

美与物理学观后感引言美和物理学是两个互不相干的领域,前者涉及我们对事物的审美感受,后者则研究物质、力、运动等自然现象。
然而,在我深入学习物理学的过程中,我发现美和物理学之间存在着一种微妙的联系。
本文将探讨美与物理学之间的关系,并以个人的观后感进行述述。
美学与物理学的联系美学是一门研究审美的学科,而物理学则是一门关于自然界规律的学科。
尽管这两个领域看似没有太多交集,但当我们深入研究物理学,探索自然现象的规律时,我们不禁会对大自然的美丽和奥妙感到惊叹。
对称性与美物理学中的对称性概念是美学中的一个核心要素。
对称性在自然界中无处不在,无论是花朵、水晶、建筑物还是海浪,都呈现出各种形式的对称性。
物理学研究对称性的规律,而这些对称性的存在赋予了自然界独特的美感。
数学与美的奥妙物理学是一门数学工具重要的学科,数学在物理学中扮演着至关重要的角色。
数学的美感来源于它的简洁性、逻辑性和完备性。
而物理学中的数学模型则赋予了我们理解自然界的能力,从而将美学和数学联系在一起。
能量与美的共振物理学研究能量的传递与转化的规律,而美学关注的是物体所散发的能量带来的感受。
当我们欣赏一幅画作或是一首音乐时,我们往往会感受到其中蕴含的能量与情感,这与物理学所研究的能量规律相呼应。
美学和物理学都以能量为基础,它们共同带给我们情感上的满足。
个人观后感在学习物理学的过程中,我深深感受到美和物理学之间的联系。
物理学世界的规律和美学的审美感受并不是完全隔离的,它们相互影响、相互交织,共同构成了世界的奇妙之处。
通过学习物理学,我开始更加注重对自然界的观察和感受。
我发现,大自然中存在着各种形式的对称性,它们展现出一种纯粹而完美的美。
这种美让我感受到自然界的秩序和和谐。
物理学为我打开了一扇数学的大门,让我更加深入地理解了数学的美妙和重要性。
数学的逻辑性和严谨性给了我对事物的抽象思维和分析能力,使我能够更好地理解和欣赏艺术作品中的美。
在我学习物理学时,我也意识到能量的重要性。
《美与物理学》观后感

杨振宁博士是大家熟知的诺贝尔奖金获得者,举世闻名的物理学家。
近三百年来,物理学上留下九个划时代的里程碑般的方程式,涉及十二位科学家。
这十二位科学家至今还健在的就是杨振宁和他的学生密尔斯,而划时代的九个物理方程式中的第九个就是杨振宁和密尔斯的共同场。
如果再考虑杨振宁还有获得诺贝尔奖金的宇宙不守恒定律,那么杨振宁理所当然是当代物理学的泰斗了。
然而,这只是一面,许多人并不知道杨振宁对音乐、诗歌、绘画等艺术方面也有极高的造诣。
这篇妙笔生花的《美与物理学》,虽然是管中窥豹,但确实可以让我们领略他在人文素质方面的风采。
本世纪初,是物理学界人才荟萃,群英辈出的年代,是一个窥视宇宙奥秘翻天覆地的创新年代。
不仅涌现一批著名的物理学家,而且都有鲜明的个性与风格,比如狄拉克。
杨振宁博士一直想把他的风格写给文、史、艺术方面的朋友们看,但不知如何下笔。
一次偶然看到香港大众报上的一篇文章,其中引用了高适《答侯少府》的两句诗:“性灵出万象,风骨超常伦”,觉得非常高兴,认为用这两句话来描述狄拉克方程和反粒子理论再合适不过了,于是写了这篇文章。
他在这篇文章中指出,每个科学家的研究都是有风格的,正如一位音乐家听到几个音节后,就能辨认出莫扎特、贝多芬或舒伯特的音乐。
同样,一位数学家或物理学家也能在读了数页文字后辨认出柯西、高斯、雅可比或克尔期豪夫的工作。
这是因为,他以物理学为例,物理学的原理有它的结构。
这个结构有它的美和妙的地方。
而各个物理学工作者,对于这个结构不同的美和妙的地方,有不同的感觉。
所以,他会形成自己的风格。
从这个观点出发,他认为狄拉克的文章有一种“秋水文章不染尘”的清新,有一种充满数学的简洁美和逻辑美,“独抒性灵,不拘格套”是他的风格。
而海森伯的文章有惊人的独创性,但朦胧有渣滓。
因为狄拉克的灵感来自对数学美的直觉欣赏,而海森伯的灵感来自实验物理和唯象物理。
他认为牛顿的运动方程、麦克斯韦方程、爱因斯坦狭义与广义相对论方程、狄拉克方程、海森伯方程和其他五、六个方程是物理学理论架构的骨干,可以说它们是造物者的诗篇。
美与物理观后感

美与物理学观后感《美与物理学》是一部非常优秀的影片,它给了我们一个全新的视角,以物理学的眼镜去审视美。
通过一系列精彩的切入物理学中的八大基本力,从结构性、动态性、空间性、层次性等几个角度,让观众深入到物理学概念之中,从中获得更加宏观的视角去发现世界的魅力。
影片中首先介绍了物理学的基本概念,包括斥力、引力、动量守恒、能量守恒、物质的性质以及它的物理特性,并深入到物理学的每一个角落,从宇宙的无穷尽头,到蚁群的众多智慧,再到地球上每一处细微的美。
从这些宏观与微观之间的相互关系,我们能够发现物理学的神奇与美丽。
由于物理学研究的范围如此广泛,影片最后提出,物理学的最终挑战是发现物理学的普遍原理,即解决象征智慧和自然之间最大的不解之谜:为什么物理学律如此坚强,能够以这么准确的方式世界的一切?通过影片的解说,我们可以看到,美与物理学的关系是十分微妙的,它能够从物理学研究中提炼出美的精髓,从而帮助我们更好地发现世界美妙的另外一面。
同时也让我们重新审视物理学,从物理学的角度能够发现大自然隐藏的一些细节,看到一切都是多么精巧与美妙。
《美与物理学》这部影片对于我们对物理学与美的理解起到了重要作用,它能够让我们用物理学的角度去审视美,而不是仅仅看到美的表面,让我们能够更好的理解与欣赏大自然的美。
另外,它也引起了我们对物理学的兴趣,看到了物理学的精妙与神奇,令我们对物理学有了更深入的认识。
总的来说,《美与物理学》是一部具有里程碑意义的影片,它能够让我们从物理学的视角去看待美,同时也使我们更好地理解物理学,从而开始探索普遍原理,也让我们走进了一个全新的领域,去探索它的真正意义与价值。
因此,我非常感谢《美与物理学》这样的影片,让我们对物理学的理解有了新的改变,让我们有机会从物理学的角度去发现世界的魅力。
观看美与物理学并给出1000字观后感作文

观看美与物理学并给出1000字观后感作文After watching "Beauty and Physics", I was deeply inspired by the intricate connection between beauty and physics that exists in our world. The documentary explored various aspects of beauty, from art and nature to the underlying scientific principles that govern them. It shed light on how physics plays a fundamental role in shaping our perception of beauty.观看完《美与物理学》之后,我深受其中关于美与物理学之间密切关联的启迪。
这部纪录片探索了美的各个方面,从艺术和自然到潜在影响它们的科学原理。
它揭示了物理学在塑造我们对美的认知中起着根本性的作用。
The documentary emphasized how principles such as symmetry and proportion, which are derived from physics, influence our perception of aesthetics. Seeing examples from architecture, fashion, and even human faces, I realized how these mathematical concepts play a crucial role in creating beauty. For instance, buildings with symmetrical designsexude elegance and harmony, while faces with well-proportioned features appear more attractive.该纪录片强调了来自物理学的对称性和比例等原则如何影响我们对审美的认知。
物理中的美学

物理与美学美的内涵是对能引起人们美感的客观事物的共同本质属性的抽象概括,其本质是审美客体合目的性和合规律性的统一。
美的存在是客观事物的一种表现,我们能够认识美的规律,按照美的规律去创造美。
而物理学是一门揭示物质存在与运动规律的自然科学。
它科学地揭示了自然规律,同时也展示了自然、人类与科学的艺术魅力。
物理中有自然的美,也有科学和艺术的美:第一,狭义的物理世界是自然界的一部分,这部分物理世界具有的美也是自然美的一个组成部分。
第二,人造的物理世界是人类发挥了自己的主观能动性,以美的规律创造的物理世界,比如激光、无线电、计算机、超导、航天飞机等以及为了重复和模拟自然现象而创造的实验条件,这一部分是物理学对人类提供的不朽的物质财富,它所产生的美感是自然美所不能包含的;第三,物理学是人类为研究物理世界而创造的一门科学,它是人类认识世界、改造自然的智慧结晶。
而科学的本质是“真、善、美”,这种科学美,历来为科学大师所推崇,法国数学家彭加勒曾说:“一个名符其实的科学家,尤其是数学家,他在自己的工作中体验到和艺术家一样的印象。
他的乐趣和艺术家的乐趣具有同样的性质,是同样伟大的东西。
”这种科学美在物理学中表现尤为明显,物理学所揭示的真理就是真与美的统一。
物理美学除了具备科学美普遍的特征外,还有自己独有的一些特性。
物理美是属理性的美。
物理美应包含三部分:(1)自然物理现象的美;(2)物理创造的美;(3)物理学作为一门科学的美—物理学美。
1.物理现象的自然美物理涉及力、声、热、光、电、磁和原子物理等内容,物理现象千姿百态、美妙无穷。
如星移斗转、日夜交替、春秋轮回、物态互变等自然规律,因有序而美;光的反射与倒影、折射与海市蜃楼、色散与彩虹、日食和月食都有奇异的美。
人类在研究和应用物理方面创造的辉煌成果,是美的精品。
蒸汽机、发电机、激光器、电子对撞机的发明,步步促进人类生产、生活和高科技的发展;众多的航天器和卫星正在全球通讯、气象观测、国防和科研等方面建功立业;电磁技术、激光技术、能源开发技术突飞猛进;核电站、太阳能电站的相继林立充分展示了物理前景无限美好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美与物理学杨振宁杨振宁,当代物理学大师,在基本粒子理论和统计力学方面都曾作出许多卓越贡献。
他在1956年和李政道共同提出在弱衰变过程中宇称性不守恒的可能,跟着这革命性观点由实验证明,整个物理学界为之轰动,杨、李二位在翌年因此获得诺贝尔物理学奖。
杨教授在1954年和米尔斯提出的广义规范场理论,今日已经成为讨论一切相互作用的基础语言和工具,其重要性与广义相对论可相比拟。
杨教授早年先后在西南联合大学和芝加哥大学攻读物理学,1949年受聘于普林斯顿高等学术研究所,1966年出任纽约大学石溪分校理论物理所所长迄今,1986年起兼任香港中文大学的博文讲座教授。
19世纪物理学的三项最高成就是热力学、电磁学与统计力学。
其中统计力学奠基于麦克斯韦、波耳兹曼与吉布斯的工作。
波耳兹曼曾经说过:“一位音乐家在听到几个音节后,即能辨认出莫扎特、贝多芬或舒伯特的音乐。
同样,一位数学家或物理学家也能在读了数页文字后辨认出柯西、高斯、雅可比、亥姆霍兹或克尔斯豪夫的工作。
”对于他的这一段话也许有人会发生疑问:科学是研究事实的,事实就是事实,哪里会有什么风格﹖关于这一点我曾经有过如下的讨论:让我们拿物理来讲吧,物理学的原理有它的结构,这个结构有它的美和妙的地方。
而各个物理学工作者,对于这个结构的不同的美和妙的地方,有不同的感受。
因为大家有不同的感受,所以每位工作者就会发展他自己独特的研究方向和研究方法,也就是说他会形成他自己的风格。
今天我的演讲就是要尝试阐述上面这一段话。
我们先从两位著名物理学家的风格讲起。
狄拉克狄拉克是20世纪一位大物理学家,关于他的故事很多。
比如:有一次狄拉克在普林斯顿大学演讲。
演讲完毕,一位听众站起来说:“我有一个问题请回答:我不懂怎么可以从公式2推导出来公式5。
”狄拉克不答。
主持者说:“狄拉克教授,请回答他的问题。
”狄拉克说:“他并没有问问题,只说了一句话。
”这个故事所以流传极广是因为它确实描述了狄拉克的一个特点:话不多,而其内含有简单、直接、原始的逻辑性。
一旦抓住了他独特的、别人想不到的逻辑,他的文章读起来便很通顺,就像“秋水文章不染尘”,没有任何渣滓,直达深处,直达宇宙的奥秘。
狄拉克最了不起的工作是1928年发表的两篇短文,写下了狄拉克方程。
这个简单的方程式是惊天动地的成就,是划时代的里程碑,它对原子结构及分子结构都给予了新的层面和新的极准确的了解。
没有这个方程,就没有今天的原子、分子物理学与化学。
没有狄拉克引进的观念就不会有今天医院里通用的核磁共振成像技术,不过此项技术实在只是狄拉克方程的一项极小的应用。
狄拉克方程“无中生有,石破天惊”地指出为什么电子有“自旋”,而且为什么“自旋角动量”是1/2而不是整数。
初次了解此中奥妙的人都无法不惊叹其为“神来之笔”,是别人无法想到的妙算。
当时最负盛名的海森伯看了狄拉克的文章,无法了解狄拉克怎么会想出此神来之笔,于1928年5月3日给泡利写了一封信描述了他的烦恼:“为了不持续地被狄拉克所烦扰,我换了一个题目做,得到了一些成果。
” 按:这成果是另一项重要贡献:磁铁为什么是磁铁。
狄拉克方程之妙处虽然当时立刻被同行所认识,可是它有一项前所未有的特性,叫做“负能”现象,这是大家所绝对不能接受的。
狄拉克的文章发表以后三年间关于负能现象有了许多复杂的讨论,最后于1931年狄拉克又大胆提出“反粒子”理论来解释负能现象。
这个理论当时更不为同行所接受,因而流传了许多半羡慕半嘲弄的故事。
直到1932年秋安德森发现了电子的反粒子以后,大家才渐渐认识到反粒子理论又是物理学的另一个里程碑。
20世纪的物理学家中,风格最独特的就数狄拉克了。
我曾想把他的文章的风格写下来给我的文、史、艺术方面的朋友们看,始终不知如何下笔。
去年偶然在香港大公报大公园一栏上看到一篇文章,其中引了高适在《答侯少府》中的诗句:“性灵出万象,风骨超常伦。
”我非常高兴,觉得用这两句诗来描述狄拉克方程和反粒子理论是再好没有了。
一方面狄拉克方程确实包罗万象,而用“出”字描述狄拉克的灵感尤为传神;另一方面,他于1928年以后四年间不顾玻尔、海森伯、泡利等当时的大物理学家的冷嘲热讽,始终坚持他的理论,而最后得到全胜,正合“风骨超常伦”。
可是什么是“性灵”呢﹖这两个字联起来字典上的解释不中肯。
若直觉地把“性情”、“本性”、“心灵”、“灵魂”、“灵感”、“灵犀”、“圣灵”等加起来似乎是指直接的、原始的、未加琢磨的思路,而这恰巧是狄拉克方程之精神。
刚好此时我和香港中文大学童元方博士谈到《二十一世纪》1996年6月号钱锁桥的一篇文章,才知道袁宏道和后来的周作人、林语堂等的性灵论。
袁宏道说他的弟弟袁中道的诗是“独抒性灵,不拘格套”,这也正是狄拉克作风的特征。
“非从自己的胸臆流出,不肯下笔”,又正好描述了狄拉克的独创性海森伯海森伯是20世纪另一位大物理学家,有人认为他比狄拉克还要略高一筹。
他于1925年夏天写了一篇文章,引导出了量子力学的发展。
38年以后科学史家库恩访问他,谈到构思那个工作时的情景。
海森伯说:爬山的时候,你想爬某个山峰,但往往到处是雾……你有地图,或别的索引之类的东西,知道你的目的地,但是仍堕入雾中。
然后……忽然你模糊地,只在数秒钟的功夫,自雾中看到一些形象,你说:“哦,这就是我要找的大石。
”整个情形自此而发生了突变,因为虽然你仍不知道你能不能爬到那块大石,但是那一瞬间你说:“我现在知道我在什么地方了。
我必须爬近那块大石,然后就知道该如何前进了。
”这段谈话生动地描述了海森伯1925年夏摸索前进的情形。
要了解当时的气氛,必须知道自从1913年玻尔提出了他的原子模型以后,物理学即进人了一个非常时代:牛顿力学的基础发生了动摇,可是用了牛顿力学的一些观念再加上一些新的往往不能自圆其说的假设,却又可以准确地描述许多原子结构方面奇特的实验结果。
奥本海默这样描述这个不寻常的时代:“那是一个在实验室里耐心工作的时代,有许多关键性的实验和大胆的决策,有许多错误的尝试和不成熟的假设。
那是一个真挚通讯与匆忙会议的时代,有许多激烈的辩论和无情的批评,里面充满了巧妙的数学性的挡架方法。
”“对于那些参加者,那是一个创新的时代,自宇宙结构的新认识中他们得到了激奋,也尝到了恐惧。
这段历史恐怕永远不会被完全记录下来。
要写这段历史须要有像写奥迪帕斯或写克伦威尔那样的笔力,可是由于涉及的知识距离日常生活是如此遥远,实在很难想像有任何诗人或史家能胜任。
”1925年夏天,23岁的海森伯在雾中摸索,终于模到了方向,写了上面所提到的那篇文章。
可是这篇文章只开创了一个摸索前进的方向,此后两年间还要通过玻恩、狄拉克、薛定谔、玻尔等人和海森伯自己的努力,量子力学的整体架构才逐渐完成。
量子力学使物理学跨入崭新的时代,更直接影响了20世纪工业发展,举凡核能发电、核武器、激光、半导体元件等都是量子力学的产物。
1927年夏,25岁尚未结婚的海森伯当了莱比锡大学理论物理系主任。
前面提到狄拉克的文章给人“秋水文章不染尘”的感受。
海森伯的文章则完全不同。
二者对比清浊分明。
我想不到有什么诗句或成语可以描述海森伯的文章,既能道出他的天才的独创性,又能描述他的思路中不清楚、有渣滓、有时似乎茫然乱摸索的特点。
物理学与数学海森伯和狄拉克的风格为什么如此不同﹖主要原因是他们所专注的物理学内涵不同。
为了解释此点,请看图1所表示的物理学的三个部门和其中的关系:唯象理论2是介乎实验1和理论架构3之间的研究;1和2合起来是实验物理2和3合起来是理论物理,而理论物理的语言是数学。
物理学的发展通常自实验1开始,即自研究现象开始。
关于这一发展过程,我们可以举很多大大小小的例子。
先举牛顿力学的历史为例。
布拉赫是实验天文物理学家,活动领域是1。
他做了关于行星轨道的精密观测。
后来开普勒仔细分析布拉赫的数据,发现了有名的开普勒三大定律。
这是唯象理论2。
最后牛顿创建了牛顿力学与万有引力理论,其基础就是开普勒的三大定律。
这是理论架构3。
再举一个例子:通过18世纪末、19世纪初的许多电学和磁学的实验1,安培和法拉第等人发展出了一些唯象理论2,最后由麦克斯韦归纳为有名的麦克斯韦方程 即电磁学方程 ,才进入理论架构3的范畴。
另一个例子:19世纪后半叶许多实验工作1引导出普朗克1900年的唯象理论2。
然后经过爱因斯坦的文章和上面提到过的玻尔的工作等,又有一些重要发展,但这些都还是唯象理论2。
最后通过量子力学之产生,才步入理论架构3的范围。
海森伯和狄拉克的工作集中在图1所显示的哪一些领域呢﹖狄拉克最重要的贡献是前面所提到的狄拉克方程D。
海森伯最重要的贡献是海森伯方程,是量子力学的基础。
这两个方程都是理论架构3中之尖端贡献,二者都达到物理学的最高境界。
可是写出这两个方程的途径却截然不同:海森伯的灵感来自他对实验结果1与唯象理论2的认识,进而在摸索中达到了方程式。
狄拉克的灵感来自他对数学4的美的直觉欣赏,进而天才地写出他的方程。
他们二人喜好的、注意的方向不同,所以他们的工作的领域也不一样,如图2所示。
此图也标明玻尔、薛定谔和爱因斯坦的研究领域。
爱因斯坦兴趣广泛,在许多领域中,自2至3至4,都曾做出划时代的贡献。
海森伯从实验1与唯象理论2出发:实验与唯象理论是五光十色、错综复杂的,所以他要摸索,要犹豫,要尝试了再尝试,因此他的文章也就给读者不清楚、有渣滓的感觉。
狄拉克则从他对数学的灵感出发:数学的最高境界是结构美,是简洁的逻辑美,因此他的文章也就给读者“秋水文章不染尘”的感受。
让我补充一点关于数学和物理的关系。
我曾经把二者的关系表示为两片在茎处重叠的叶片图3。
重叠的地方同时是二者之根,二者之源。
比如微分方程、偏微分方程、希尔伯特空间、黎曼几何和纤维丛等,今天都是二者共用的基本观念。
这是惊人的事实,因为首先达到这些观念的物理学家与数学家曾遵循完全不同的路径,完全不同的传统。
为什么会殊途同归呢﹖大家今天没有很好的答案,恐怕永远不会有,因为答案必须牵扯到宇宙观、知识论和宗教信仰等难题。
必须注意的是在重叠的地方,共用的基本观念虽然如此惊人地相同,但是重叠的地方并不多,只占二者各自的极少部分。
比如实验1与唯象理论2都不在重叠区,而绝大部分的数学工作也在重叠区之外。
另外值得注意的是即使在重叠区,虽然基本观念物理与数学共用,但是二者的价值观与传统截然不同,而二者发展的生命力也各自遵循不同的茎脉流通,如图3所示。
常常有年轻朋友问我,他应该研究物理,还是研究数学。
我的回答是这要看你对哪一个领域里的美和妙有更高的判断能力和更大的喜爱。
爱因斯坦在晚年时1949年 曾经讨论过为什么他选择了物理。
他说:在数学领域里,我的直觉不够,不能辨认哪些是真正重要的研究,哪些是不重要的题目。
而在物理领域里,我很快学到怎样找到基本问题来下功夫。