浅谈中学数学中的极限思想毕业论文
极限思想方法及其在中学数学的应用研究

极限思想方法及其在中学数学的应用研究极限的概念首次出现于17世纪,是古典数学的重要组成部分。
它是数学家和物理学家用来衡量被测量的值的一种抽象的概念。
在研究生物和其他自然现象的概念中,极限是一种强大的理念,它可以用来描述数字和现象之间的关系。
极限思想在数学中具有重要的作用,它已经成为数学家研究和解决问题的重要工具。
今天,极限思想仍然被广泛用于学术研究中。
有许多学科使用极限思想来描述复杂的问题,如力学、热力学、电磁学和概率论等,并且极限思想正在改变科学家们对数学的看法。
在最近的发展中,极限思想已经被推广到中学的数学课程中,成为数学教学的重要组成部分。
本文将重点介绍极限思想的基本概念,并分析它在中学数学教学中的应用研究。
极限的定义和概念是数学和物理学的基础,它是用来表示数学问题的概念。
“极限是一个数字,表示运算结果无限接近,但不能达到它”[1]。
极限是一种抽象概念,因此,理解极限及其在数学中的作用,需要研究者有足够的抽象思维能力,而且对极限的计算需要相当复杂的数学算法。
极限的概念和定义不仅仅是理论上的,它也被广泛地用于实际应用中。
极限是数学中著名的难题之一,而且由于极限思想可以用来描述复杂的数学和物理问题,因此,极限思想在诸如力学、热力学、电磁学等学科中发挥着重要的作用。
极限思想在中学数学教学中的应用同样重要,可以有效地提高学生的数学能力。
在X数学课程,极限思想被广泛地用于解决一些复杂的问题,如求解一元函数的极限,求解二次函数的极限等。
此外,在学生学习初等数学的过程中,教师也需要引入极限思想来帮助学生理解一些复杂的数学概念,以及帮助他们进行抽象思维。
例如,在学习数据统计分析中,极限思想可以帮助学生看到数据的变化趋势,也可以帮助他们理解一些抽象的概念,如概率分布、期望值、抽样误差等。
总之,极限思想是数学和物理学中的重要概念,它可以帮助学习者理解复杂的数学概念,以及对抽象思维的掌握。
随着极限思想被应用到中学数学教学中,中学数学教学将在概念解释、问题解决等许多方面取得重要突破,从而帮助学生将极限思想融入到他们的数学知识体系中。
极限的计算毕业论文范文

1.极限计算1.左极限:Lim{x→0-}e^(1/x)=Lim{x→0-}e^(4/x)=0. Lim{x→0-}sinx/|x|=-1==> Lim{x→0-}{[2+e^(1/x)]/[1+e^(4/x)]+sinx/|x|}=1 2.右极限:Lim{x→0+}e^(-1/x)=Lim{x→0-}e^(-4/x)=0 Lim{x→0+}sinx/|x|=1==> Lim{x→0+}{[2+e^(1/x)]/[1+e^(4/x)]+sinx/|x|}= =Lim{x→0+}{e^(-3/x)][1+2e^(-1/x)]/[1+e^(-4/x)]+sinx/|x|}= =1。
==》Lim{x→0}{[2+e^(1/x)]/[1+e^(4/x)]+sinx/|x|}=1。
2.举例总结求极限的方法,我要写论文,格式要好点,好的追加分我大一摘要:数学分析很多概念都离不开极限,而求数列或函数的极限,是数学学习中遇到的比较困难的问题。
本文通过归纳和总结,从不同的方面罗列了它的几种求法。
?关键词:数列极限,函数极限,柯西准则,洛必达法则,泰勒展式,迫敛法则??1?数列极限??1。
1数列极限的(?-N)定义?设{na}为数列,a为定数。
若对任给的正数?,总存在正整数?N,使得当n>N时有?∣na—a∣N时,所有的点na,即无限多个点?123,,,NNNaaa???…都落在开区间(a-?,a ?)内,而只有有限个点(至多只有N个)在这区间以外。
?丽水学院2012届学生毕业论文??2?注1??上面定义中正数?可以任意给定是很重要的,因为只有这样,不等式∣na—a∣N时,不等式1!n=1(1)(2)1nnn??≤1n。
3.极限概念数学论文材料二:极限在高等数学中,极限是一个重要的概念。
极限可分为数列极限和函数极限,分别定义如下。
首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。
极限思想在中学数学中的应用研究

极限思想在中学数学中的应用研究
极限思想是以极限的概念来分析数学问题,它提供了一种有效的方
法来研究函数、曲线、表面以及对这些图形和曲线进行计算和分析。
极限思想可以帮助人们更深入地理解数学知识,了解并分析数学中的
现象,并使用极限的思想来解决数学问题。
极限思想在中学数学中有着广泛的应用。
在微积分中,通过极限的思
想可以求得函数在某点附近的解析解及导数;在代数学中,极限思想
可以用来计算多项式的极值;在解析几何中,可以利用极限思想求出
圆周上某点到圆心的距离;在概率论与数理统计中,用极限思想可以
研究正态分布的形成。
此外,极限思想也用于优化问题中,帮助研究者设计出最优的解决方案;在几何图形中,极点的概念也可以用极限思想判断;在动力学和
运动中,可以利用极限思想找到运动物体的运行轨迹。
总之,极限思
想在中学数学中的应用非常广泛,可以帮助学生更好地理解数学公式,更加深入地剖析数学问题,有效地解决实际问题,为数学有着重要作用。
浅谈极限的求解方法毕业论文

浅谈函数极限求解方法学生:智年指导老师:守江三峡大学理学院摘要:极限是数学分析的基础,数学分析的基本概念的表述,都可以用极限来描述.如函数在某点处导数的定义,定积分的定义,偏导数的定义,二重积分的定义,三重积分的定义,无穷级数的定义都是用极限来定义的.极限是研究数学分析的基本工具.极限是贯穿数学分析的一条主线.学好极限要从以下两个方面着手: 1)是考察所给函数是否存在极限;2)若函数存在极限,则考虑如何计算此极限.本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述. 对于简单的极限的计算,利用定义求值或利用极限的四则运算法则求值都是可行的,但是对于一个比较复杂的极限的计算,例如的值时则不能直接采用一般的定义或者定理,即使采用洛必达法则也是比较繁琐的,然而用泰勒展示则计算简单多了,这就说明为一般地解决极限求值问题时,就必须利用有效有针对性的计算方法,对各个具体问题还要善于发现和利用其特点以简化手续.传统的极限的计算方法不下十几种,但具体到计算不同特征的极限时,究竟采用哪种方法,很多人总感到无从下手.只有将这些方法进行归纳总结,从而才可以针对不同特征的式子选择适当的计算方法,进而简化计算Abstract:Limit is the basis of mathematical analysis , the basic concepts of mathematical analysis of expression , can be used to describe the limit as a function definition derivative at some point , the definition of the definite integral , the definition of partial derivative , the definition of double integrals , triple integral definition , infinite series of definitions are used to define the limits of the limit is the basic tool to study the limits of mathematical analysis is a main theme throughout the mathematical analysis to learn the limits from the following two aspects is to investigate the function if there is a limit .If there is a limit function , then consider how to calculate this limit this article is the second question that under the conditions of the existence of the limit , how to find the limits are reviewed for a simple calculation of the limit of the use . define the limits of the evaluation or the use of four evaluation algorithms are feasible, but for a more complicated limit calculations, such asFind in coslimx when exxx values are not directly using the general definition or theorem, even with the Hospital's Rule is more complicated , however, Taylor shows the calculation is much simpler , which is generally described when the limit is evaluated to solve the problem , we must use effective targeted method of calculation for each specific issues but also good at finding and using its features to simplify procedures. The traditional method of calculating the limit of no less than a dozen, but when calculating the limits specific to different characteristics , whether using either method, a lot of people always feel unable to start . These methods will only besummarized, so that we can choose the appropriate method of calculation formulas for different characteristics , and thus simplify the calculation关键词:极限;极限的定义;极限的性质;罗必达法则;泰勒公式;单调有限法则;积分中值定理;拉格朗日中值定理Keywords :Limit; ultimate limits of nature; Luo's Rule; Taylor formula; monotonous limited law; integral mean value theorem; Lagrange mean value theorem与一切科学方法一样,极限法也是社会实践的产物。
极限思想在中小学数学的应用

.
定义 2 设
为定义 为 a , 上的函数 , A 为定数,若
sin cos 1, tan 0 解 当 0 ,此时有
0 , 总 存 在 正 数 M , 使 得 当
f x A
x M
sin cos tan ;
时 当
当 此时 sin
3
sin cos
tan ,
3,
cos tan ;
则,可知本题选 C . 4 极限在解析几何的应用 , 例 3 求 已知 离 心率
5 ,过点 且与直线l : 2 5 , 2x y 3 0 3 3 ,长轴平行于 y 轴椭圆方 相切于点 e 2
1 1 a 1 1 b
所以
2 2
1 a a a 1 b b b
,
1 1 1 b
2 2
2
4
6
1 , 0
2
4
6
程.
1 a
2
一般解法是:设椭圆中心为
4
x 0 , y 0 ,可得椭圆方程,并列
2 a b
2
a
2 2
b
4
4
2 1 ab a b
1
3 极限在函数中的应用
sin cos tan 0 2 则 范围. 例2若
A 0, 6
a 设 n 为数列, a 为定数 .若对任给的正数
a
,总存在正整数 N ,使得当 n N 时 a n
.
2 a n a b 3 代入
n n
浅谈极限对数学的意义

浅谈极限对数学的意义文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-浅谈极限对数学的意义极限的思想是近代数学的一种重要思想,数学分析就是以概念为基础、极限理论(包括)为主要工具来研究函数的一门学科。
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。
用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。
极限的思想由来已久.公元前三世纪,古代伟大的科学家阿基米德,利用“逼近法”算出球面积、球体积、抛物线、面积,而公元前五世纪,我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
这其中就用到了极限思想。
这些早期的极限思想还很原始与朴素,但为其后极限的发展奠定了基础。
说到极限的作用,就不得不提到微积分。
可以说极限就是微积分的基础,而微积分的发展是建立在极限理论发展之上的。
而微积分对现代文明的贡献之大毋庸置疑。
由此极限的重要性可见一斑。
现在任何一所大学的数学系的学生都会先学极限,之后再学微积分。
但历史上微积分却比极限产生的早,可以说微积分是一个早产儿。
这个早产儿在实际中应用的非常好,但是在理论上却是模糊不清。
由此还引发了第二次数学危机。
拯救危机的方法就是清晰的定义极限。
十七世纪,微积分出现了。
领军人物是两个伟大的智者。
一个家伙叫牛顿,而另一个叫莱布尼茨。
牛顿通过对力的研究发明了微积分,虽然现在看来这样的微积分还很原始,仅仅涉及一重,只有一个变量。
但是它的意义是无可估量的。
而莱布尼茨则通过对切线的研究,得到了微积分。
他不仅发明了微积分,而且现代微积分很多符号都是他定义的,他在理论方面的研究价值巨大。
可是无论是牛顿,还是莱布尼茨,都有一些基本的理论问题无法解决。
而这些问题也困扰了他们一生。
到底是什么样的问题呢?首先我们要来了解微积分是什么。
数学毕业论文:极限思想在中学数学中的应用
数学毕业论文:极限思想在中学数学中的应用分类号O211.4编号毕业论文题目极限思想在中学数学中的应用学院数学与统计学院姓名x x x专业数学与应用数学学号291010133研究类型x x x x x x指导教师x x x提交日期2013-5-10原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。
学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
本声明的法律责任由本人承担。
论文作者签名:年月日论文指导教师签名:目录摘要. (Ⅰ)Abstract (Ⅰ)引言 (Ⅱ)2、极限思想的发展 (2)2.1最早的极限思想 (2)2.2 极限思想的早期应用 (2)3、极限思想在中学数学中的应用 (3)3.1 在运动变化过程中把握极限位置 (3)3.2利用函数图像把握极限位置 (4)3.3极限思想在函数中的渗透 (6)3.4用极限思想解决立体几何中的有关问题 (8)总结 (9)参考文献 (10)极限思想在中学数学中的应用x x(天水师范学院数学与统计学院,甘肃,天水,741000,)摘要:极限在中学数学中有重要的地位,对中学数学学习有着重要意义.本文结合当前当前中学数学教学实际,介绍了极限的发展历史和极限思想在函数、解析几何、函数图像等方面的应用,通过对比,突出了极限思想在中学数学中的重要性,不但降低了问题难度,而且对开发学生思维、提升创造能力也有很大帮助. 关键字:极限思想中学数学教学Application of limit thought in mathematics teaching in high schoolWang Hui(School of mathematics and statistics, Tianshui NormalUniversity, Gansu, Tianshui, 741000,)Abstract: the limit is an important content in the middle school mathematics, has important significance to the middle school mathematics learning. According to the current state of the current middle school mathematics teaching practice, introduces the application of historical development and the ultimate limit thought in function, analytic geometry, function image etc, by contrast, highlight the importance of limit thought in middle school mathematics of, not only reduces the difficulty, but also on the development of students' thinking, creative ability also to have the very big help.Keywords: limit thought in mathematics teaching in middle school极限思想在中学数学中的应用引言极限是近代数学中一个重要的概念。
数学极限思想的应用论文共(1)
数学极限思想的应用论文共(1)随着科学技术的不断发展和社会的快速变革,数学极限思想也越来越受到人们的关注和重视。
在各个领域的发展过程中,数学极限思想被广泛应用,成为许多实际问题解决的重要工具。
以下是数学极限思想的应用论文共。
一、极限思想在物理学中的应用物理学中许多重要的定理都可视为极限思想的应用。
比如牛顿第二定律F=ma中的加速度可以理解为位移的二阶导数,既是极限的概念。
在热力学中热平衡概念的提出以及热力学分析实则也是极限思想在物理学中的应用。
二、数学极限思想在工程学中的应用工程学中,常常遇到的一些问题,如材料受力或变形,都可以通过极限思想来解决。
许多工程模型本身的假设中也涉及到了极限思想的运用,如为了简化模型而假设单向性或线性等。
三、极限思想在金融学中的应用数学极限思想在金融学中的应用表现为概率论和统计学的应用。
利用极限思想,可以对概率分布进行预测和估计,计算股票市场的波动和比率。
统计学方法也需要利用极限思想来证明许多重要的统计学定理和公式。
四、数学极限思想在计算机科学中的应用计算机中的数字运算都是利用极限思想来进行的。
比如计算机中常用的整数除法,也是利用了整数与实数之间的映射关系,从而可以使用实数除法来计算。
五、数学极限思想在生物学中的应用生物学中许多重要的生物数据,如蛋白质在空间上的结构和DNA中的序列信息,需要通过数学方法进行处理。
在这种情况下,就需要利用到极限思想,例如利用极限概念来描述蛋白质结构的变化。
综上所述,数学极限思想在各个学科领域中都有广泛的应用。
有效运用数学极限思想,可以更好地解决复杂实际问题,帮助我们更好地探索未知领域。
数学极限思想的应用论文(共2篇)
数学极限思想的应用论文(共2篇)第1篇:论高等数学之极限思想极限是高等数学最基本的概念之一,极限思想是近代数学的一种很重要的数学思想,是用极限概念分析问题和解决问题的一种数学极限思想,本文从极限的定义、极限思想的价值、教学中如何渗透极限思想几个方面进行了简要论述。
1、极限的概念1.1数列极限:设为一个数列,a为一常数,若,总存在一个正整数N,使得当时,有,称a是数列的极限。
1.2函数极限:函数在点a的某去心邻域内有定义,A为常数,若,总存在一个正数,使得当时,有,称A是当x趋向于a时函数的极限。
出于不同需要,还引进了不同意义下的极限概念,比如在集论中引进了集列的上、下极限的概念,在无穷级数论中引进级数绝对收敛与条件收敛的概念,以及在函数逼近论中引进了一致逼近、平均逼近等的极限概念.无论怎样定义,本质都是一样的,都是从有限观念发展到无限观念的过程。
2、极限思想的价值极限思想揭示了变量与常量、无限与有限的关系,通过极限思想,我们可以从有限来认识无限,以直线近似代替曲线,以不变认识变化,从量变认识质变。
极限思想具有创新作用,它广泛用于微分方程、积分方程、函数论、概率极限理论、微分几何、泛函分析、函数逼近论、计算数学、力学等领域。
生活中的例子:一张饼,第一天吃它的一半,第二天吃它的一半的一半,第三天吃它的一半的一半的一半,……这样,这张饼能吃完吗?显然吃不完,饼越来越小,但还是有的。
只能说,这张饼的极限为零,但绝不是零。
这就是一种极限思想的具体写照。
极限思想十分重要,贯穿整个数学体系,恰当的应用极限思想可以将一些问题简化,学生灵活运用极限思想意义重大。
3、将极限思想渗透到课堂教学中3.1课堂上介绍一些体现极限思想的典故哲学家庄周在《庄子天下篇》中说:“一尺之棰,日取其半,万世不竭”,将木棰长度的变化看作为一个无限的过程中去研究,古代数学家刘徽割圆术中“割之弥细,所失弦少,割之又割,以至于不可割,则与圆合体而无所失矣”也体现了极限思想。
极限思想数学作文
极限思想数学作文极限的学习和体会就最深刻了,极限是我们学习的第一章,也是以后学习的基础知识。
极限是变量数学的基本运算, 无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题,其中充满了深刻的辩证法。
借助极限思想,人们可以从直线认识曲线,从静止认识运动,从近似认识精确,从有限认识无限,从量变认识质变。
极限思想是人类认识水平进步的产物。
让我们明白无穷逼近而又永远无法达到,不仅是可能的而且是现实的。
“无穷逼近”是可知论的思想,“永远达不到”是不可知论的思想。
把极限引入哲学,主体理性和存在之间的有限与无限的矛盾变成了充分融合的事实。
从极限中可以学到学极限的方法,学会如何求极限,学会了无穷大无穷小以及两个重要极限。
学习了极限后,我们又学习了导数,导数虽然在我们高中就学习了,但高中学习的都是导数的.基础而已,导数的学习还有漫长的时间。
导数的建立其实也很简单,导数y┡=┡(x),在函数(x)可导的范围内是x的一个函数,称为函数(x)的导函数,亦称导数。
导数的概念构成一种思路,当我们在处理真实世界的问题时,常常遵循这个思路来获得对于实际对象的性质的刻画。
导数概念具有很强的实际问题的背景,而在实际问题当中总是能够遇到需要应用导数概念来加以刻画的概念。
由于当初在几何学问题中,为了要描述斜率这个概念,才启发人们建立了抽象的一般的导数的概念。
导数的学习让我们学会了求导的方法,掌握了如何求导,而和导数密切相关的就是微分了,高中的时候学习过微积分以及定积分,但那同样只是微分的基础。
研究函数,从量的方面研究事物运动变化是微积分的基本方法。
这种方法叫做数学分析。
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
微积分的基本概念和内容包括微分学和积分学。
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈中学数学中极限思想的应用1 极限思想极限思想是指用极限概念分析问题和解决问题的一种数学思想,是近代数学的一种重要思想.简单地说极限思想即是用无限逼近的方式从有限中认识无限,用无限去探求有限,从近似中认识精确,用极限去逼近准确,从量变中认识质变的思想.1.1 极限思想的产生与一切科学的思想方法一样,极限思想也是社会实践的产物.极限思想可以追溯到古代,刘徽的“割圆术”就是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,他们借助间接证法——归谬法来完成了有关的证明.16世纪,荷兰数学家斯泰文改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明.如此,他就在无意中指出了把极限方法发展成为一个实用概念的方向. 1.2 极限思想的发展与完善极限思想的进一步发展和完善是与微积分紧密相联系的.16世纪欧洲的处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题只用初等数学的方法已无法解决,为了解决这些问题,科学家们开始专心研究促进技术革新.在这样的社会背景下,牛顿和莱布尼茨以无穷小量为基础建立了微积分,微积分的建立极大的促进了极限思想的发展.到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述了极限概念及其理论.为了排除极限概念中的直观痕迹,德国数学家维尔斯特拉斯提出了极限的静态的定义,给微积分提供了严格的理论基础.所谓n A =,就是指“如果对任何0ε>,总存在自然数N ,使得当n N >时,不等式n A ε-<恒成立”.这个定义,借助不等式,通过ε和N 之间的关系,定量地、具体地刻划了两个“无限过程”之间的联系.因此,这样的定义是严格的,可以作为科学论证的基础,至今仍在数学分析书籍中使用.1.3 中学数学中的极限思想极限思想并非只出现在高等数学中.在中学数学里也有很多方面体现了极限思想,其中最典型的就是在求圆面积时候的用到分割法.在初高中时我们只知道圆的面积公式:2S Rπ=(R为圆的半径).其实,深入探究会发现圆面积的计算就是运用极限的思想得出的.在学圆的面积之前,我们只学过三角形和常规的四边形的面积计算,那么我们如何把圆的面积化为求三角形或者四边形的面积呢?如图1-1是一个以R为半径的圆O,我们给这个圆O作n条半径,如图1-2所示.图这样我们就可以发现,圆的面积是由n个小扇形相加得来.这时你会发现,当n不断增大()n→∞时,圆里面的每一个小扇形我们就可以近似的看成一个小三角形,此小三角形的底可以近似的看成扇形的圆弧()1n n A A+,高为圆的半径R.我们知道三角形的面积为112n nS R A A+≈⋅,则整个圆的面积为122334111112222n nS R A AR A A R A A R A A+≈⋅+⋅+⋅+⋅⋅⋅+⋅()122334112n nS R A A A A A A A A+≈⋅+++⋅⋅⋅+由于12233412n nA A A A A A A A Rπ++++⋅⋅⋅+=带入即可得出圆面积的近似值为:2S Rπ≈,当n越大时越精确,当n→∞即得证.圆面积的探讨运用了“无限分割”的思想方法,同时也体现了“化曲为直,化整为零,积零为整,逐渐趋近近视值”的极限思想.当然这只是极限思想运用的一部分,在中学数学中还有很多的问题渗透了极限的思想.如函数、数列、球的表面积和体积推导、双曲线的渐近线、曲线的切线等等无不包含着极限思想的渗透和运用.本文我们结合一些具体的例子来探讨极限思想在初等数学中的一些运用.2 极限思想在函数中的渗透在中学数学中,很多幂函数、指数函数、正切函数、双曲线等等都存在渐近线,通过利用极限思想可以巧妙的研究这些函数的渐近线.例1 研究函数1+y x x =的图像.分析 函数1+y x x=的定义域为{}|0x x ≠.且为奇函数,因此可以先做出0x >时的函数图像.(1)当0x >时,由基本不等式可得1+2y x x=≥,当且仅当1x =时min 2y =;(2)当0x +→ 时,y →+∞,所以0x =是1+y x x=的一条渐近线;(3)当+x →∞时,10x →,y x →,所以y x =也是1+y x x=的一条渐近线.由此三个条件即可作出函数1+y x =的图像.如图2-1:图2-1极限思想在函数中的应用非常广泛,不仅应用于研究一些函数的渐近线,在求一些特殊函数的最值的问题中极限思想也是很好的切入点.例2 试讨论函数y =的最值. 分析 注意到函数表达式可以变形为:y=从数形结合的角度来看,函数值y可以看成做是平面直角坐标系中x轴上的动点(,0)x到两定点(32)A,、(11)B,的距离之差,即y MA MB=-(如图2-1),由平面几何的知识,易得当M移动到2(M'在线段AB的延长线上)点时y值最大maxy=下面我们探讨此函数有无最小值,分三种情况:①当M在如图2中M(线段AB的垂直平分线l与x轴的交点)右侧移动时;②当M在M'与M中间图2-1图2-2下面我们先看①时由于MB MA>,不妨记=y MB MA--,图2-2中,点1M、2M均在M的右侧(其中2M又在1M的右侧).我们来比较111()=y M B M A--与222()=y M B M A--的大小,移项之后即比较12M B M A+与21M B M A+的大小.设1M A与2M B相交于点T,则有1212<()()M B M A M T BT M T AT++++12()()M T AT M T BT=+++21M B M A=+即12()()y y-<-所以当M在M右侧向右运动时,()y-的值越来越大,下面我们讨论()y-有无最大值.上面已知y MB MA-=-===114-=()114lim lim x x y →∞--=4211==+ 于是当x →+∞时,=y MB MA --的值越来越大的趋近于2,但是永远都不可能达到2,即y -没有最大值.但是<2y -,即2y >-.所以在第①情况下y 的取值范围为(]2,0-.同理,在第③种情况下,MB MA <当M 在M '左侧时(]1x ∈-∞-,,讨论y MA MB =-.计算可得y 的取值范围为(.在第②种情况下,当M 在M '与0M 之间且由0M 向M '移动时,y 值不断增大,所以y 的取值范围为⎡⎣0.综上所述,本题y的值域为(2-本题在高中阶段可能就只会让我们求此函数的最大值,但是如果我们进一步研究这个问题的时候,就能发现其与高等数学的衔接点.本题所涉及的函数最值问题,看似跟极限思想没多大联系,但是通过深入的研究我们才能发现其中的奥妙.3 极限思想在数列中的应用极限分析法是研究数列问题的一个有效方法.对于一个等比数列,在高中教材中给出的求和公式是11(1)(1)1(1),,.n n a q q q q S na -≠-=⎧⎪=⎨⎪⎩等比数列的求和公式是要分情况的,即1q =和1q ≠的情况.这样最简单的等比数列——常数列就被分裂出来.然而,利用极限就可以将它合二为一.对于上面1q ≠的情况,讨论1q →时,n S 的极限.111(1)lim lim 1n n q q a q S q→→-=- 2111(1)(1)lim 1n q a q q q q q-→-+++⋅⋅⋅+=-2111lim (1)n q a q q q-→=+++⋅⋅⋅+1na =这也就是说,1q =时的n S 就是1q ≠时n S 的极限.那么,等比数列求和公式就可以用一个公式来表示1(1)lim 1n n n q a q S q→-=-当然,这比高中课本上给出的公式要复杂点,但是这显然让我们重新思考了问题,使得这些分类的东西变成一个整体.对于一个无穷数列,它本身就是一个极限形式.所以在数列的有关问题中涉及到极限思想的题目很多,灵活运用极限思想能让我们解题方法更加简便,减少计算量和计算时间,优化解题过程.例3 已知数列{}n a 中,满足1=1a ,且对任意自然数n 总有12n n n a a a +-=,问是否存在实数a ,b 使得2()3n n a a b =--对于任意自然数n 恒成立?若存在,给出证明;若不存在,说明理由.分析 假设存在这样的实数a 、b ,满足2()3n n a a b =--对于任意自然数n 恒成立,则lim n x a a →∞=;再由12n n n a a a +-=两边同取极限有2aa a =-,解得0a =或3a =验证,当0a =时,数列{}n a 应该是以1为首项,以23-为公比的等比数列,显然,不可能对于任意自然数n 都满足12n n n a a a +-=恒成立.所以0a =不满足题意.当3a =时,将1=1a ,代入2()3n n a a b =--,求得3b =-,则233()3n n a =+⋅-,验证可得同样不满足对于任意自然数n 都满足12n n n a a a +-=恒成立.所以3a =同样不满足题意.综上所述,0a =和3a =都不满足题意,所以假设与题意矛盾,不存在这样的a 、b .在高中阶段,对于解这样的数列问题一般思路是按照 “由一般到特殊再到一般”的思维原则,再通过数学归纳法将{}n a 表达出来.但是对于这一个题目用这样的方法远没有借用极限思想简单.4 极限思想巧解立几问题在一些复杂立体几何的问题中,我们只要巧妙的利用无限逼近的思想,就可以将原本复杂难懂的问题简单化.像这样的问题在高中数学中很常见,比如像下面这道例题.例4 在四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是( ).(0A.(1B ,C.(0D ,分析 一般的方法,我们通过三角形三条边之间的等量关系列不等式,通过解不等式可以得出来,但是通过极限思想也可以巧妙的解决这个问题.显然,对于四根长度相等的直铁条有两种摆放方法: (1)底面为等腰三角形,两腰长度为2,底长为a (图4-1); (2)底面为等边三角形,三条边的长都为2(图4-2).图 4-2 由于a 是ABC ∆的边,所以04a <<.如图4-1,点A 在平面α(α垂直于平面BCD ,且平面BCD α⋂于BDC ∠的角平分线)上运动,且A 到B 、C 的距离为2.当A D →时,0a →;当平面ABC 与平面BDC 重合时,A 与D 距离最远即a 值最大.此时由菱形的性质可解得a =由于此图形必须要构成三棱锥,所以平面ABC 与平面BDC 不可以重合,即取不到所以(0,a ∈.如图4-2,点A 在平面α(α垂直于平面BCD ,且平面BCD α⋂于DBC ∠的角平分线)上运动,且A 到B 的距离为2.当A 在DBC ∠的角平分线上时,a 最小,可解得a =-;当A 在DBC ∠的角平分线的反向延长线上时,a 最大,可解得a =.由于此图形必须要构成三棱锥,所以A 不能在DBC ∠的角平a ∈.综上所说,a ∈,所以此题选A .这是2010年辽宁省的一道高考题,如果用一般的方法解不等式将会非常复杂,也浪费了考试时宝贵的时间.而如果使用无限逼近思想来研究就可以将原本复杂难懂的问题简单化. 从本题可以发现,极限思想在几何解题过程中的应用可以起到良好的导向作用,同时也是一种探索解题思路或切入点的有效武器.例5 正三棱锥相邻两侧面所成的角为α,则α的取值范围是 ( )o o .(0180)A ,o o .(60180)B , o o .(600)C ,9 o o .(00)D ,6 分析 如图4-3所示,正三棱锥S ABC -中,SO 是正三棱锥S ABC -的高,图4-3当0180.SO→时,S无限靠近于O,此时相邻两个侧面的夹角趋近于o 当SO→∞时,正三棱锥S ABC-无限接近一个底面为正三角形的三棱柱,这时两侧面的夹角越来越小,趋近于o60.所以α的取值范围为o o(60180),,故本题选B.从这些例题可以感受到,极限思想不仅是一种解决问题的方法,同时它也是一种思维方式.我们可以从极限或极端状态的数学问题的研究中得到启发,从而得到数学关系的猜想,有时也会通过这种启发找到问题的解决方法.5 总结本文结合具体的例题讨论了极限思想在初等数学中的一些应用.当然,极限思想作为数学中的重要的思想在中学数学中的涉及范围远不止这几个方面.所以我觉得,在我们的中学教学中,若能通过一些例题,来向学生渗透极限思想,对学生数学思维能力的提高将会有很大帮助.参考文献[1]谢慧杰.极限思想的产生、发展与完善.数学学习与研究,2008,(09):13-15.[2]梁克强.刘徽割圆术.中学生数学,2010,(06):23-24.[3]杨君芳.例析极限思想在高中数学中的一些应用.中学数学研究,2009,11(1):27-28.[4]孙道斌.利用极限思想巧解立几问题.中学生数学,2007,(1上):17-18.[5]吕士虎,徐兆亮.从高等数学看中学数学,2005,(03):1-3.[6]华东师大数学系.数学分析第三版.北京:高等教育出版社,2001:42-48.[7]张永辉,用极限思想解题.中学生数学,2006,(9上):8-9.。