对数与对数运算第一课时(公开课精品课件).
合集下载
高中数学必修一221对数与对数运算精品PPT课件

You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
(1) log3(x2 1)
(2) log(x1)(x 2) .
例题精讲
考点三 求值:
例 3. 求下列各式中 x 的值:
(1)
log64
x
2 3
;
(3) lg100 x
(2) logx 8 6 (4) ln e2 x .
精彩展示
变式 1.
1).求下列各式的值:
(1) log5 25
;
(2)
写成
讨论:
小组合作
在指数式
和对数式
中, ,x ,N各自的地位有什么不同?
,N取值范围是什么?
探究:
指数式
小组合作
Nx
指数的底数 幂 幂指数
对数式 对数的底数 真数 对数
真数:N 0
知识探究
指数式与对数式互化:
真数:N 0 负数和零没有对数
知识探究
对数运算的常用结论
(1) loga 1 _____ ax 1 (2) loga a _____ ax a (3) aloga N _____ ax N
(2) log(4x)(1 4x2) .
当堂检测
1.
计算:(1) log 8 _____ 2
;(2)
2log25 log3 1 ____.
2
2. 对数式 log(a2)(5 a) b 中,实数 a 的取值范围是______.
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
(1) log3(x2 1)
(2) log(x1)(x 2) .
例题精讲
考点三 求值:
例 3. 求下列各式中 x 的值:
(1)
log64
x
2 3
;
(3) lg100 x
(2) logx 8 6 (4) ln e2 x .
精彩展示
变式 1.
1).求下列各式的值:
(1) log5 25
;
(2)
写成
讨论:
小组合作
在指数式
和对数式
中, ,x ,N各自的地位有什么不同?
,N取值范围是什么?
探究:
指数式
小组合作
Nx
指数的底数 幂 幂指数
对数式 对数的底数 真数 对数
真数:N 0
知识探究
指数式与对数式互化:
真数:N 0 负数和零没有对数
知识探究
对数运算的常用结论
(1) loga 1 _____ ax 1 (2) loga a _____ ax a (3) aloga N _____ ax N
(2) log(4x)(1 4x2) .
当堂检测
1.
计算:(1) log 8 _____ 2
;(2)
2log25 log3 1 ____.
2
2. 对数式 log(a2)(5 a) b 中,实数 a 的取值范围是______.
2-2-1-1 对数与对数运算(第1课时)对数的概念、指对互化 课件(人教A版必修1)

(2)中先将对数式化为指数式,然后代入求值.
第20页
第一章
1.2
习题课
新课标A版 ·数学 ·必修1
【解析】
第21页
第一章
1.2
习题课
新课标A版 ·数学 ·必修1
探究3
(1)对数有很强的范围要求,底数有范围限制,真数
也有范围限制,要注意所求值能否使真数为正. (2)对于对数和对数的底数与真数三者之间,已知其中两个 就可以利用对数式和指数式的互化求出另外一个.
1.2
习题课
新课标A版 ·数学 ·必修1
1.b=logaN中为什么规定N>0?
答:b=logaN是由ab=N(a>0且a≠1)变形而来的,由于正数 的任意次幂都是正数,即ab=N>0,所以要规定N>0.
第 7页
第一章
1.2
习题课
新课标A版 ·数学 ·必修1
2.在指数式与对数式中,a,x,N这三个量有何异同?
7.求下列各式中x的值. 1-2x (1)若log3( 9 )=1,则求x的值; (2)若log2 013(x2-1)=0,则求x的值.
答案
(1)-13
(2)± 2
第37页
第一章
1.2
习题课
新课标A版 ·数学 ·必修1
课时作业(二十四)
第38页
第一章
1.2
习题课
logaN=x⇔ax=N.可以求对数式的值. (2)对2n,3n,4n,5n等,当n较小时应张口就能说出结果!
第18页
第一章
1.2
习题课
新课标A版 ·数学 ·必修1
思考题2
求下列各式的值. (2)log9(243×81).
(1)log483;
对数与对数运算第一课时(公开课精品课件).

(1) lg36
1.5562
81 (2)lg 32
0.4034
例6
解法一:
7 计算 :lg14 2 lg lg 7 lg18 3
解法二:
7 lg 14 2 lg lg 7 lg 18 3 7 lg(2 7) 2 lg 3 lg 7 lg(2 32 )
1.计算下列各式的值.
1 32 4 1 —— (1). lg lg 8 lg 245 2 2 49 3 2 2 2 (2).lg 5 lg 8 lg 5. lg 20 lg 2 3 3 lg 2 lg 3 lg 10 1 —— (3). 2 lg1.8
1.对数的概念、表示.
• 3、数学思想小结 • 从特殊到一般——归纳法;
普通高中课程标准实验教科书数学必修一 2.2.1 对数
• 4、重点难点小结;
重点 :(1)对数的概念; (2)对数式与指数式的相 互转化。 难点 :对数概念的理解。
普通高中课程标准实验教科书数学必修一 2.2.1 对数
(一)必做 1、复习本节课的内容(明天提问) ; 2、课本 P74 习题 2.2 A 组 第 1、 2 题 (写在作业本上明天上交) ; 3、 《创新方案》 53 页变式之作 3, 《创新方案》 54 页课堂强化。
7 lg 14 2 lg lg 7 lg 18 3 7 2 lg14 lg( ) lg 7 lg18 3 14 7 lg 7 2 ( ) 18 3 lg1 0
lg 2 lg 7 2(lg 7 lg 3) lg 7 (lg 2 2 lg 3)
loga 1 0 “1”的对数等于零,即
等价
a 1
0
对数与对数运算课件

01
对数在实际中的应 用
对数在科学计算中的应用
物理学
在物理学中,对数被广泛应用于 测量声音、光和热等物理量。例 如,分贝是对声音强度的对数尺 度,而温度的对数变换则用于热
力学温标。
化学
在化学中,对数被用于描述化学 反应速率和化学平衡。例如, pH值是描述溶液酸碱度的对数 值,而logistic方程则用于描述 种群增长的对数规律。
生物学
在生物学中,对数被用于描述生 物种群数量增长和生物体内物质 浓度的变化。例如,logistic增 长模型就是基于对数规律建立的
。
对数在金融领域的应用
投资组合优化
对数函数被用于计算投资组合的预期 回报率,以便投资者能够根据风险偏 好和投资目标进行资产配置。
风险管理
对数函数被用于计算金融风险的VaR (Value at Risk)值,以便金融机构 能够评估和管理潜在的市场风险。
对数与对数运算课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 对数的定义与性质 • 对数运算 • 对数在实际中的应用 • 对数的历史与发展
01
对数的定义与性质
对数的定义
总结词
对数是一种数学运算方式,表示以特定数为底数的指数的逆 运算。
详细描述
对数是以实数指数幂为定义域和值域的函数,通常表示为 logarithm,简写为log。在数学中,对数运算用于简化大数 的乘除问题,以及对数列、级数等数学问题的研究。
应用
换底公式在科学计算、工程技术和 金融等领域有广泛应用。
对数的运算法则
乘法法则
log_b(mn) = log_b(m) + log_b(n)。
必修1课件2.2.1-1对数与对数运算 (一)

(2)loga 1 0,loga a 1
∵对任意
a 0且a 1 , 都有
loga 1 0
⑶对数恒等式:
a 1
0
log 同样易知: a a 1
b
如果把 a N 中的 b写成 log a N , 则有 : loga N
a
N (a 0且a 1, N 0)
⑷常用对数:我们通常将以10为底的对数叫做常用对数.
对数的性质:
1. 负数和零没有对数。 2. 3.
log a 1 0 (a 0 , a 1)
log a a 1 (a 0 , a 1)
对数恒等式:
4.
5.
a
loga N
N (a 0 , a 1, N 0)
N
log a a N (a 0, a 1)
三、讲解范例:
(1) 2 x (2) 3 81 (3) x 0.16
注:在
a N 中,1)已知a, b,求N
b
2)已知b, N,求a 3)已知a, N,求b
乘方运算 开方运算 对数运算
小结 本节课学习了以下内容:
⑴对数的定义, ⑵指数式与对数式互换 ⑶求对数式的值
1. 负数和零没有对数。
2. log a 1 0 (a 0 , a 1)
§2.2.1-1对数与对数运算 (一)
对数的创始人是苏格兰 数 学 家 纳 皮 尔 ( Napier , 1550年~1617年)。他发明了 供天文计算作参考的对数, 并于1614年在爱丁堡出版了 《奇妙的对数定律说明书》, 公布了他的发明。恩格斯把 对数的发明与解析几何的创 纳皮尔(1550~1617) 始,微积分的建立并称为17 世纪数学的三大成就。
2.2.1对数与对数运算优秀公开课课件(经典课件)

思考4:如果a>0,且a≠1,M>0,则 loga n M 等于什么?
新课教学
Office组件之word2007
证明:
(3)设 log a M p,
由对数的定义可以得:M a p ,
∴ M n anp log a M n np
即证得
log a M n n log a M(n R)
归纳小结:
3
3
2 log3 3
2
范例
(3) log 2 3 log3 7 log7 8 解: (3) log 2 3 log3 7 log7 8
lg 3 lg 7 lg 8 lg 2 lg 3 lg 7
lg 23
lg 2 3lg 2
lg 2
=3
Office组件之word2007
讲解范例
Office组件之word2007
例5计算: (1) lg14 2lg 7 lg 7 lg18
解法一:
3 解法二:
lg14 2 lg 7 lg 7 lg18 3
lg14 lg( 7)2 lg 7 lg18 3
lg
(
14 7 7)2 18
3
lg1 0
lg14 2 lg 7 lg 7 lg18 3
lg(2 7) 2 lg 7 3
lg 7 lg(2 32 )
lg 2 lg 7 2(lg 7 lg 3) lg 7 (lg 2 2 lg 3)
0
讲解范例
Office组件之word2007
例5计算: (2) lg 243
lg 9
(3) lg 27 lg 8 3lg 10 lg1.2
解:
lg 243 lg 35 (2) lg 9 lg 32
新课教学
Office组件之word2007
证明:
(3)设 log a M p,
由对数的定义可以得:M a p ,
∴ M n anp log a M n np
即证得
log a M n n log a M(n R)
归纳小结:
3
3
2 log3 3
2
范例
(3) log 2 3 log3 7 log7 8 解: (3) log 2 3 log3 7 log7 8
lg 3 lg 7 lg 8 lg 2 lg 3 lg 7
lg 23
lg 2 3lg 2
lg 2
=3
Office组件之word2007
讲解范例
Office组件之word2007
例5计算: (1) lg14 2lg 7 lg 7 lg18
解法一:
3 解法二:
lg14 2 lg 7 lg 7 lg18 3
lg14 lg( 7)2 lg 7 lg18 3
lg
(
14 7 7)2 18
3
lg1 0
lg14 2 lg 7 lg 7 lg18 3
lg(2 7) 2 lg 7 3
lg 7 lg(2 32 )
lg 2 lg 7 2(lg 7 lg 3) lg 7 (lg 2 2 lg 3)
0
讲解范例
Office组件之word2007
例5计算: (2) lg 243
lg 9
(3) lg 27 lg 8 3lg 10 lg1.2
解:
lg 243 lg 35 (2) lg 9 lg 32
高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数运算第一课时对数课件新人教A版必修13

(1)解析:因为 a=log35, 所以 3a+9a= 3log3 5 +( 3log3 5 )2=5+25=30.选 D.
log3 x, x 0, (2)若函数 f(x)= 3x , 1 x 0, 求 f(f(f(-2-
3x 2 , x 1,
2 ))).
(2)解:因为-2- 2 <-1,所以 f(-2- 2 )=- 32 2 2 =- 1 . 9
(4)因为 logx64=-2, 所以 x-2=64,所以 x= 1 .
8
题型二 对数的简单性质 [例2] 求下列各式中的x. (1)log3(x2-1)=0;
解:(1)因为 log3(x2-1)=0,
所以
x 2
x
2
1 1
0, 1,
所以 x=± 2 .
(2)log(x+3)(x2+3x)=1.
又- 1 ∈(-1,0],所以 f(f(-2-
2
))=f(-
1
)=
3
1 9
.
9
9
因为
3
1 9
>0,所以
f(
3
1 9
)=log3
3
1 9
=-
1
.即原式=-
1
.
9
9
学霸经验分享区
(1)指数式与对数式互化时的技能及应注意的问题 ①技能:若是指数式化为对数式,只要将幂作为真数,指数当成对数 值,而底数不变即可;若是对数式化为指数式,则正好相反. ②注意问题:利用对数式与指数式间的互化公式互化时,要注意字母 的位置改变;对数式的书写要规范:底数a要写在符号“log”的右下 角,真数正常表示. (2)对数性质的运用技能 logaa=1及loga1=0是对数计算的两个常用量,可以实现数1,0与对数 logaa及loga1的互化.
log3 x, x 0, (2)若函数 f(x)= 3x , 1 x 0, 求 f(f(f(-2-
3x 2 , x 1,
2 ))).
(2)解:因为-2- 2 <-1,所以 f(-2- 2 )=- 32 2 2 =- 1 . 9
(4)因为 logx64=-2, 所以 x-2=64,所以 x= 1 .
8
题型二 对数的简单性质 [例2] 求下列各式中的x. (1)log3(x2-1)=0;
解:(1)因为 log3(x2-1)=0,
所以
x 2
x
2
1 1
0, 1,
所以 x=± 2 .
(2)log(x+3)(x2+3x)=1.
又- 1 ∈(-1,0],所以 f(f(-2-
2
))=f(-
1
)=
3
1 9
.
9
9
因为
3
1 9
>0,所以
f(
3
1 9
)=log3
3
1 9
=-
1
.即原式=-
1
.
9
9
学霸经验分享区
(1)指数式与对数式互化时的技能及应注意的问题 ①技能:若是指数式化为对数式,只要将幂作为真数,指数当成对数 值,而底数不变即可;若是对数式化为指数式,则正好相反. ②注意问题:利用对数式与指数式间的互化公式互化时,要注意字母 的位置改变;对数式的书写要规范:底数a要写在符号“log”的右下 角,真数正常表示. (2)对数性质的运用技能 logaa=1及loga1=0是对数计算的两个常用量,可以实现数1,0与对数 logaa及loga1的互化.
高中数学新人教A版必修1课件:第二章基本初等函数2.2.1对数与对数运算(第1课时)对数

• 并非所有指数式都可以直接化为对数式.如(-3)2=9就不能直接 写成log(-3)9=2,只有a>0且a≠1,N>0时,才有ax=N⇔x=logaN.
〔跟踪练习1〕
将下列指数式化为对数式,对数式化为指数式:
(1)42=16;
(2)102=100;
1
(3)42
=2;
(4)log1 32=-5. 2
(3)原式=(alogab) logbc=blogbc=c.
• 『规律方法』 运用对数恒等式时注意事项 • (1)对于对数恒等式alogaN=N要注意格式: • ①它们是同底的;②指数中含有对数情势;③其值为对数的真数. • (2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.
〔跟踪练习3〕 求31+log36-24+log23+103lg3+(19)log34的值. [解析] 原式=3·3 log36-24·2 log23+(10lg3)3+(3 log34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4176.
• 3.对数与指数的关系
• 当a>0,且a≠1时,ax=N⇔x=____ln_N_______.
• 4.对数的基本性质 • (1)___零___和_负_数______没有对数.
• (2)loga1=_0____(a>0,且a≠1). • (3)logaa=_1____(a>0,且a≠1). • 5.对数恒等式
B.log1 9=-2 3
C.log1 (-2)=9 3
D.log9(-2)=13
[解析] 将(13)-2=9写成对数式为log13 9=-2,故选B.
• 4.若log2(log3x)=0,则x=_3____. • [解析] 由题意得log3x=1,∴x=3.
〔跟踪练习1〕
将下列指数式化为对数式,对数式化为指数式:
(1)42=16;
(2)102=100;
1
(3)42
=2;
(4)log1 32=-5. 2
(3)原式=(alogab) logbc=blogbc=c.
• 『规律方法』 运用对数恒等式时注意事项 • (1)对于对数恒等式alogaN=N要注意格式: • ①它们是同底的;②指数中含有对数情势;③其值为对数的真数. • (2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.
〔跟踪练习3〕 求31+log36-24+log23+103lg3+(19)log34的值. [解析] 原式=3·3 log36-24·2 log23+(10lg3)3+(3 log34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4176.
• 3.对数与指数的关系
• 当a>0,且a≠1时,ax=N⇔x=____ln_N_______.
• 4.对数的基本性质 • (1)___零___和_负_数______没有对数.
• (2)loga1=_0____(a>0,且a≠1). • (3)logaa=_1____(a>0,且a≠1). • 5.对数恒等式
B.log1 9=-2 3
C.log1 (-2)=9 3
D.log9(-2)=13
[解析] 将(13)-2=9写成对数式为log13 9=-2,故选B.
• 4.若log2(log3x)=0,则x=_3____. • [解析] 由题意得log3x=1,∴x=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.13 m
log1 5.13
3
普通高中课程标准实验教科书数学必修一4.3.1对数
(4)
log 1 16
2
4 (1 )4 2
16
(5) ln10 2.303 e2.303 10 (6) lg 0.01 2 102 0.01
方法小指结对: 数的互化关键是抓住对数 式和指数式的关系,弄清楚各个量在 对应式子中扮演的角色。
z
loga x loga y loga z
解:(2)log a
x2
3
y z
1
log a (x2 y 2 ) log a
1
z3
1
1
log a x2 log a y 2 log a z 3
2 log a
x
1 2
log
a
y
1 3
log
a
z
练习2
(1) log2(23×45) 13
125 (2)log5
-
2 3
=x
x
4 - 2
3
(
3
2
)3
普通高中课程标准实验教科书数学必修一 4.3.1对数
(2)
解:∵
求底数
又∵ x 0
∴x6 8 ∴
求对数
(3) lg100 x 解:∵ lg100 x
∴ 10x 100 102
∴ x2
普通高中课程标准实验教科书数学必修一 4.3.1对数
四、对数的性质
-2 log10 0.01
若2m 18,则 m log2 18
思考
对 数 x loga N, (a 0;a 1);
1.为什么限制 a 0?, a 1
这是因为 ax Na 0, a 1
2. N能小于零或等于零吗?
(不能,这是因为a>0,ax=N>0)
结论:对数式中真数要大于零。
(也就是说零和负数没有对数!)
探究活动1 求下列各式的值:
(1) log31 0(2) l o g2 1 0 (3) log0.5 0(4) lg1 0
思考:你发现了什么?
“1”的对数等于零,即log a 1 0 等价 a0 1
普通高中课程标准实验教科书数学必修一 4.3.1对数
四、对数的性质
探究活动2 求下列各式的值:
材料1、在log2(2 a)式子中,要使 式子有意义,a的取值范围为 材料2、已知方程log2(x2 2x 1) 1, 则 x
探究:
⑴负数与零没有对数(∵在指数式中 N > 0 )
⑵ log a 1 0,
对任意 a 0 且 a 1 都有 a0 1 log a 1 0
a1 a loga a 1
⑶对数恒等式 aloga N N
设 log a N b 则 a b N
则有 aloga N N
3.积、商幂的对数
如果a 0,a 1, M 0N 0,那么 (1)loga (MN) logaM loga N;
M (2)loga N logaM - loga N (3)logaMn nlogaM(n R)
2.2.1 对数
进入
解 决 为了解决“已知底和幂,求指数”这类问题,引进对数.
一般地,如果 ax N a,那0,么a 数1x
叫做以a 为底N的对数,记作
x loga N, (a 0, a 1);
其中a叫做对数的底数,N叫做真数。
注意:①底数的限制:a>0且a≠1
②对数的书写格式
log N 强调:对数是一个数! a
4 3
(2) lg1003
6
(3) log3 9 log3 27 6
(4) lg 10 lg 0.12 5 2
例4 用 loga x, log a y, log a z 表示下列各式:
(1)loga
xy ; z
x2 y (2) log a 3 z
解:(1)
log a
xy z
loga (xy) loga
真数大于零
普通高中课程标准实验教科书数学必修一 2.2.1对数
指数和对数的关系 (a>0,且a≠1)
指数
对数
幂
真数
底数
底数 指数 幂
←a→ ←b→ ←N→
底数 对数 真数
普通高中课程标准实验教科书数学必修一 4.3.1对数
两个重要对数:
1、常用对数:以10为底的对数
log10 N 简记为 lg N
(1) log3 3 1(2) l og2 2 1 (3) log0.5 0.5 1(4) lg10 1
思考:你发现了什么?
底数的对数等于1,即 loga a 1 等价 a1 a
普通高中课程标准实验教科书数学必修一 4.3.1 对数
1、负数和零没有对数
2、“1”的对数等于零,即 loga 1 0 3、底数的对数等于“1”,即 log a a 1
普通高中课程标准实验教科书数学必修一 2.2.1 对数
3.求下列各式的值:
4
-3
1
0
3
例3 求下列各式的值:
(1) log264;
6
(2) log3_19__ .
-2
(3) lg1;
0
(4) lg100.
2
(5) lg0.001;
-3
(6) log927.
__3__ 2
练习1
(1)log 2 23 2
1.把下列指数式写成对数式:
(1)23 8
(2)25 32
(3)21 1 2
1
(4)27 3
1
3
2.把下列对数式写成指数式:
(1) log3 9 2
(2) log5 125 3
1 (3) log2 4 2
(4)
log3
1 81
4
例2:求下列各式中x的值 :
求真数
(1)解:∵
64 64
3 2
例5 已知lg2≈0.3010,lg3 ≈ 0.4771, 求下列各式的值(结果保留四位小数):
(1) lg36 1.5562
(2)lg 81 32
0.4034
例6 计算:lg14 2lg 7 lg 7 lg18
3
解法一:
解法二:
lg14 2lg 7 lg 7 lg18 3
2、自然对数:以e为底的对数 (e≈2.71828…)
loge N 简记为 ln N
你记住了吗?
普通高中课程标准实验教科书数学必修一 4.3.1对数
例1:将下列指数式写成对数式, 对数式写成指数式:
解:(1) 54 625 4= log5 625
(2)
26
1 64
-6=
log2
1 64
(3)
1 m 3
定义:一般地,如果 ax N a,那0,么a 1
数x叫做以 a为底N的对数,记作
x loga N, (a 0, a 1); ax N x loga N , (a 0, a 1);
例如:
若42 16,则 2 log4 16
1
若42
2,则
1
log4 2
2
则 若102 0.01