无线传感器
无线传感器网络

2
无线传感器网络的关键技术
无线传感器网络的关键技术
无线传感器网络的关键 技术包括通信协议、能 量管理和数据处理等方 面。下面将对其中一些
关键技术进行介绍
无线传感器网络的关键技术
2.1 通信协议
无线传感器网络的通信协议是保证网络稳定 性和高效性的关键。由于传感器节点资源有 限,因此需要设计低功耗、高效能的通信协 议,以确保节点之间的数据传输质量和稳定 性。常见的无线传感器网络通信协议包括 IEEE 802.15.4、ZigBee、WiFi等
无线传感器网络的应用领域
3.1 环境监测
无线传感器网络可以用于环境监 测领域,例如气象、水文、环境 保护等方面的监测。通过部署传 感器节点,可以实时监测环境参 数,如温度、湿度、气压、光照 等,并将数据传输到控制中心进 行分析和处理,以提供决策支持 和预警功能
无线传感器网络的应用领域
3.2 军事侦察
无线传感器网络的节 点通常采用低功耗设 计,以延长网络的使 用寿命和降低能源消 耗。此外,节点体积 小、重量轻,方便部 署和移动
无线传感器网络的结构和特点
1.3 自修复和 自适应
无线传感器网络中的 节点具有自修复和自 适应能力,可以在节 点发生故障或受损时 ,自动调整网络结构 ,保持网络的连通性 和可用性。同时,网 络可以根据环境变化 和需求变化进行自我 调整和优化
无线传感器网络
-
1
无线传感器网络的结构和特点
2
无线传感器网络的关键技术
3
无线传感器网络的应用领域
无线传感器网络
WSN具有分布式、自组织、自修 复和自适应等特点,可以广泛 应用于环境监测、军事侦察、 智能家居、农业监测等领域
无线传感器网络(Wireless Sensor Networks,WSN)是由一 组能够自组织形成网络的低功 耗、微型、低成本传感器节点 组成的网络 下面将对无线传感器网络进行 详细的介绍
什么是无线传感器,无线传感器的应用,无线传感器的工作原理

什么是无线传感器,无线传感器的应用,无线传感器的工作原理什么是无线传感器?无线传感器的组成模块封装在一个外壳内,在工作时它将由电池或振动发电机提供电源,构成无线传感器网络节点,由随机分布的集成有传感器、数据处理单元和通信模块的微型节点,通过自组织的方式构成网络。
它可以采集设备的数字信号通过无线传感器网络传输到监控中心的无线网关,直接送入计算机,进行分析处理。
如果需要,无线传感器也可以实时传输采集的整个时间历程信号。
监控中心也可以通过网关把控制、参数设置等信息无线传输给节点。
数据调理采集处理模块把传感器输出的微弱信号经过放大,滤波等调理电路后,送到模数转换器,转变为数字信号,送到主处理器进行数字信号处理,计算出传感器的有效值,位移值等。
无线传感器的工作原理:WSN一般都包括一台主机或者网关,其通过一个无线电通信链路与大量无线传感器进行通信。
数据收集工作在无线传感器节点完成,被压缩后,直接传输给网关,或者如果有要求,也可以利用其他无线传感器节点来将数据传递给网关。
之后,网关保证该数据是系统的输入数据。
每个无线传感器都被看作一个节点,拥有无线通信能力,同时还具有一定的信号处理与网络数据的智能。
根据应用的类型,每个节点都可以有一个指定的地址。
下图显示了某个节点的通用结构图。
它一般会包括一个传感装置、一个数据处理微控制器,以及一个无线连接RF模块。
根据不同的网络定义,RF模块可以起到一个简单发射器或者收发器(TX/RX)的作用。
进行节点设计时,注意电流消耗和处理能力非常的重要。
微控制器的内存非常依赖于所使用的软件栈。
无线传感器的在哪些方面广泛应用:传感器节点可以连续不断地进行数据采集、事件检测、事件标识、位置监测和节点控制,传感器节点的这些特性和无线连接方式使得无线传感器网络的应用前景非常广阔,能够广泛应用于环境监测和预报、健康护理、智能家居、建筑。
无线传感器网络与应用

无线传感器网络与应用无线传感器网络(Wireless Sensor Network, WSN)是由许多无线传感器组成的平等分布式网络,每个传感器都能够感知环境并将感知到的信息通过无线网络传输到指定的地点。
在现代生活中,无线传感器网络已经被广泛应用于智能家居、环境监测、交通控制等领域。
一、无线传感器的结构及原理无线传感器网络是由传感器、传感器节点、无线通信模块、数据处理模块和电源等多个部分组成的系统。
其中最重要的组成部分是传感器。
传感器的主要任务是感知环境,即将环境中的物理量、化学量、生物量或者其他参数转化为电信号,并传输到数据处理模块中进行处理。
传感器节点是指由传感器、微处理器、RF模块和其他相应的电子元件组成一个完整的系统。
RF模块则是用于将感知到的信息通过无线信号传递出去。
数据处理模块则是整个无线传感器网络的“大脑”。
它接收来自传感器节点的信息,处理之后进行存储和传输。
同时,数据处理模块也可以根据不同的应用场景和需求对传感器进行控制和管理。
二、无线传感器网络的应用1、智能家居智能家居是一种通过网络和各种传感器技术实现家居自动化与智能化的家庭生活形态。
使用无线传感器网络居家环境可以智能监测室内温度、湿度、空气质量等,并通过手机APP等方式进行远程控制和管理。
2、环境监测采用无线传感器网络可以对环境进行长时间、高效率、实时的监测,通过对空气、水质、土壤等参数的监测来掌握环境的变化,可有效地对各种环境问题进行恰当的处理。
3、交通控制无线传感器网络可以直接布放在交通设备中,如红绿灯、路灯、桥梁、道路等,并可无缝集成到交通管理中心系统中,实现及时预警,减少交通事故和运行风险,并提高交通效率。
三、无线传感器网络存在的问题虽然无线传感器网络已经广泛应用,但在实际过程中还存在着一些问题。
该技术因其复杂的网络结构和应用难度,限制了它的广泛应用,这包括以下几个方面。
1、安全问题:传感器网络秘密性很差,使得网络的安全受到了严重的威胁。
无线测温传感器工作原理

无线测温传感器工作原理宝子们!今天咱们来唠唠一个超酷的小玩意儿——无线测温传感器。
你可别小瞧它,这东西在很多地方都发挥着大作用呢!咱先来说说温度测量是咋回事儿。
你想啊,温度这东西,看不见摸不着,但咱就是想知道它到底是多少,这时候就需要一种特殊的本领啦。
无线测温传感器里有一种叫做热敏元件的东西,就像是一个超级敏感的小触角。
这个热敏元件可神奇了,它对温度的变化特别敏感。
比如说,当周围的温度升高或者降低的时候,这个热敏元件自己的一些特性就会跟着改变。
就像有的人一到冬天就变得懒洋洋的,而一到夏天就活力四射,这个热敏元件也是随着温度变化而改变自己的状态。
那这个状态改变了怎么让我们知道温度是多少呢?这就涉及到传感器的转换功能啦。
传感器就像是一个翻译官,把热敏元件因为温度变化而产生的变化,转化成电信号。
你可以把这个想象成热敏元件在跟传感器说悄悄话:“我感觉这里变热了,你快把这个消息传出去。
”然后传感器就把这个消息变成电信号,就像把这个悄悄话变成了一种特殊的密码。
接下来就是无线传输的部分啦。
这部分可太有趣了。
你知道吗?这个无线测温传感器就像一个小小的电台。
它把刚刚得到的电信号,通过一种特殊的无线通信方式发送出去。
就像是电台主持人把声音通过电波发送给听众一样。
这个无线传输的方式有很多种呢,比如说蓝牙呀,ZigBee呀,Wi - Fi呀之类的。
这就好比这个传感器有不同的语言可以选择来发送信息,根据不同的使用场景,它会选择最合适的那种“语言”。
在接收端呢,就像是有一个专门的听众在等着接收这个信号。
这个接收设备收到信号之后,又得把这个电信号再转化一次,这次是转化成我们能看得懂的温度数值。
就像是把密码又翻译回我们能理解的文字一样。
然后我们就能在显示屏或者手机APP 之类的地方看到这个温度啦。
你看,无线测温传感器就这么一步一步地完成了温度测量并且把温度信息传递给我们。
它在很多地方都特别有用呢。
比如说在一些大工厂里,那些大型的机器设备工作的时候会产生热量,如果热量太高了,机器可能就会出故障。
无线传感器网络的设计与实现

无线传感器网络的设计与实现在当今科技飞速发展的时代,无线传感器网络(Wireless Sensor Network,WSN)已经成为了一个备受关注的研究领域,并在众多应用场景中发挥着重要作用。
无线传感器网络是由大量的传感器节点组成,这些节点通过无线通信方式形成一个自组织的网络,能够实现对监测区域内的物理信息,如温度、湿度、压力、光照等的感知、采集和传输。
无线传感器网络的设计是一个复杂而具有挑战性的任务,需要综合考虑多个方面的因素,包括传感器节点的硬件设计、网络拓扑结构的选择、通信协议的制定、能量管理策略的设计以及数据处理和传输的算法等。
在传感器节点的硬件设计方面,需要考虑到传感器的类型和性能、微处理器的计算能力、无线通信模块的传输距离和功耗、电源管理模块的效率以及存储模块的容量等。
例如,对于监测环境温度的应用,可能需要选择精度较高、响应速度较快的温度传感器;而对于需要长时间运行且能量供应有限的场景,就需要选择低功耗的微处理器和高效的电源管理芯片。
网络拓扑结构的选择对于无线传感器网络的性能和可靠性有着重要影响。
常见的拓扑结构包括星型、树形、网状等。
星型拓扑结构简单,易于管理,但中心节点的负担较重,一旦中心节点出现故障,整个网络可能会瘫痪;树形拓扑结构可以有效地扩展网络覆盖范围,但对节点的路由能力要求较高;网状拓扑结构则具有较高的可靠性和容错性,但网络管理和控制较为复杂。
在实际应用中,往往需要根据具体的监测需求和环境条件来选择合适的拓扑结构。
通信协议的制定是无线传感器网络设计中的关键环节之一。
由于传感器节点的能量有限,通信协议需要在保证数据可靠传输的前提下,尽可能地降低功耗。
例如,采用低功耗的无线通信技术,如 ZigBee、Bluetooth Low Energy 等;优化数据包的格式和大小,减少不必要的开销;采用睡眠机制,让节点在不需要通信时进入低功耗状态等。
能量管理策略对于延长无线传感器网络的生命周期至关重要。
无线传感器网络技术的应用

无线传感器网络技术的应用一、无线传感器网络概述无线传感器网络(Wireless Sensor Network, WSN)是由无线传感器节点组成的自组织且具有大规模分布性的网络系统。
其节点可以用于感知环境或者采集数据,通过网络将数据传回中心节点,实现环境监测、数据采集、控制等功能。
二、无线传感器网络技术的应用1. 环境监测随着城市化进程的加快以及空气、水质污染的严重性日益加剧,无线传感器网络技术可以用于环境监测。
比如,在城市的公园、广场等场所布置一些传感器节点,实时监测空气中的PM2.5、CO2等污染物,通过网络将数据传回中心节点,及时预警、保护市民健康。
2. 智能家居无线传感器网络技术可以应用于智能家居领域。
我们可以通过人体传感器节点将家中人员的行动轨迹、起居习惯等数据采集下来,作为智能设备的参考,从而实现智能应用的更加个性化和高效化。
3. 工业自动化无线传感器网络技术可以用于工业自动化控制中,通过感知原材料供应、生产设备状态等信息,及时处理数据,调整生产流程,提高生产效能,降低生产成本。
4. 农业领域无线传感器网络技术可以应用于农业领域,实现精准农业。
如在田地中布置传感器节点,感知土地植被的生长情况、温湿度等信息,通过数据分析,实现精准灌溉、肥料施用,提高农业生产效益。
5. 物联网无线传感器网络技术是物联网的核心技术之一,可以用于个人消费设备、智能家居、工业控制、领域监测等。
各种设备通过传感器节点实现信息的采集与传输,实现设备之间的互联互通,提高人们的生活品质和工业生产效能。
三、无线传感器网络技术的优势1. 低成本无线传感器节点的成本较低,可以降低网络整体成本,提高应用范围和普及度。
2. 系统灵活由于无线传感器节点的低成本和小规模,可以很容易地增加或减少节点的数量,实现对系统的灵活控制与管理。
3. 能源自主由于传感器节点体积小,通常适用的电池也比较小,可以通过能量自主技术和能源高效利用技术,实现长时间运行,避免了频繁更换电池的繁琐操作。
无线传感器网络(WSN)的特点与应用
无线传感器网络(WSN)的特点与应用无线传感器网络(Wireless Sensor Network,简称WSN)是一种由大量的分布式无线传感器节点组成的网络系统。
每个节点都具备感知、处理、存储和通信等能力,用于采集、传输和处理环境中的各种信息。
WSN的特点及其广泛应用使其成为了当代信息技术领域的研究热点。
一、特点1. 分布式自组织:WSN中的节点可以自组织地构建网络,无需人工干预。
节点通过相互通信和协调来共同完成任务,具备较强的自适应性和冗余容错能力。
2. 节点资源受限:WSN中的节点通常具备较小的计算、存储和能量资源。
为了降低成本和延长网络寿命,节点的硬件资源通常被设计为低功耗、低成本的微型设备。
3. 多传感器融合:WSN中的节点通常配备多种类型的传感器,如温度、湿度、光线、声音等。
通过对不同传感器数据的融合分析,可以提供更全面和准确的环境监测和信息获取。
4. 无线通信:WSN中的节点通过无线通信方式进行数据传输和网络连接。
无线通信不受地理位置限制,节点之间可以自由通信,提供了较大范围的网络覆盖。
二、应用1. 环境监测与物联网:WSN可以应用于环境监测领域,如气象、水质、土壤等。
通过部署大量节点,能够实时、精确地获取环境参数,为环境保护和资源管理提供科学依据。
2. 智能交通系统:WSN可用于智能交通系统中,通过节点部署在道路、交叉口等位置,实现车流量、车速等交通信息的实时监测和分析,并通过数据传输实现交通信号的智能控制。
3. 农业生产与精准农业:WSN可以用于农业领域,通过节点在田地中的布置,实时监测农田土壤湿度、温度以及农作物的生长情况,提供数据支持,实现农业生产的科学化和精细化管理。
4. 工业自动化与智能制造:WSN在工业自动化中的应用十分广泛,例如在工厂生产线上布置节点进行生产过程监控、设备状态检测和故障预警等,提高生产效率和质量。
5. 灾害监测与救援:WSN可以用于灾害监测和救援领域,如地震、火灾、洪水等。
无线传感器网络简介
混合网络结构
平面网络结构
01
分级网络结构
02
03
Mesh网络结构
04
2、1无线传感网络拓扑结构
2、2无线传感器网络覆盖问题
覆盖问题是无线传感器网络配置首先面临的基本问题,因为传感器节点可能任意分布在配置区域,它反映了一个无线传感网络某区域被鉴测和跟踪的状况
三、无线传感器网络关键技术
动态电压调度(dynamic voltage scheduling,简称DVS)
4无线传感器网络QOS保证技术
5无线传感器网络数据融合技术
6无线传感器网络安全机制
7无线传感器网络定位技术
8无线传感器网络同步管理机制
四、无线传感器网络硬件平台
传感器节点
01.
汇聚节点
01.
管理平台
01.
4、1硬件结构
泛洪协议
SPIN协议
主要完成两大功能:一是选择适合的优化路径,一是沿着选定的路径正确转发数据
3.2无线传感器网络路由协议
动态功率管理(dynamic power management,简称DPM)
01
动态电压调度(dynamic voltage scheduling,简称DVS)
02
3.3无线传感器能量管理机制
传感器节点
无线传感器网络微型节点由数据采集单元、数据处理单元、数据传输单元和电源管理单元4部分组成
汇聚节点
当节点作为汇聚节点时,其主要功能就足连接传感器网络与外部网络(如Internet),将传感器节点采集到的数据通过互联网或卫星发送给用户。
管理平台
管理平台对整个网络进行检测、管理,它通常为运行有网络管理软件的PC机或者手持终端设备
无线传感器网络技术的原理与应用场景
无线传感器网络技术的原理与应用场景无线传感器网络(Wireless Sensor Networks,WSN)是一种由大量分布在空间中的无线传感器节点组成的网络。
它的主要特点是无线传感器节点具备感知环境信息并实时传输数据的能力。
本文将介绍无线传感器网络技术的原理和一些常见的应用场景。
一、无线传感器网络技术的原理无线传感器网络技术主要依靠传感器节点感知环境信息,并通过无线通信传输数据。
其原理主要包括以下几个方面:1. 传感器节点:无线传感器网络由大量的传感器节点组成,这些节点通常包括处理器、传感器、电池和无线收发器等组件。
传感器节点通过感知器件感知并采集环境信息,然后将采集到的数据通过无线通信模块发送到基站或其他节点。
2. 网络拓扑结构:传感器节点之间的通信通常采用无线自组织的结构,构成了一个自组织、去中心化的网络。
常见的网络拓扑结构包括星型结构、树型结构和网状结构等。
3. 无线通信技术:无线传感器网络的通信主要依靠无线技术实现。
传感器节点之间可以通过无线信道进行通信,常用的通信技术包括无线局域网(WiFi)、低功耗蓝牙(Bluetooth Low Energy)和Zigbee等。
4. 数据处理与传输:传感器节点采集到的数据通常需要进行处理和压缩后再传输,以减少能耗和网络传输开销。
一般会采用数据融合和数据压缩等技术来实现对数据的处理和传输。
二、无线传感器网络的应用场景无线传感器网络技术具有广泛的应用前景,以下是一些常见的应用场景:1. 环境监测:无线传感器网络可以被广泛应用于环境监测领域,如气象监测、水质监测、土壤监测等。
通过布置在不同位置的传感器节点,可以实时监测和采集环境参数,如温度、湿度、气压等,为环境监测提供数据支持。
2. 智能交通:无线传感器网络可以应用于智能交通系统中,实现交通流量监测、车辆跟踪和道路安全等功能。
通过在道路上部署传感器节点,可以收集车辆的信息,实时监测道路的交通状况,并进行交通调度和预警。
无线传感技术
无线传感技术无线传感技术是一种能够无线采集、传输和处理环境中信息的技术。
它通过无线传感器节点来实现对环境中各种参数的监测和控制,如温度、湿度、光照等等,具有广泛的应用前景。
本文将从无线传感技术的原理、应用和未来发展等方面进行探讨。
一、无线传感技术的原理无线传感技术的核心是无线传感器网络,它由多个无线传感器节点组成,这些节点可以感知环境中的信息并将其转化为数字信号。
每个节点都拥有自己的处理和通信能力,可以与其他节点进行通信和协作。
无线传感器节点由传感器、微处理器、无线通信模块等组成,通过传感器采集环境信息,经过处理后通过无线通信模块进行传输。
整个网络通过节点之间的无线通信建立起来,形成一个分布式的传感系统。
二、无线传感技术的应用无线传感技术具有广泛的应用领域,包括环境监测、智能交通、农业、医疗健康等等。
1. 环境监测无线传感技术可以用于环境监测,通过无线传感器节点采集环境中的各种参数信息,如空气质量、水质、噪音等等。
这些数据可以实时监测,帮助我们了解环境的变化和状况,为环境管理和保护提供科学依据。
2. 智能交通无线传感技术可以应用于智能交通系统中,通过无线传感器节点对交通流量、交通状态等进行监测和控制。
这可以提供实时的交通信息,帮助交通管理者进行交通调度和优化,减少交通拥堵和事故发生的概率。
3. 农业在农业领域,无线传感技术可以用于农作物的监测和管理。
通过无线传感器节点对农田的土壤湿度、温度等参数进行监测,可以实现精确的灌溉和施肥,提高农作物的产量和质量。
4. 医疗健康无线传感技术可以应用于医疗健康领域,通过无线传感器节点对患者的生命体征进行实时监测。
这可以帮助医护人员了解患者的健康状况,及时采取必要的治疗措施。
三、无线传感技术的未来发展随着科技的不断进步,无线传感技术将会有更广阔的发展前景。
1. 大数据与人工智能的结合无线传感技术采集到的大量数据可以通过大数据技术进行分析和挖掘。
结合人工智能的算法,可以从这些数据中发现规律和趋势,为我们提供更准确的预测和决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数月至数年
车载或空投
手工部署
嵌入式,喷撒
2020/10/2
16
发展历程
MoteWorks 软件平台
2020/10/2
MoteWorks 硬件平台
17
发展历程
2020/10/2
18
发展历程
传感器节点提供运行所需的能量,通常采用微型电池
2020/10/2
14
▪ 传感器节点结构
无线传感器结点
传感器模块
传感器
AC/DC
处理器模块 处理器 存储器
网络层
无线通信模块 MAC
无线 收发器
能量供应模块
2020/10/2
15
发展历程
▪ 无线传感器传感器节点(三代)
生产方式
尺寸 重量 节Biblioteka 架构拓扑手掌至一元硬币大小 灰尘颗粒大小
数千克
数克
可忽略不计
感知、处理和通信模块分开
集成感知、处理和通 集成感知、处理和通信
信模块
模块
端到端(Point-to-Point),星型 客户-服务器,点到点 点到点(Peer-to-Peer) (Peer-to-Peer)
大容量电池
AA电池
太阳能
数天或更长
数天至数周
2020/10/2
10
无线传感器网络体系结构
网关(汇聚节点,Sink node) ➢ 大规模的应用可能使用多个网关 ➢ 使用多种方式与外部网络通信,如
Internet、卫星或移动通信网络等
Internet、卫星或 移动通信网络等
传感器节点既是信息包的发起者, 也是信息包的转发者。
监控中心
▪无线传感器网络通常包括传感器节点(sensor node)、汇聚节点
能量供应 生命周期 部署方式
第一代 (二十世纪八十年代-九十年代)
第二代 (2000-现在)
第三代 (约2010)
定制,如(TRSS:TACTICAL 商业:Crossbow公司、 Dust公司等
REMOTE SENSOR SYSTEMS, Sensoria公司、
战术远程传感系统)
Ember公司等
鞋盒以上大小
节点
网关
2020/10/2
软件
带照相机的节点
带显示屏的节点
19
发展历程
/research/ exploratory/motes.htm
2020/10/2
20
发展历程
/
2020/10/2
21
发展历程
宁波中科集成电路设计中心 (中科院计算所宁波分所)
电系统和网络等多项技术相结合的产物。
2020/10/2
4
概要
▪ 具有远程的(remote)、现场的(in situ)信息获取和处理能
力
▪ 能实现已有传统技术难以实现的细微物理或环境现象感知能
力
▪ 不依赖于固定通信基础设施的自治特性
无线传感器网络具有广阔的应用前景!
2020/10/2
5
概要
美国MIT技术评论(2003年)
2020/10/2
13
1.传感器节点结构
▪ 传感器节点结构
➢ 传感器模块: 负责监测区域内信息的采集和数据转换
➢ 处理器模块: 负责控制整个传感器节点的操作,存储和处理本身采
集的数据以及其他节点发来的数据 ➢ 无线通信模块:
负责与其他传感器节点进行无线通信, 交换控制消息 和收发采集数据 ➢ 能量供应模块:
无线传感器网络
欧军龙 胡广义 朱宏吉
提要
第1部分 第2部分 第3部分 第4部分 第5部分
概要 体系结构 关键技术 应用 展望
2020/10/2
2
提要
第1部分 第2部分 第3部分 第4部分 第5部分
概要 体系结构 关键技术 应用 展望
2020/10/2
3
概要
▪ 无线传感器网络是计算机、通信、传感器、微机
传感器, 激励器
处理器
供电设备
无线 收发器
8
提要
第1部分 第2部分 第3部分 第4部分 第5部分
概要 体系结构 关键技术 应用 展望
2020/10/2
9
无线传感器网络定义
无线通信能力 处理能力
感知能力
▪ 无线传感器网络(Wireless Sensor Networks)是由具有感知、
处理和无线通信能力的微型节点通过自组织方式形成的网络。
Electronics)和仿生人体器官(Bionic Bodies)称为全球未来四 大高技术产业(2003年)
2020/10/2
7
2020/10/2
概要
智能微尘(美国国防部 在1999年展开研发): 在一立方毫米的范围内 包含了从信息收集、信 息处理到信息发送的所 有必需部件,能够形成 自动组织的无线传感器 网络。
2020/10/2
24
2.无线传感器网络体系结构
根据传感器节点在使用中是 否移动,可将无线传感器网 络分为:
静态(非移动性)网络: 节点布置在监测区域内,根 据用户的要求,可对各种环 境或物体参数进行测量
2020/10/2
12
▪ 汇聚节点
汇聚节点的处理能力、存储能力和通信能力相对比较强。 ▪ 连接传感器网络与Internet 等外部网络 ▪ 实现内部与外部网络协议栈之间的通信协议转换 ▪ 发布监控中心节点要求的监测任务 ▪ 把收集的数据转发到外部网络上
汇聚节点既可以是一个具有增强功能的传感器节点,有足够 的能量供给和更多的内存与计算资源,也可以是没有监测功 能仅带有无线通信接口的特殊网关设备。
2020/10/2
22
传感器节点的限制
1
电池能量有限
2
通信能力有限
3
计算和存储能力有限
2020/10/2
23
2.无线传感器网络体系结构
平面结构(对等式结构):所有 节点的地位平等
分级结构:网络被划分为簇 (Cluster),每一个簇由一个 簇头和多个簇成员组成。
“无线传感器网络是在不远的将来会产生巨大影响的十种 新兴技术之一,它将很快改变计算、医疗、制造、运输和 能源基础设施”
2020/10/2
6
概要
美国商业周刊
▪ “无线传感器网络将是21世纪最有影响的21项技术之一”
(1999年)
▪ 将其与公用计算(Utility Computing)、塑料电子学(Plastic
(sink node)和监控中心节点
2020/10/2
11
▪ 传感器节点
通常是一个微型的嵌入式系统,它的处理能力、存储能力和 通信能力相对较弱,通过携带能量有限的电池供电。 ▪ 进行本地信息收集和数据处理可靠的数据传输 ▪ 对其他节点转发来的数据进行存储、管理和融合 ▪ 与其他节点协作完成一些特定任务。