化学实验报告乙酸乙酯的合成
乙酸乙酯的合成实验报告

乙酸乙酯的合成实验报告实验目的:1. 学习乙酸乙酯的制备方法;2. 掌握碳酸钠和盐酸的中和反应;3. 掌握酸催化剂催化酯化反应的机理;4. 检验产物的结构。
实验原理:乙酸乙酯是一种用途很广的酯化物,可以作为溶剂,也可作为燃料或香料等。
乙酸乙酯的合成可以采用酸催化法或碱催化法,其中酸催化法因为方便和高效,被广泛采用。
酸催化法的反应机理为: 在酸催化剂的作用下,乙酸与乙醇发生酯化反应,生成乙酸乙酯和水。
实验步骤:化学品:乙酸、乙醇、浓盐酸、无水碳酸钠、石蜡、浓硫酸、乙酸乙酯药品的准备:1. 饱和Na2CO3:加入适量的电解质无水碳酸钠和少量纯露,搅拌,加水,搅拌溶解;2. 石蜡:在沙锅里熔化,倒入长颈漏斗直至接近底部,封口;3. 4%硫酸:在瓶口处灌入4%的浓硫酸,倒去瓶口的多余浓硫酸,盖上密封塞子。
1. 用石蜡做CaH2O4的烷基化柱。
黄石蜡溶液在100℃下去除水,然后冷却,果冻的蜡块成了我们的固相氢氧化钙。
先将1cm长的硅胶粉状在漏斗内压实,倒入8g的去离子水,无风无烟地滴入2mL浓盐酸与0.5g的CaH2O4。
反应结束后用无水醚进行水分的配体。
借助柱上水的分离效应,分离获得干净的沉淀。
2. 蒸化乙醇:将100mL乙醇蒸馏至50mL左右,除去其中70mL,获得高纯度的乙醇。
3. 调配反应液:在干净无水滴定瓶中依次滴入饱和Na2CO3水溶液(约10mL)、乙醇(33mL)、乙酸(20g)。
4. 反应:将调配液加入烧好的配平了常数的反应烧瓶中和少量浓硫酸混合,在水浴上进行反应。
5. 蒸馏分离:反应结束后,将反应混合物倒入直口烧瓶中加入适量于乙酸乙酯,蒸馏,采集沸程为70℃~75℃的收集液。
6. 收量:将收集液称重,记录收率。
实验数据:乙酸乙酯的结构式:CH3-COO-CH2-CH3试剂量:乙酸 20g乙醇(经蒸馏) 33mL饱和Na2CO3溶液约10mL浓硫酸 5mL收集的乙酸乙酯量:15g实验结果:乙酸乙酯的产率= (实际收率÷理论收率)×100%= 75.0%实验分析:通过实验可以得到乙酸乙酯的产率为75%,说明总反应比较充分,同时实验过程中需要注意加入饱和Na2CO3水溶液时,要逐滴加入,并且在反应过程中要及时加入一定量的浓硫酸来维持反应环境的酸性。
乙酸乙酯的合成实验报告

乙酸乙酯的合成实验报告乙酸乙酯的合成实验报告引言:乙酸乙酯是一种常见的酯类化合物,具有水果香味,广泛应用于食品、香精、溶剂等领域。
本实验旨在通过酯化反应合成乙酸乙酯,并通过实验结果对反应条件和机理进行分析。
实验目的:1. 掌握酯化反应的基本原理和实验操作技巧;2. 熟悉乙酸乙酯的合成方法;3. 通过实验结果分析反应条件和机理。
实验原理:乙酸乙酯的合成是通过酯化反应进行的,反应方程式为:乙酸 + 乙醇→ 乙酸乙酯 + 水实验步骤:1. 准备实验装置和试剂,注意安全;2. 在圆底烧瓶中加入一定量的乙酸和乙醇,摇匀;3. 加入少量的催化剂(例如硫酸);4. 将烧瓶连接到冷凝器,并加热反应混合物;5. 反应结束后,收集生成的乙酸乙酯。
实验结果与分析:在实验过程中,我们观察到乙酸和乙醇混合后,反应溶液呈现出明显的变化,从无色逐渐变为乳白色。
这是由于酯化反应进行时,酯和水生成的过程中,产生了乳白色的乳化液。
反应结束后,我们通过蒸馏的方法将乙酸乙酯从反应混合物中分离出来。
通过实验数据的记录和分析,我们可以得出以下结论:1. 反应时间:反应时间的长短会对乙酸乙酯的产率产生影响。
在本实验中,我们发现随着反应时间的延长,乙酸乙酯的产率逐渐增加,但同时也会增加副反应的发生,导致产率的下降。
2. 温度:反应温度对乙酸乙酯的产率也有一定影响。
通常情况下,适宜的反应温度能够提高反应速率和产率。
然而,温度过高可能会导致副反应的发生,降低产率。
3. 催化剂:在本实验中,我们使用了硫酸作为催化剂。
催化剂能够加速反应速率,提高产率。
但是,过量的催化剂会降低产率,因为它可能与反应物发生副反应,导致产物的损失。
结论:通过本次实验,我们成功合成了乙酸乙酯,并对反应条件和机理进行了分析。
实验结果表明,反应时间、温度和催化剂的选择对乙酸乙酯的产率有重要影响。
在实际应用中,我们可以根据需要调整这些条件,以达到最佳的合成效果。
参考文献:1. 张三, 李四. 有机化学实验教程. 北京:化学出版社,2015.2. 王五, 赵六. 乙酸乙酯合成实验研究. 化学杂志,2018,20(2):56-60.。
乙酸乙酯的合成实验报告

乙酸乙酯的合成实验报告
实验目的,通过酯化反应合成乙酸乙酯,并对合成产物进行鉴定。
实验原理:酯化反应是一种醇和酸发生酯键的化学反应。
在本实验中,我们将乙酸和乙醇在催化剂存在下进行酯化反应,生成乙酸乙酯。
酯化反应的化学方程式如下所示:
CH3COOH + C2H5OH → CH3COOC2H5 + H2O。
实验仪器和试剂,醇、酸、酸性催化剂、分液漏斗、冷凝管、蒸馏烧瓶、酒精灯、试管等。
实验步骤:
1. 在蒸馏烧瓶中加入适量的乙酸和乙醇,然后加入几滴酸性催化剂。
2. 将蒸馏烧瓶连接到冷凝管上,用酒精灯进行加热,使反应物发生酯化反应。
3. 收集产物并进行鉴定。
实验结果,通过实验,我们成功合成了乙酸乙酯。
产物呈无色液体,具有水果般的香味。
经过鉴定,产物的物理性质和化学性质与乙酸乙酯相符。
实验结论,本实验成功合成了乙酸乙酯,证明了酯化反应的可行性。
通过本实验,我们对酯化反应有了更深入的了解,同时也提高了化学实验操作的技能。
实验注意事项:
1. 实验中要注意安全,避免接触到有毒或刺激性的化学品。
2. 在操作过程中要小心谨慎,避免发生意外。
3. 实验后要及时清洗实验仪器和设备,保持实验室的整洁。
实验改进方向,在今后的实验中,可以尝试使用不同的酸性催化剂,比较它们对酯化反应的影响;也可以尝试改变反应条件,如温度、压力等,探究它们对反应速率的影响。
通过本次实验,我们对乙酸乙酯的合成有了更深入的了解,同时也提高了对酯化反应的认识。
希望今后能够继续深入学习化学实验知识,不断提升实验操作的技能和实验设计的能力。
制备乙酸乙酯的实验报告

一、实验目的1. 通过实验,加深对酯化反应原理的理解;2. 掌握乙酸乙酯的制备方法;3. 学习并掌握回流反应装置的搭制方法;4. 掌握蒸馏、分液、干燥等基本操作。
二、实验原理乙酸乙酯是一种无色液体,具有水果香气,是一种重要的有机溶剂和香料。
乙酸乙酯的制备主要通过乙酸与乙醇在浓硫酸催化下进行酯化反应,生成乙酸乙酯和水。
反应方程式如下:CH3COOH + C2H5OH → CH3COOC2H5 + H2O三、实验药品及物理常数1. 乙酸:分析纯,密度为1.049 g/mL,沸点为118.1℃;2. 乙醇:分析纯,密度为0.789 g/mL,沸点为78.37℃;3. 浓硫酸:分析纯,密度为1.84 g/mL;4. 碳酸钠:分析纯,密度为2.32 g/mL,熔点为850℃;5. 饱和食盐水:密度为1.025 g/mL。
四、主要仪器和材料1. 三口烧瓶(100 mL、19#);2. 蒸馏头(19#);3. 螺帽接头(19#);4. 球形冷凝管(19#);5. 直形冷凝管(19#);6. 真空接引管(19#);7. 锥形瓶(50 mL、19#);8. 锥形瓶(250 mL);9. 量筒(10 mL);10. 温度计(200℃);11. 分液漏斗;12. 烧杯(500 mL、250 mL、100 mL);13. 铁圈;14. 烧瓶夹;15. 冷凝管夹;16. 十字夹;17. 剪刀;18. 酒精灯;19. 砂轮片;20. 橡皮管;21. 沸石。
五、实验装置1. 滴加、蒸馏装置;2. 洗涤、分液装置;3. 蒸馏装置。
六、操作步骤1. 准备实验装置,连接好蒸馏装置;2. 在三口烧瓶中加入19 mL无水乙醇和5 mL浓硫酸,加入沸石;3. 向恒压漏斗中加入8 mL冰醋酸;4. 开始加热,加热电压控制在70V~80V,并使冰醋酸缓慢滴入烧瓶,微沸30~40min;5. 蒸馏温度控制在73℃~78℃之间,直至反应结束;6. 关闭热源,待冷凝管中的乙酸乙酯冷却后,将其收集于锥形瓶中;7. 将收集到的乙酸乙酯用饱和食盐水洗涤,去除残留的酸和醇;8. 将洗涤后的乙酸乙酯用无水硫酸镁干燥;9. 将干燥后的乙酸乙酯转移至干燥器中,冷却至室温;10. 计算产率,并记录实验数据。
乙酸乙酯实验报告

乙酸乙酯实验报告乙酸乙酯实验报告一、引言乙酸乙酯是一种常见的有机化合物,具有水果香气,常用于食品和香精的制备。
本实验旨在通过酸催化反应合成乙酸乙酯,并通过实验验证反应条件对产率的影响。
二、实验原理乙酸乙酯的合成反应式为:乙酸 + 乙醇→ 乙酸乙酯 + 水。
该反应是一个酸催化的酯化反应,反应物乙酸和乙醇在酸催化剂存在下发生酯化反应,生成乙酸乙酯和水。
三、实验步骤1. 配制酸催化剂:取适量浓硫酸,加入等量的水,慢慢搅拌均匀,制备成10%的硫酸溶液。
2. 反应体系准备:取一定量的乙酸和乙醇,按照一定的物质配比加入反应瓶中。
3. 加入催化剂:将制备好的10%硫酸溶液以滴管的形式加入反应瓶中,同时轻轻摇晃反应瓶,使其充分混合。
4. 反应过程观察:观察反应瓶中的变化,如有产生气泡或温度升高等现象。
5. 反应结束:反应一段时间后,将反应瓶放置于冷却水中,使其冷却。
6. 产物提取:将反应瓶中的混合物倒入分液漏斗中,加入适量的饱和氯化钠溶液,轻轻摇晃混合,使有机相和水相分离。
7. 有机相收集:打开分液漏斗的塞子,将底层的水相倒掉,保留上层的有机相。
8. 除杂:将有机相加入干燥剂中,用滤纸过滤除去杂质。
9. 蒸馏提纯:将除杂后的有机相加入蒸馏烧瓶中,进行蒸馏提纯,收集沸点为77℃的乙酸乙酯。
四、实验结果与讨论通过实验,我们得到了一定量的乙酸乙酯产物。
在实验过程中,我们观察到了反应瓶中产生了气泡,并且温度也有所升高。
这是由于酸催化剂起到了催化作用,加速了反应的进行。
在实验中,我们还发现了一些问题。
首先,反应过程中需要控制反应温度,避免过高的温度导致产物的分解。
其次,酸催化剂的用量也需要控制好,过多的酸催化剂可能会导致副反应的发生,影响产物的纯度。
另外,本实验中的产率也是一个重要的指标。
产率是指实际得到的产物质量与理论计算的产物质量之比。
产率的高低直接反映了反应条件的优劣。
通过实验,我们可以改变反应物的配比、酸催化剂的浓度等条件,来探究这些条件对产率的影响。
乙酸乙酯的合成实验报告

三、仪器与试剂
仪器:100ml、50ml圆底烧瓶,冷凝管,温度计,分液漏斗,电热套,维氏分馏柱,接引管,铁架台,胶管等。试剂名称用量规格试剂名称用量规格:
冰醋酸20ml CPNaCl 4g CP95%乙醇:25ml CaCl2:15g 98%浓硫酸:10mlNaCO3:10g无水MgSO4:5g
四、实验步骤
观察产物外观,称取质量,ห้องสมุดไป่ตู้折射率
五、实验数据(现象)
无色液体,有香味,锥形瓶质量31.5g,共43。2g,产品质量为11.7g;折射率1。3710,1.3720,1.3715。
六、分析及结论
产率=11.7/(0.25*88)*100%=53。2%
第一次
第二次
第三次
平均值
折射率
1。3710
1.3720
1。3715
1。3715
七、思考题
1.乙醇和醋酸合成乙酸乙酯时,为什么要用小火加热?
2.本实验中多次用到“洗涤”操作,请问碳酸钠饱和溶液、饱和食盐水、饱和氯化钙溶液分别除去的是原蒸馏液中的什么成分?
答:1、控制反应速度和回流蒸汽的速度不至于过快.
2、分别除去残余的酸液、残余的碳酸根离子、多余的醇溶液.
《乙酸乙酯的合成》试验报告
一、实验目的
1.掌握酯化反应原理以及由乙酸和乙醇制备乙酸乙酯的方法。
制取乙酸乙酯实验报告

一、实验目的1. 熟悉实验室制取乙酸乙酯的原理和方法。
2. 掌握乙酸乙酯的制备过程和实验操作技巧。
3. 了解乙酸乙酯的性质和应用。
二、实验原理乙酸乙酯是一种有机化合物,化学式为C4H8O2,分子量为88.10。
它是乙酸和乙醇在酸催化下发生酯化反应的产物。
酯化反应是一种可逆反应,反应方程式如下:CH3COOH + C2H5OH → CH3COOC2H5 + H2O本实验采用浓硫酸作为催化剂,使乙酸和乙醇在加热条件下发生酯化反应,生成乙酸乙酯。
反应过程中,乙酸乙酯会逐渐形成,并通过分液漏斗分离出上层有机层。
三、实验仪器与试剂1. 仪器:烧杯、酒精灯、试管、分液漏斗、铁架台、蒸馏烧瓶、冷凝管、锥形瓶、温度计、量筒、滴定管等。
2. 试剂:乙酸、乙醇、浓硫酸、NaOH溶液、蒸馏水、饱和碳酸钠溶液等。
四、实验步骤1. 准备乙酸和乙醇溶液,将两者按照1:1的体积比混合。
2. 在烧杯中加入适量的浓硫酸,用酒精灯加热至60℃左右。
3. 将混合好的乙酸和乙醇溶液倒入烧杯中,继续加热,观察反应情况。
4. 当溶液开始出现分层时,停止加热,用分液漏斗将上层有机层分离出来。
5. 将分离出的乙酸乙酯溶液倒入锥形瓶中,加入适量的饱和碳酸钠溶液,充分振荡,使乙酸乙酯中的杂质和残留的酸反应生成盐。
6. 将反应后的溶液倒入分液漏斗中,静置分层,分离出上层有机层。
7. 将上层有机层倒入蒸馏烧瓶中,加入适量的蒸馏水,加热蒸馏,收集馏出物。
8. 将收集到的馏出物进行冷却、结晶、过滤等操作,得到纯净的乙酸乙酯。
五、实验结果与讨论1. 实验结果:经过实验,成功制取了乙酸乙酯,其沸点约为77.1℃,与理论值相符。
2. 讨论与分析:(1)实验过程中,控制反应温度是关键。
温度过高,会导致乙酸乙酯分解;温度过低,反应速度过慢,影响产率。
(2)在分离乙酸乙酯时,要保证分液漏斗的密封性,避免乙酸乙酯挥发。
(3)在洗涤有机层时,使用饱和碳酸钠溶液可以去除残留的酸和杂质,提高乙酸乙酯的纯度。
乙酸乙酯的合成实践报告(2篇)

第1篇一、实验目的1. 掌握乙酸乙酯的合成原理和方法。
2. 熟悉实验操作流程,提高实验技能。
3. 学习有机合成实验的基本操作和注意事项。
二、实验原理乙酸乙酯是一种重要的有机溶剂,广泛应用于医药、农药、香料、涂料等行业。
乙酸乙酯的合成原理为酯化反应,即醇与酸在酸性催化剂的作用下生成酯。
本实验采用乙酸与乙醇在浓硫酸催化下进行酯化反应,合成乙酸乙酯。
反应方程式如下:CH3COOH + C2H5OH → CH3COOC2H5 + H2O三、实验仪器与试剂1. 仪器:烧瓶、冷凝管、蒸馏装置、温度计、玻璃棒、量筒、滴定管等。
2. 试剂:乙酸(AR)、乙醇(AR)、浓硫酸(AR)、NaOH溶液、无水碳酸钠、氯化钠等。
四、实验步骤1. 准备实验装置:将烧瓶、冷凝管、蒸馏装置等连接好,确保装置密封良好。
2. 配制反应物:在烧瓶中加入一定量的乙酸和乙醇,搅拌均匀。
3. 加入催化剂:向反应体系中滴加浓硫酸,搅拌均匀。
4. 加热反应:将反应体系加热至一定温度,保持恒温反应一段时间。
5. 蒸馏:将反应混合物通过蒸馏装置进行蒸馏,收集乙酸乙酯。
6. 后处理:将蒸馏后的乙酸乙酯加入适量的无水碳酸钠,去除残留的酸和醇,静置分层,取上层液体。
7. 干燥:将上层液体加入适量的氯化钠,搅拌使其充分溶解,静置分层,取上层液体。
8. 蒸馏:将上层液体进行蒸馏,收集纯净的乙酸乙酯。
五、实验结果与分析1. 反应现象:在实验过程中,反应体系逐渐变浑浊,有少量气泡产生,表明反应正在进行。
2. 乙酸乙酯的收集:通过蒸馏装置收集到一定量的乙酸乙酯,无色透明,具有芳香气味。
3. 产品纯度:通过气相色谱分析,确定乙酸乙酯的纯度为95%。
六、实验讨论1. 催化剂的选择:本实验采用浓硫酸作为催化剂,因其催化活性高、成本低、易于回收等优点,在工业生产中得到广泛应用。
2. 反应条件的影响:温度、反应时间、反应物摩尔比等因素对反应结果有较大影响。
实验过程中,应严格控制反应条件,以提高乙酸乙酯的产率和纯度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙酸乙酯的合成
一、实验目的和要求
1、通过乙酸乙酯的制备,加深对酯化反应的理解;
2、了解提高可逆反应转化率的实验方法;
3、熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。
二、实验内容和原理
本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯:
副反应:
由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。
为了提高酯的产率,通常都让某一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。
因为乙醇便宜、易得,本实验中乙醇过量。
但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。
由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。
这些共沸物的沸点都很低,不超过72℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。
蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。
表一、乙酸乙酯共沸物的组成与沸点
三、主要物料及产物的物理常数
表二、主要物料及产物的物理常数
四、主要仪器设备
仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL 分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)
折光仪;气相色谱仪。
试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl 饱和溶液。
五、实验步骤及现象
表三、实验步骤及现象
实验装置图:
六、 实验结果与分析
由粗产品洗涤、蒸馏后得三瓶分馏产物,均为无色果香味液体,其质量如下:
1. 前馏分(温度稳定以前):号锥形瓶质量)=;
2. 中馏分(温度稳定在76℃时):号锥形瓶质量)=;
3. 后馏分(温度迅速下降后):号锥形瓶质量)=。
取中馏分在气相色谱仪上测定纯度,测得乙酸乙酯含量为%。
另有一种杂质,含量为%,预计为未洗净的乙醇,因为过量Na 2CO 3未洗净,部分CaCl 2与之反应生成了CaCO 3,剩余的CaCl 2不能把乙醇全部除尽。
因此纯度虽然较
高,但仍有可以改进之处。
在阿贝折光仪上测得室温(20℃)下折光率为。
七、 思考题
1、 利用可逆反应进行合成时,选择何种原料过量时,需要考虑哪几种因素
答:通常过量的原料必须具有以下优点:相对成本较低、易得、对环境和人体的影响更小、引入的副反应更少、反应完成后更容易从体系中去除或回收。
2、 粗乙酸乙酯中含有哪些杂质
答:未反应完全的乙醇、乙酸,酯化反应同时生成的水,溶入的极少的硫酸等。
若酯化反应温度控制不当,高于140℃,乙醇分子间脱水,会有乙醚生成;高于170℃,乙醇分子内脱水,会生成乙烯。
装 订
P. 4
3、能否用浓NaOH溶液代替饱和Na2CO3溶液洗涤
答:不能。
酯化反应是可逆反应,生成的乙酸乙酯在强碱作用下很容易水解成乙醇和乙酸,影响产率。
且加入饱和Na2CO3溶液有CO2放出,可以指示中和是否完成,不易加碱过量。
另外Na2CO3能跟挥发出的乙酸反应,生成没有气味的乙酸钠,便于闻到乙酸乙酯的香味。
4、用饱和CaCl2溶液洗涤能除去什么为什么要用饱和NaCl溶液洗涤是
否能用水代替
答:用饱和CaCl2溶液洗涤是为了除去乙酸乙酯中溶入的少量乙醇。
用饱和NaCl溶液洗涤是为了除去过量的Na2CO3,否则在下一步用饱和CaCl2溶液洗涤时会产生絮状的CaCO3沉淀。
不能用水代替。
因为乙酸乙酯在水中有一定的溶解度,加入NaCl 可以减小乙酸乙酯的溶解度,也就减少了这一步洗涤带来的产物损失。
另外也增加了水层的密度,分液时更容易分层,避免出现乳化现象。
八、讨论、心得
1、实验操作注意点
(1)反应温度必须控制好,太高或太低都将影响到最后的结果。
太高,会
增加副产物乙醚的生成量,甚至生成亚硫酸;太低,反应速率和产率都会降低。
(2)反应过程中,滴加速度也要严格控制。
速度太快,反应温度会迅速下
降,同时会使乙醇和乙酸来不及发生反应就被蒸出,影响产率。
(3)乙酸乙酯可与水或醇形成二元或三元共沸物,共沸物的形成将影响到
馏分的沸程。
共沸物的组成及沸点见表一。
(4)滴液漏斗、分液漏斗等带活塞的仪器在使用前都要先检漏。
(5)浓硫酸在本反应中起到催化、吸水的作用,故用量比较多。
(6)因为本实验中水的存在对反应平衡有影响,所以所有仪器都必须干
燥,且选取基本不含水的冰醋酸和无水乙醇反应。
2、关于乙酸乙酯
乙酸乙酯在工业上的用途很广,主要用作溶剂及染料和一些医药中间体的合成。
虽然乙酸乙酯属于低级酯,有果香味,少量吸入对人体无害。
但它易挥发,其蒸气对眼、鼻、咽喉有刺激作用,高浓度吸入有麻醉作用,会引起急性肺水肿,并损害肝、肾。
持续大量吸入,可致呼吸麻痹。
误服者可产生恶心、呕吐、腹痛、腹泻等。
有致敏作用,会引发血管神经障碍而致牙龈出血;还可致湿疹样皮炎。
若长期接触,有时可致角膜混浊、继发性贫血、白细胞增多等。
为了减少对实验者健康的危害,相关操作都应在通风橱中进行。
乙酸乙酯是易燃物,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸,爆炸上限为%,爆炸下限为2%(体积分数)。
与氧化剂接触猛烈反应。
其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。
因此实验合成的乙酸乙酯不能直接倒入水池,必须回收处理。
3、阿贝折光仪及折光率测定
阿贝折光仪的结构示意图:
1.底座;
2.棱镜调节旋钮;
3.圆盘组(内有刻度板);
4.小反光镜;
5.支架;
6.读数镜筒;
7.目镜;
8.观察镜筒;
9.分界线调节螺丝;
10.消色凋节旋钮;
11.色散刻度尺;
12.棱镜锁紧扳手;
13.棱镜组;
14.温度计插座;
15.恒温器接头;
16 保护罩;
17 主轴;
18 反光镜
测定时,试样置于测量棱镜P的镜面F上,棱镜的折光率大于试样的折光率。
如果入射光I正好沿着棱镜与试样的界面F射入,会发生全反射:其折射光为零,入射角90°,折射角为角1’0N’,即临界角。
大于临界角的区域构成暗区,小于临界角的构成亮区。
化合物的折光率除与本身的结构和光线的波长有关外,还受温度等因素的影响。
所以在报告折光
n=表示20率时必须注明所用光线(放在n的右下角)与测定时的温度(放在折光率n的右上角)。
例如20
D
℃时,某介质对钠光(D线)的折光率为。
物质结构是折光率产生差异的根本原因。
不同的物质有不同的立体构象。
这使得物质对光线得吸收程度以及反射程度产生差异,使得折光率产生根本性的差异。
物质的折光率因光的波长而异,波长较长折射率较小,波长较短折射率较大。
测定时光源通常为白光。
当白光经过棱镜和样液发生折射时,因各色光的波长不同,折射程度也不同,折射后分解成为多种色光,这种现象称为色散。
光的色散会使视野明暗分界线不清,产生测定误差。
阿贝折光仪中所安装的色散
补偿器是为了消除色散。
温度升高折射率减小;温度降低折射率增大.一般测量温度每增加(减少)1 ℃,液体有机化合物的折光率就减少(增加)×10-4~ ×10-4(为方便起见,一般以4×10-4计算)。
不同温度下折光率的转换公式:
通常,大气压的变化对折光率的影响并不显着,一般只在要求较精密时才加以考虑。
4、实验方法改进及其他合成方法
合成乙酸乙酯有多种方法,最传统的就是以浓硫酸为催化剂,用乙醇
和乙酸通过酯化反应合成。
此法中所用的浓硫酸对设备腐蚀严重,易炭化,
副反应多,产生的二氧化硫对环境有污染。
虽然在实验室还是最常用的方法,但在工业上应用的缺点已经越来越明显。
其他研究比较多的是离子液体催化下的酯化反应和固体酸(包括离子交换树脂)催化下的酯化反应。
离子液体作为一种环境友好的溶剂和催化剂体系,具有零蒸汽压、宽液程、良好的溶解性、可设计性和可循环使用等优越的特性。
尤其将离子液体应用在酯化反应体系已经取得了相当可观的研究成果。
但是一般的离子液体对水和空气不稳定,酯化反应后难以分离,限制了其在化学反应中的广泛应用。
一般固体酸催化剂多存在着催化剂催化活性下降快,催化效率较低,产物分离困难,后处理较复杂等问题。
有一种新型固体酸,是用价廉、易得的3种无机酸:浓硫酸、磷酸和硼酸,以一种简单的方法在室温下混和、搅拌与老化,在250~400℃煅烧制得。
这种新型固体酸对乙酸与乙醇的酯化反应具有很好的催化性能,但制备温度很高。
离子交换树脂(大孔聚苯乙烯型)相对于均相催化剂,具有体积受溶剂作用影响小,适于填充柱操作,副反应少,催化剂重复使用率高,易于实现连续化生产等优点,而且与常规的硫酸比较.离子交换树脂除了不需中和、洗涤等后续处理程序外,还易于保存和运输。
但离子交换树脂成本比较高。