D打印技术种类
智能制造关键技术(工业机器人技术和3D打印技术)

酒类装箱码垛线
22
思考题:1.工业机器人有哪些特点? 2.工业机器人的常用种类有哪些?
23
3D打印技术
一、 3D打印技术特点及发展历史 3D打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉 末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。 3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设 计等领域被用于制造模型,后逐渐用于一些产品的直接制造。该技术在珠宝、鞋 类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、 教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。
25
3D打印技术出现在20世纪90年代中 期,实际上是利用光固化和纸层叠等技术 的最新快速成型装置。它与普通打印工作 原理基本相同,打印机内装有液体或粉末 等“打印材料”,与电脑连接后,通过电 脑控制把“打印材料”一层层叠加起来, 最终把计算机上的蓝图变成实物。这打印 技术称为3D立体打印技术。
26
4.技术升级。工业机器人与自动化成套装备具备精细制造、精细 加工以及柔性生产等技术特点,是继动力机械、计算机之后,出现的全 面延伸人的体力和智力的新一代生产工具,是实现生产数字化、自动化、 网络化以及智能化的重要手段。
6
5.应用领域广泛。工业机器人与自动化成套装备是生产过程的关键设备, 可用于制造、安装、检测、物流等生产环节,并广泛应用于汽车整车及汽车零 部件、工程机械、轨道交通、低压电器、电力、IC装备、军工、烟草、金融、 医药、冶金及印刷出版等众多行业,应用领域非常广泛。
6.技术综合性强。工业机器人与自动化成套技术,集中并融合了多项学 科,涉及多项技术领域,包括工业机器人控制技术、机器人动力学及仿真、机 器人构建有限元分析、激光加工技术、模块化程序设计、智能测量、建模加工 一体化、工厂自动化以及精细物流等先进制造技术,技术综合性强。
3D打印技术的种类

3D打印技术的种类3d打印几种主流快速成型工艺的成型原理及优缺点来源:互联网作者:2022-12-0910:27:141.sla激光光固化(stereolithographyapparatus)该技术以光敏树脂为原料,利用计算机控制的紫外激光,根据预定零件各层截面的轮廓扫描液态树脂。
然后扫描区域中的薄层树脂将产生光聚合反应,从而形成零件的薄层截面。
当该层固化后,移动工作台,在之前固化的树脂表面涂抹一层新的液体树脂,以便扫描和固化下一层。
新固化层与前一层牢固粘合,并重复此操作,直到制造出整个零件的原型。
美国3dsystems是第一家推出这项技术的公司。
该技术的特点是精度高、光洁度高,但材料相对易碎,操作成本太高,后处理复杂,对操作人员要求高。
它适用于验证装配设计的过程。
2.3dp三维打印成型(3dimensionprinter)它最大的特点是小型化和易于操作。
它主要用于商业、办公、科研和个人工作室。
根据不同的印刷方法,3DP三维打印技术可分为热爆炸三维打印(代表:美国3dsystems公司的zprinter系列——原隶属于zcorporation公司,已被3dsystems公司收购)压电三维打印(代表:美国3dsystems公司的projet系列和STRATASYS公司不久前收购的以色列objet公司的3D打印设备)、DLP projection 3D打印(代表:德国Envisionitec公司的ultra和perfactory系列)等。
热爆式三维打印工艺的原理是将粉末由储存桶送出一定分量,再以滚筒将送出之粉末在加工平台上铺上一层很薄的原料,打印头依照3d电脑模型切片后获得的二维层片信息喷退出粘合剂并粘贴粉末。
完成第一层后,加工平台会自动下降一点,存储桶会上升一点。
刮刀将粉末从升起的储料斗推到工作平台上,并将粉末推平。
通过这种方式,可以获得所需的形状。
该技术的特点是速度快(是其他工艺的6倍),成本低(是其他工艺的1/6)。
论述3d打印技术的类型、特点和发展趋势。

论述3d打印技术的类型、特点和发展趋势。
3D打印技术是一种基于数字模型的制造方式,它可以将计算机辅助设计(CAD)模型转换为三维实体,并通过层层堆积材料的方式构建出实物模型。
目前主要有以下几种类型的3D打印技术:
1. 光固化型3D打印技术:利用紫外线、激光等光源照射光敏树脂,使其固化成为实体。
2. 熔融喷射3D打印技术:将固态材料加热到熔化状态,通过喷嘴喷出,并在喷出的同时快速冷却成形。
3. 粉末烧结3D打印技术:通过喷墨头将粉末喷射到特定位置,再使用激光或加热源将粉末熔结成实体。
4. 粘合型3D打印技术:利用特殊的喷头将熔化的材料涂覆在底板上,然后在底板上通过移动喷头构建实体。
3D打印技术的特点包括:
1. 制造速度较快,可以快速制作出各种复杂形状的物品。
2. 生产成本低,可以大幅降低产品制造成本和生产周期。
3. 可以实现高定制化和小批量生产。
4. 可以减少材料浪费和环境污染。
未来3D打印技术的发展趋势包括:
1. 材料多样化:随着材料科学的发展,将会有更多种类的材料可以用于3D打印,包括金属、陶瓷、生物材料等。
2. 制造尺寸的增加:将会有更大的3D打印机出现,可以制造更大尺寸的物品。
3. 智能化制造:3D打印技术将会与人工智能、传感器等技术相结合,实现智能化制造和自动化生产。
4. 3D打印技术将被用于更广泛的应用领域,如医疗、航空航天、建筑等领域。
D打印技术简介演示

军事
建筑
三、现状与前景
发展现状 现在三D打印技术还不够成熟材料特定、造价高昂其精度约
为0.一毫米打印出的还都处于模型阶段真正用于生活应用的 还并不多 世上最小的三D打印机:维也纳技术大学的化学研究员和机械 工程师研制的这款迷你三D打印机只有大装牛奶盒大小重量约 三.三磅约一.五公斤造价一二00欧元约一.一万元人民币
三D打印机会根据这些数字切片喷涂一层层薄型层 用特殊的胶水将连续的薄型层面堆叠起来
一个固态物体成型
二、原理及优缺点
二、原理及优缺点
二、原理及优缺点
……
节约材料 减少了材 料的浪费
灵活可根 据需要打印 任何物品
精密打印 的零件更 精细轻盈
二优点
便捷装置 可大可小
生产率高 而生产成本低
二、原理及优缺点
三D打印业行业标准统一后可形成产业链进一步 提高生产速度扩大生产
最大的三D打印机:华中科技大学史玉升科研团队研发出全球 最大的三D打印机这一“三D打印机”可加工零件长宽最大尺 寸均达到一.二米从理论上说只要长宽尺寸小于一.二米的零件 高度无需限制都可通过这部机器“打印”出来 打印色彩最多的三D打印机:美国三DSystems公司二0一三年 五月上市的ProJet x六0系列三D打印机颜色数达到六00万色 以上三D Systems称这一水平“可将‘Adobe Photshop’上 能表现的颜色最大再现九0%”
一、起源及产生
三打印技术是一种以数字模型文件为基础运用粉末 状金属或塑料等可粘合材料通过逐层打印的方式来构造
D物体的技术三D打印机则出现在上世纪九0年代中期即一种利
用光固化和纸层叠等技术的快速成型装置它与普通打印机工 作原理基本相同打印机内装有液体或粉末等印材料与电脑连 接后通过电脑控制把“打印材料”一层层叠加起来最终把计 算机上的蓝图变成实物如今这一技术在多个领域得到应用人 们用它来制造服装、建筑模型、汽车、巧克力甜品等
3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析随着科技的不断进步,3D打印技术已经成为当今的热门话题。
3D 打印技术通过将数字文件转化为物理对象,为生产和创新带来了巨大的便利。
目前市面上主流的3D打印技术有多种,其中最常见的技术包括SLA、FDM、SLS等。
本文将对这三个技术进行详细的对比分析。
一、SLA技术1.概念SLA是“光固化成型”,该技术是将纯液态光敏树脂涂覆在建模台上,然后利用UV激光束逐层固化,最后形成物体。
2.特点SLA技术的最大特点就是可以制作非常精细的模型,可以达到0.025mm的高精度,因此广泛应用于珠宝、艺术品、模型制作等领域。
SLA吸收材料的能力也很强,可以在有限的时间内生产大批量的模型。
3.应用SLA技术可以应用于复杂的3D打印模型,从家用电器的零件到医疗器械,都可以使用SLA技术,目前3D打印领域最成熟的技术之一。
二、FDM技术1.概念FDM是较常用的3D打印技术,该技术是通过将熔化的热塑性材料挤出喷嘴,然后通过精确控制的机器臂逐层叠加,最终形成物体。
2.特点FDM技术可以使用广泛的材料,如ABS、PLA、PVA等,因此可以制作出各种不同材质的物体。
此外,FDM技术可以使用废旧材料进行打印,具有环保节能的特征。
FDM技术的价格也比其他技术便宜,因此普及率很高。
3.应用FDM技术主要应用于制作机械零件、人造器官、模型等等。
FDM技术可以制作出高度精确的物体,而且速度快、方便实用,是3D打印领域的常用技术。
三、SLS技术1.概念SLS是“选择性激光烧结”,该技术是利用激光束烧结聚合性形式的粉末,从而在建模台上形成模型。
2.特点SLS技术适用范围广,可以使用多种不同的粉末材料进行打印,如聚酰胺、耐热材料、金属、陶瓷和玻璃等,可以制作非常大的物体。
SLS技术还可以制作出复杂的内部结构和薄壁结构,同时具有较高的强度和耐磨性。
3.应用SLS技术主要应用于制作模型、人工骨骼等各种半成品。
3d打印机的主要技术平台及优缺点

3D打印机的主要技术平台及优缺点3D打印技术从狭义上来说主要是指增材成型技术,从成型工艺上看,3D打印技术突破了传统成型方法,通过快速自动成型系统与计算机数据模型结合,无需任何附加的传统模具制造和机械加工就能够制造出各种形状复杂的原型,这使得产品的设计生产周期大大缩短,生产成本大幅下降。
3D打印,俗称“三维打印技术”或“快速制造技术”,是对一系列“增材制造”技术的总称。
那么,3D打印技术主要分为哪几种,优缺点是什么呢?以下详细说明:一、FDM:熔融沉积成型工艺熔融沉积成型工艺(Fused Deposition Model-ing, FDM)是继LOM工艺和SLA工艺之后发展起来的一种3D打印技术。
该技术于1988年发明,随后Stratasys公司成立并在1992年推出了世界上第一台基于FDM技术的3D打印机——“3D造型者(3DModeler)”,这也标志着FDM技术步入商用阶段。
国内的清华大学、北京大学、北京殷华公司、中科院广州电子技术有限公司都是较早引进FDM技术并进行研究的科研单位。
FDM工艺无需激光系统的支持,所用的成型材料也相对低廉,总体性价比高,这也是众多开源桌面3D打印机主要采用的技术方案。
FDM成型原理:熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。
喷头可以沿X轴的方向进行移动,工作台则沿Y轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。
一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。
下面我们一起来看看FDM的详细技术原理(如图1)。
FDM成型技术的优点:(1)成本低。
熔融沉积造型技术用液化器代替了激光器,设备费用低;另外原材料的利用效率高且没有毒气或化学物质的污染,使得成型成本大大降低。
(2)原材料以材料卷得的形式提供,易于粉末材料搬运和储存以及快速更换;(3)原材料在成型过程中无化学变化,相对金属粉末,树脂固化制件成型的变形小。
3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析3D打印技术的发展已经取得了显著的成就,现在市面上有多种不同的3D打印技术,如SLA(光固化)、FDM(熔融沉积建模)和SLS (选择性激光烧结)等。
这些技术各自具有自己的特点和应用,本文将对它们进行详细的分析和比较。
一、SLA(光固化)技术SLA(Stereo Lithography Apparatus)是一种利用紫外线激光固化光敏树脂来进行3D打印的技术。
在SLA打印中,紫外线激光照射到光敏树脂表面,树脂在紫外线激光的作用下进行固化,一层一层地堆积,从而构建出3D打印模型。
SLA技术的特点:1.高精度:由于SLA技术采用激光光束对光敏树脂进行点对点的固化,因此该技术打印出的模型具有很高的精度和表面光滑度。
2.高速度:SLA技术在固化光敏树脂时只需要进行点对点的激光照射,因此打印速度较快。
3.适用于小批量生产:由于SLA技术具有高精度和高速度的特点,因此适用于小批量生产,尤其是一些需要高精度模型的领域,如医疗、汽车、航空航天等。
4.材料多样性:SLA技术使用的光敏树脂种类繁多,可以根据不同的需求选择不同性能的光敏树脂进行打印,可以满足不同行业的需求。
SLA技术的应用:1.医疗领域:SLA技术可以打印出高精度的医疗模型,用于手术模拟、人体组织重建等领域。
2.工程领域:SLA技术可以打印出高精度的工程模型,用于产品设计、样机制作等领域。
3.艺术领域:SLA技术可以打印出艺术品模型,用于雕塑、装饰等领域。
二、FDM(熔融沉积建模)技术FDM(Fused Deposition Modeling)是一种利用熔化的热塑性材料进行3D打印的技术。
在FDM打印中,熔融的热塑性材料从喷嘴中挤出,通过移动喷嘴进行层层堆积,从而构建出3D打印模型。
FDM技术的特点:1.低成本:FDM技术使用的材料相对较为便宜,因此成本较低。
2.材料多样性:FDM技术使用的热塑性材料种类繁多,可以根据不同的需求选择不同性能的材料进行打印。
3D打印的三个技术类型

3D三打印技术的三大技术类型解读根据所用材料及生成片层方式的区别,产业不断拓展出新的3D打印技术路径和实现方法。
可大致归纳为挤出成型、粒状物料成型、光聚合成型三大技术类型,每种类型又包括一种或多种技术路径。
1、挤出成型。
主要以熔融沉积成型(FDM)技术实现,与其他的3D打印技术相比,FDM是唯一使用工业级热塑料作为成型材料的积层制造方法,打印出的物件可耐受高热、耐受腐蚀性化学物质、抗菌和抗强烈的机械应力,被用于制造概念模型、功能原型,甚至直接制造零部件和生产工具。
FDM技术被Stratasys公司、惠普公司作为核心技术所采用。
2012年由Stratasys公司发布的超大型快速成型系统Fortus 900mc,代表了当今FDM技术的最高成型精度、成型尺寸和产能,可被用于打印真正的产品级零部件。
2、粒状物料成型。
主要分为两类,一类是有选择的在颗粒层中融化打印材料,而未融化的材料则被生成物件的支撑或薄壁以减少对其他支撑材料的需求。
主要包括:3D System公司的sPro系列3D打印机采用的选择性激光烧结(SLS)技术,德国EOS公司采用的可打印几乎所有合金材质的直接金属激光烧结(DMLS)技术,瑞典ARCAM公司采用的通过高真空环境下电子束将融化的金属粉末层层叠加的电子束熔炼(EBM)积层制造技术。
另一类是3D System公司的ZPrinter系列3D打印机所采用的喷头式粉末成型打印技术。
该系列打印机在喷每一层石膏或树脂粉末的同时,都会通过横截面进行粘合,并重复该过程,直到打印完每一层。
该技术允许打印全色彩原型和弹性部件,将蜡状物、热固性树脂和塑料加入粉末一起打印还可以增加强度。
3、光聚合成型。
其实现途径较多,其一是由美国3D System公司开发的用于生产固体部件的光固化成型(SLA)技术。
该技术具有成型过程自动化程度高、制作原型表面质量好、尺寸精度高等特点,但对液态光敏聚合物进行操作的SLA精密设备同时也要求苛刻的工作环境,且成型件多为树脂类,强度、刚度、耐热性有限,不利于长时间保存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3D打印技术种类
SLA/DLP技术
SLA是"StereolithographyAppearance"的缩写,即立体光固化成型法。
用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。
这样层层叠加构成一个三维实体。
SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。
SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,SLA用原型模代替熔模精密铸造中的蜡模。
SLA技术成形速度较快,精度高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。
DLP激光成型技术和SLA立体平版印刷技术比较相似,不过它是使用高分辨率的数字光处理器(DLP)投影仪来固化液态光聚合物,逐层的进行光固化,由于每层固化时通过幻灯片似的片状固化,因此速度比同类型的SLA立体平版印刷技术速度更快。
该技术成型精度高,在材料属性、细节和表面光洁度方面可匹敌注塑成型的耐用塑料部件。
精细度指数★★★★★
硬度强度指数★★★
FDM熔融层积成型技术
FDM即是FusedDepositionModeling,熔融挤出成型工艺的材料一般是热塑性材料,如ABS、PC、尼龙等,以丝状供料。
材料在喷头内被加热熔化。
喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结。
每一个层片都是在上一层上堆积而成,上一层对当前层起到定位和支撑的作用。
随着高度的增加,层片轮廓的面积和形状都会发生变化,当形状发生较大的变化时,上层轮廓就不能给当前层提供充分的定位和支撑作用,这就需要设计一些辅助结构-“支撑”,对后续层提供定位和支撑,以保证成形过程的顺利实现。
这种工艺不用激光,使用、维护简单,成本较低。
用ABS制造的原型因具有较高强度而在产品设计、测试与评估等方面得到广泛应用。
近年来又开发出PC,PC/ABS,PPSF等更高强度的成形材料,使得该工艺有可能直接制造功能性零件。
由于这种工艺具有一些显着优点,该工艺发展极为迅速,目前FDM系统在全球已安装快速成形系统中的份额最大。
精细度指数★★★
强度硬度指数★★★
3DP技术
3DP即3Dprinting,采用3DP技术的3D打印机使用标准喷墨打印技术,通过将液态连结体铺放在粉末薄层上,以打印横截面数据的方式逐层创建各部件,创建三维实体模型,采用这种技术打印成型的样品模型与实际产品具有同样的色彩,还可以将彩色分析结果直接描绘在模型上,模型样品所传递的信息较大。
美国麻省理工大学的EmanualSachs教授于1989年申请了三维印刷技术(3DP)的专利。
这是一种以陶瓷、金属等粉末为材料,通过粘合剂将每一层粉末粘合到一起,通过层层叠加而成型。
1993年,粉末粘合成型工艺是实现全彩打印最好的工艺,使用石膏粉末、陶瓷粉末、塑料粉末等作为材料,是目前最为成熟的彩色3D打印技术。
精细度指数★★★
强度硬度指数★★★
彩色指数★★★★★
SLS选区激光烧结技术/SLM
SLS选区激光烧结技术,即SelectiveLaserSintering,和3DP技术相似,同样采用粉末为材料。
所不同的是,这种粉末在激光照射高温条件下才能融化。
喷粉装置先铺一层粉末材料,将材料预热到接近熔化点,在采用激光照射,将需要成型模型的截面形状扫描,使粉末融化,被烧结部分粘合到一起。
通过这种过程不断循环,粉末层层堆积,直到最后成型。
SLS最初是由美国德克萨斯大学奥斯汀分校的Carlckard于1989年在其硕士论文中提出的。
后美国DTM公司于1992年推出了该工艺的商业化生产设备SinterSation。
几十年来,奥斯汀分校和DTM公司在SLS领域做了大量的研究工作,在设备研制和工艺、材料开发上取得了丰硕成果。
德国的EOS公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。
激光烧结技术成型原理最为复杂,成型条件最高,设备及材料成本最高的3D打印技术,但也是目前对3D打印技术发展影响最为深远的技术。
目前SLS技术材料可以是尼龙、蜡、陶瓷、金属等,SLS技术成型材料的的种类多元化。
精细度指数★★★
强度硬度指数★★★★★
LOM技术
分层实体制造法(LOM——LaminatedObjectManufacturing),LOM又称层叠法成形,它以片材(如纸片、塑料薄膜或复合材料)为原材料,其成形原理如图所示,激光切割系统按照计算机提取的横截面轮廓线数据,将背面涂有热熔胶的纸用激光切割出工件的内外轮廓。
切割完一层后,送料机构将新的一层纸叠加上去,利用热粘压装置将已切割层粘合在一起,然后再进行切割,这样一层层地切割、粘合,最终成为三维工件。
LOM常用材料是纸、金属箔、塑料膜、陶瓷膜等,此方法除了可以制造模具、模型外,还可以直接制造构件或功能件。
该技术的特点是工作可靠,模型支撑性好,成本低,效率高。
缺点是前、后处理费时费力,且不能制造中空结构件。
成形材料:涂敷有热敏胶的纤维纸;制件性能:相当于高级木材;
主要用途:快速制造新产品样件、模型或铸造用木模。
精细度指数★★
强度硬度指数★★。