几何画板中如何用一个解析式画分段函数的图像

合集下载

在几何画板中绘制分段函数图象的方法之探究

在几何画板中绘制分段函数图象的方法之探究

在几何画板中绘制分段函数图象的方法之探究作者:陈峰来源:《新课程·下旬》2018年第11期摘要:几何画板是高中数学备课和课堂教学中不可或缺的一款教学软件,在几何画板中,不仅可以利用根号和对数函数作出连续型或限定定义域的初等函数的图象,还能借助符号函数构造出分段函数各段上的所乘函数,进而绘制出分段函数的图象,达到为教学研究服务的目的。

关键词:几何画板;分段函数;图象几何画板(The Geomter’s Sketchpad,简称GSP)是一款适用于数学、物理等学科,可以进行矢量分析、作图、函数作图等操作的动态几何工具.由于它能够动态地展现出函数图象和几何对象的位置关系及运行变化规律,深受广大教师的青睐,也是不少数学教师在备课、上课中不可或缺的教学软件之一.然而,即便是功能如此强大的几何画板,仍旧在绘制分段函数这一方面显得不够“体贴”和“人性化”,这也或多或少地限制了教师对它的开发与使用.因此,本文基于5.04版的几何画板,针对如何在几何画板中绘制分段函数的图象进行研究.一、在几何画板中作限定定义域的初等函数的图象类型1 初等函数在定义域内连续例1 作函数f(x)=x2-2x+,x∈[0,3]的图象.操作步骤:(1)在“绘图”——“绘制新函数”的对话框中直接输入函数表达式x^2-2*x+1/2得到函数f (x)=x2-2x+在R上的图象.(2)点击函数图象选中,右击选择“属性”(如图1),可在栏目“绘图”内设置函数的定义域边界的数值(如图2),点击确定可得到函数f(x)=x2-2x+,x∈[0,3]的图象.上述操作步骤的优势在于操作比较便捷,只要在几何画板内对函数图象进行简单设置便可实现,主要适用于在定义域上连续的初等函数.类型2 初等函数在定义域内不连续例2 作函数f(x)=x2-2x+,x∈[0,1]∪[2,3]的图象.操作步骤:(1)构造函数F(x)=x2-2x++0·.(2)在“绘图”——“绘制新函数”的对话框中输入函数表达式x^2-2*x+1/2+0*sqrt[-x*(x-1)*(x-2)*(x-3)],点击确定可得到函数f(x)=x2-2x+,x∈[0,1]∪[2,3]的图象(如图3).虽然函数F(x)中0·的值恒为0,但要使得其有意义,即解不等式-x(x-1)(x-2)(x-3)≥0,可解得x∈[0,1]∪[2,3],这恰好为所画函数f(x)的定义域.因此,函数f(x)与函数F(x)本质上是相同函数.一般地,对于限定定义域的初等函数f(x),通过构造得到函数f(x)的相同函数F (x)的方式有下列8种情况:1.函数f(x)的定义域为[a,b],可构造函数:F(x)=f(x)+0·.2.函数f(x)的定义域为(a,b],可构造函数:F(x)=f(x)+0·.3.函数f(x)的定义域为[a,b),可构造函数:F(x)=f(x)+0·.4.函数f(x)的定义域为(a,b),可构造函数:F(x)=f(x)+0·ln[-(x-a)(x-b)]或F(x)=f(x)·.5.函数f(x)的定义域为(a,+∞),可构造函数:F(x)=f(x)+0·ln(x-a)或F(x)=f(x)·.6.函数f(x)的定义域为[a,+∞],可构造函数:F(x)=f(x)+0·.7.函数f(x)的定义域为(-∞,b),可构造函数:F(x)=f(x)+0·ln(b-x)或F(x)=f(x)·.8.函数f(x)的定义域为(-∞,b],可构造函数:F(x)=f(x)+0·.二、在几何画板中作分段函数的图象例3 作分段函数f(x)=2x-1,x≤13-x,x>1 的图象.方法1 先将分段函数f(x)拆分为两个函数,即f1(x)=2x-1(x≤1)和f2(x)=3-x (x>1),然后再分别作上述两个函数的图象.操作步骤:(1)构造以下两个函数,F1(x)=2x-1+0·和F2(x)=3-x+0·ln(x-1).(2)在几何画板的同一文档页面内的“绘图”——“绘制新函数”的对话框中分别输入函数表达式2^x-1+0*sqrt(1-x)和3-x+0*ln(x-1),分别点击确定后可得到函数f1(x)和f2(x)的图象,两者可组成函数f(x)=2x-1,x≤13-x,x>1 的图象(如图4).方法1的本质是拼接了函数f1(x)和f2(x)的图象,虽然可以使人在视觉上感觉在同一坐标系下作出了f(x)的图象,但其缺陷也是显而易见的,比如说函数f(x)图象并非一次成图,函数图象也不能被整体选中,并且在图象上任取的一点更不可以在分段函数f(x)各段的图象上自由移动.因此,方法1所绘制的函数图象有较大的局限性,不适合用以研究函数f (x)的性质.方法2 利用符号函数sgn(x)=1,x>0,0,x=0,-1,x操作步骤:(1)构造函数F(x)=(2x-1)+(3-x).(2)在“绘图”——“绘制新函数”的对话框中输入函数表达式(2^x-1)*[1+sgn(1-x)]/2+(3-x)*[1+sgn(x-1)]/2,点击确定后可得到函数f(x)=2x-1,x≤13-x,x>1 的图象.方法2巧妙地利用了分段函数的特点,弥补了方法1中不能一次成图、无法整体选中、取点无法自由移动等缺陷.函数F(x)中所构造的和用于匹配其所乘函数的定义域的范围.具体地,当x1时,F(x)=3-x.因而,类似地,对于分段函数g(x)=g1(x),x≤a,g2(x),ab.(a=g1(x)·+g2(x)·+g3(x)·.较之方法1,方法2已有明显的改进,弥补了方法1的诸多缺陷,同时也是目前较为普遍的一种处理方式.但即便如此,方法2仍存在不完美之处.对于函数f(x)=2x-1,x≤13-x,x>1 ,当取x=1时,f(1)=0,而对于函数F(x)=(2x-1)+(3-x),当取x=1时,F(1)=0·+2·=1≠f(1).由于几何画板中孤立的点不被显示,这使得上述问题常常被忽略.其实通过观察和分析不难发现,造成上述偏差的主要原因是函数y=虽然可以在x>1和x方法3 对方法2进行改进,重新构造2x-1和3-x的所乘函数,分别为k1(x)=sgn[1+sgn (1-x)]和k2(x)=sgn[1+sgn(x-1)]·sgn|x-1|.操作步骤:(1)构造函数F(x)=(2x-1)·sgn[1+sgn(1-x)]+(3-x)·sgn[1+sgn(x-1)]·sgn|x-1|.(2)在“绘图”——“绘制新函数”的对话框中输入函数表达式,(2^x-1)*sgn[1+sgn(1-x)]+(3-x)*sgn[1+sgn(x-1)]*sgn[abs(x-1)]点击确定后可得到函数f(x)=2x-1,x≤13-x,x>1 的图象.方法3构造了y=k1(x)和y=k2(x)两个函数,当x>1时,由于1+sgn(x-1)=0,所以k1(x)恒等于0,由于1+sgn(x-1)>0,|x-1|>0,k2(x)恒等于1;同理可得,当x0,|x-1|=0,仍能保证k1(x)恒等于1,k2(x)恒等于0.类似地,利用相同的原理,根据不同定义域下的函数,可构造出其所对应的不同的所乘函数k(x),具体如下:1.当x≤a时,构造k(x)=sgn[1+sgn(a-x)].2.当x3.当x≥b时,构造k(x)=sgn[1+sgn(x-b)].4.当x>b时,构造k(x)=sgn[1+sgn(x-b)]·sgn|x-b|.5.当a≤x≤b时,构造k(x)=sgn[1+sgn(x-a)(b-x)].6.当a7.当a≤x8.当a对于一个含有n(n∈N*)段的分段函数f(x),其每一段所对应的解析式为fi(x)(1≤i≤n,i∈N*),根据上述方法,可以构造出fi(x)所对应的所乘函数ki(x),再令F (x)=[fi(x)·ki(x)],则f(x)与F(x)为相同函数.因此,只需在几何画板“绘图”——“绘制新函数”的对话框中输入函数表达式后再点击确定,即可得到函数f(x)的图象.至此,在几何画板中绘制分段函数图象这一问题才最终得以真正解决.?誗编辑赵飞飞。

用几何画板巧作分段函数的图像

用几何画板巧作分段函数的图像






x ,k = x + 2 ,于是得到 f ( x ) = ( 2 - x ) s g n ( x - 2 ) +


( x + 2 ) ,验证 x = 2 时 f 1 ( x ) = 4 ,也符合原分段函数
(3 ),从而得到:
……(4)
这是一个“降段”的分段函数,我们再次应用同
(作者单位:广东佛山顺德区杏坛中学)
中小学信息技术教育
2 0 0 4 . 09
67
f(x)=(x-1)sgn(x-2)+(x+1)+0 ×
x ( x - 2 ) ……③
验证当 x = 2 时,③式的值是 3 ,而不是原分段
函数(2 )的值 4 ,同前面说到的一样, 显示出来的
图像还是“完全”一样的!
一般地,若形如 的分段函
数,仿例2和例3我们可以类似地加以一般化的讨 论,这里不再赘述了。
1,仍符合原分段函数(1 ),
因此①与(1 )是相同的函
数。
用几何画板绘制此图
像时,只要在编辑函数的
对话框中输入①式就可绘
出所求的分段函数(如图
2)。
图2
例 3 .作分段函数
……(2) 的图像
解:这里 0 和 2 是分段的关键点,考虑 0 这一关
键点时,设 f ( x ) = k s g n ( x ) + k + 0 × x ( x - 2 ) 当
例 4.作分段函数 …(3)的图像
……④ 验证知,当 x=5 时,④式值是 4,适合(4 ),也 适合(3 ),因此绘制图像时,只要在编辑函数的对话 框中输入④式就可绘出所求的分段函数( 如图 4 ) 。
x ( x - 2 ) 是用来控制自变量 x 取值范围的,因此可以

用《几何画板》画分段函数图像

用《几何画板》画分段函数图像

用《几何画板》画分段函数的图像 用《几何画板》软件能比较容易的画出基本初等函数及其复合函数的图像。

比如用《几何画板》5.03版的“绘图”菜单—“绘制新函数”命令绘制函数图像。

《几何画板》能识别函数定义域,即能自动识别使输入函数解析式有意义的自变量的范围,并画出这个范围内的图像。

比如画出xy 1=的图像是两支,不会与y 轴相交。

画11-=x y 的图像也是两支,不会与x=1相交。

但是画分段函数图像时,由于分段函数的定义域不仅是使函数解析式有意义,还要考虑实际意义,往往各段(区间)比较小而零碎,各段函数图像也不是同一类型。

如果还是用上面的命令来画各段图像时,《几何画板》还是按使输入函数解析式有意义来判定自变量的范围,画出的图像就会超出区间,且各段函数图像的连接也不美观。

按《几何画板》现有版本的功能,解决办法是不用“绘图”菜单—“绘制新函数”命令绘制分段函数图像,而用“构造”菜单“轨迹命令”,来绘制。

具体方法我用一例来详细说明。

人教版高一数学必修教材中一道函数应用题(p113)原题:如图,三角形OAB 是边长为2的正三角形,记三角形OAB位于直线x=t (t>0)左侧的图形面积为f(t),试求函数f(t)的解析式,并画出函数图像。

经分析函数解析式为()()()⎪⎪⎩⎪⎪⎨⎧≤<--≤<=212233)10(2322t t t t t f 画出的分段函数图像:图像是有两段二次函数图像拼接而成,在点(1,23)连接。

连接处有显示。

可见每段二次函数图像没有超出相应区间,在衔接处实现无缝衔接。

具体画法如下。

启动《几何画板》5.03,打开绘图菜单,单击显示网格命令,显示坐标网格,适当调长网格单位长,使之便于观察。

1、分别用“绘制线段”工具在x 轴上绘制线段(0,0)--(1,0);(1,0)--(2,0),再用“绘制点”工具分别在两连线段上绘制自由点A 、B ,A 、B 各自线段上可自由移动,但不能移出各自线段。

关于几何画板分段函数的处理

关于几何画板分段函数的处理

几何画板中函数和分段函数定义域处理郑 明 淮(福建尤溪文公高级中学,365100)几何画板是数学新课程推荐使用信息技术软件。

它作出的几何图形、函数图象非常精确,运算功能也十分强大,更重要的是它拥有用动态方式揭示几何图形中的元素间关系保持不变的特点。

这些特点对于学生认清问题的本质,弥补空间想像力不足,对相关问题进行验证、探索提供了易于操作的平台。

正因为如此,几何画板相对于其他常用软件倍受数学教师的青睐。

当然,任何一款软件都不可能做到十全十美,几何画板也是如此。

虽然它的版本已经升级到5.0,我们在使用过程中仍然发现有许多方面不尽如人意。

例如:新建一个函数后,利用绘制函数图象功能画出来的是其完整定义域上的图象。

而在高中数学中很多函数是限定定义域的,而几何画板不具备直接限定定义域的作图像功能,我们只能另想方法以达到这一目的。

这一问题以及分段函数是高中数学中的重点内容,在使用几何画板辅助教学中必需突破这一瓶颈。

本文就此两个问题在几何画板环境下做一个探索,希望能有效地、可操作地解决这一问题。

一、几何画板中限定定义域函数的图像处理方案例1、作函数822--=x x y(53≤≤-x )的图像分析:822--=x x y 的定义域是R ,要去掉 53≤≤-x 之外的图像只能改变原函数的表达式,使其对应关系与原函数相同,但定义域为53≤≤-x 。

构造如下:)5)(3(082)(2x x x x x f -+⋅+--=然后绘制函数f(x) 效果如图。

函数f(x) 中的)5)(3(0x x -+⋅把函数定义域限定在53≤≤-x ,并且在定义域范围内其值恒为0,因此不改变原函数的值。

一般地,限定函数定义域的构造有以下八种情况:1、限定函数f(x)定义域为[a ,b]构造函数:))((0)(x b a x x f y --⋅+=2、限定函数f(x)定义域为(a ,b]构造函数:ax x b x f y --⋅+=0)( 3、限定函数f(x)定义域为[a ,b)构造函数:xb a x x f y --⋅+=0)( 4、限定函数f(x)定义域为(a ,b)构造函数:)))(log((0)(x b a x x f y --⋅+=5、限定函数f(x)定义域为(a ,+∞)构造函数:)log(0)(a x x f y -⋅+=6、限定函数f(x)定义域为[a ,+∞)构造函数:a x x f y -⋅+=0)(7、限定函数f(x)定义域为(-∞,b)构造函数:)log(0)(x b x f y -⋅+=8、限定函数f(x)定义域为(-∞,b]构造函数:x b x f y -⋅+=0)(二、几何画板中分段函数的图像处理例2.作分段函数⎪⎩⎪⎨⎧≥+-<≤--<+=)4........(63)42.....(..........)2.........(83)(2x x x x x x x f 的图像。

教程“分段函数”图像生成

教程“分段函数”图像生成

教程“分段函数”图像生成
'
今天的话题是应一位同行对函数做图的要求而成的,顺便录了个教程,以供初识玲珑者学习,相信应该会有一定帮助,更希望大家能提些意见。

'
话题出处:
玲珑画板
《玲珑画板》是由成都高仲富老师开发的,一款好用、实用、灵活、方便的动态数学教学软件。

能够动态展示几何、函数图形,极具创新性和实用性。

朴素应该是玲珑画板的最大特点,对于没有任何画板基础的老师来说,一般情况下熟练掌握也只需几天时间即可,它非常适合高中、初中和小学数学的教与学。

利用玲珑画板工具可以做到:
一、备课授课画图:能实现即画即讲的效果,方便灵活;
二、探究解题思路:通过做图过程的思考,便于引导探究解题思路;
三、数学教学教研:适合学科组进行教学研讨活动,增强教学研讨的趣味性。

感谢高仲富老师的倾心付出!
欢迎访问玲珑官网:
欢迎入群在线学习交流:
142671406(玲珑画板学习群2)
温馨提示。

如何用几何画板作函数图像

如何用几何画板作函数图像

如何用几何画板作函数图像本人在教学工作中常用几何画板作函数图像,总结了一些基本方法现成文与广大数学教师共享。

一、坐标法坐标法适用于已知函数解析式求作函数图像的方法。

构造一个坐标满足函数解析式的点,用几何画板的轨迹工具画出图象。

下以二次函数为例。

步骤如下:1、新建一个绘图,选择菜单里的“图表”,鼠标单击“建立坐标轴”。

2、选择轴,右击鼠标显示快捷菜单,选择作图,对象上的点,确保该点处在被选中状态,选择工具栏里的“标出文本&标签”工具,鼠标单击刚画出的点,将显示出该点的“标签”(假设为“C”)。

确保C点处于被选中状态,右击鼠标显示快捷菜单选择“度量”,鼠标单击“坐标”,得到C点的坐标。

3、选择工具栏里的“选择&平移”工具,鼠标单击C点的坐标,使它处于被选中状态,再选择菜单栏里的“度量”,鼠标单击“计算”,出现“计算器”窗口,用鼠标单击“数值”按钮,把鼠标放在“点C”上,选择x,然后用鼠标单击“计算器”窗口里“确定”按钮,这样我们就得到了C点的横坐标的度量值。

如果用鼠标拖动点C的话,你会发现它的横坐标的度量值在随之变化。

4、下面我们把界面稍微整理一下,用鼠标单击C点的坐标,使它处于被选中状态,然后同时按下Ctrl和H键,把C点的坐标隐藏掉。

再选择工具栏里的“标出文本&标签”工具,用鼠标双击C点横坐标的度量值,在出现的“度量值格式”窗口里选择“文本格式”,出现两个文本框,将左面文本框内的“X[C]=”改成“x=”,按下“度量值格式”窗口里的“确定”按钮。

经过上面的工作,我们已经把二次函数的自变量构造出来了。

5、选择工具栏里的“选择&平移”按钮,按住Shift键,鼠标单击度量值x(确保别的对象不处于选中状态),选择菜单栏里的“度量”,鼠标单击“计算…”,在出现的“计算器”窗口里,鼠标单击“数值”按钮,选择“2”,鼠标单击“*”号按钮,鼠标单击“数值”按钮,选择“x”,鼠标单击“^”号按钮,鼠标单击“2”按钮,鼠标单击“-”号按钮,鼠标单击“数值”按钮,选择“3”,鼠标单击“*”号按钮,鼠标单击“数值”按钮,选择“x”,鼠标单击“+”号按钮,鼠标单击“数值”按钮,选择“1”,最后按下确定按钮,得到一个新的度量值。

如何用几何画板画函数图像?

如何用几何画板画函数图像?

如何用几何画板画函数图像?函数的定义域是函数定义的基础,是制约函数图像的重要因素,同一解析式在不同定义域下的图像不同,具体表现在其范围的大小。

本节就来学习几何画板中不同定义域下函数图像的作图方法。

比如定义域是区间形式的函数图像,可按以下步骤操作:步骤一选取定义域1.打开几何画板,单击上方菜单栏“绘图”菜单中的“定义坐标系”命令建立直角坐标系;2.构造x轴上的线段代表定义域区间。

使用左侧工具栏“移动工具”选中x轴,然后点击“构造”菜单中“对象上的点”,再重复一次这一操作,则在x轴上取到两点,选种这两点,单击“构造”菜单中的“线段”,这条线段就可以代表一个定义域区间,如果作端点为(a,0),右端点为(b,0),则定义域区间为(a ,b)。

在x轴上构造定义域区间示例步骤二在定义域上建立自变量选中表示定义域线段,然后单击“构造”菜单中的“对象上的点”,再点击“度量”菜单中的“横坐标”,出现“x C=-2.79”即为我们要选择的自变量。

构造线段上的点作为自变量示例步骤三计算自变量的函数值单击“度量”菜单中的“计算”命令,在弹出的对话框利用“x C=-2.79”计算出如下图所示的函数值。

利用计算命令计算函数值示例步骤四构造函数图像上的点使用移动工具选中上面得到的自变量值和函数值,然后单击“绘图”菜单中的“绘制(x,y)”命令,就可以构造出函数图像上的点P。

构造函数图像上的点P示例步骤五绘制函数图像使用移动工具选中上面图像上的点P和定义域上C点,单击上方菜单栏“构造”菜单中“轨迹”命令,就可以画出如下图所示的函数图像。

构造轨迹绘制函数图像示例步骤六任意调整函数的定义域区间用移动工具选中“a”和“b”点任意拖动,可以看到函数图像随a、b的变化而变化的情形,比如如下图所示的效果。

调整函数的定义域观看图像变化示例看了以上教程,就掌握了用几何画板画指定定义域函数图像的方法,主要运用了几何画板构造轨迹功能,通过拖动线段上的“a”和“b”点,就可以改变定义域,观察函数图像的不同。

用_几何画板_画分段函数图像的简单方法

用_几何画板_画分段函数图像的简单方法
教学研究
・ 2008 04
用*几何画板+画分段函数图像的简单方法

黎凤仁
先 来 看 例 题 : 在《 几 何 画 板 》中 画 出 分 段 函 数 F ( x)= 点 1、 0 , 点 击 绘 制 得 点 A( 1 , 0 ) , 输 入 - 1 , 0 得 点 B( - 1 ,
f1 (x),x< 1 " f2 (x),1< x< 2 # $ f3 (x),x> 2 %
1,x> 0 借 助 函 数 sgn (x) = 0,x= 0 可 以 将 F (x) = - 1,x< 0
!


x2+ sgn(x- 2)+ 1 ×1 , 点 击“ 确 定 ”即 可 画 出 此 分 段 函 数 2 x
的图像。 显 然 方 法 二 非 常 简 单 。 对 于 n 段 分 段 函 数 F (x) =
f3 (x)= 1 ( x> 2 ) 。 x< 2 ) 、 x
对 于 此 题 , 可 以 有 两 种 方 法 画 出 其 函 数 图 像 。分 别 介 绍如下: 方 法 一( 复 杂 ) : 逐 段 画 图 像 , 再“ 拼 ”成 一 个 分 段 函 数图像。 作法如下: 第 一 步 , 打 开《 几 何 画 板 》, 点 击“ 编 辑 ”→“ 参 数 选 项 ”→“ 文 本 ”→ , 在 “ 所 有 新 建 的 点 ”、 “度量过的对
义时, 对应的端点所处位置要依据原分段函数来确定。 第二, 形 式 统 一 后 定 义 域 会 变 化 。 如 : F (x) = 定 义 域 为 R, 而 F (x) = 1- sgn(x- 1) ・x2 +
得 a 1 = 1- sgn(x- 1) ,a 2

= sgn(x- 1)- sgn(x- 2) ,a 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档