地质雷达探测原理
地质雷达检测原理及应用

1.5 地质雷达探测系统的组成
从左到右从上到下依次为: SIR-20主机、电缆、400M 天线、电池和充电器、打标 器、测距轮
1.6 地质雷达天线分类
空气耦合天线:主要用于道 路路面检测(具有快速便捷 的特点,但受到的干扰较 大);
地面耦合天线:主要用于地 质构造检测,检测深度较深 (地面耦合天线能够减少天 线与地面间其他因素的干扰, 检测效果较为准确)
2.2 现场检测工作 2.2.1 仪器设备启动与参数设置 ① 连接主机与电源和天线 ② 打开主机电脑,进入采集软件 ③ 采集方式:时间模式time(也称为连续测量、自由测量)、距离模式
distance(也称为测距轮控制测量、距离测量)、点测模式point ④ 采集关键参数 (1)频率:发射天线的中心频率越高,则分辨率越高,
与探空雷达一样,探地雷达利用超高频电磁波的反射来探测目标体,根 据接收到的反射波的旅行时间、幅度与波形资料,推断地下介质的结构与分 布。
1.2 地质雷达的工作频段
1~100MHz, 低频,地质探测1-30米 100~1000MHz,中频,构造结构探测,2米 1000~5000MHz,高频, 浅表结构体探测, 50厘米
反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射 信号越强
(7世界中粒子呈无序排列的 状态,当外界电磁波穿透该 物质时,微观世界中的粒子 就会成定向排列状态,此时 会形成一个电容板,对外界 穿过的电磁波形成一定的阻 碍作用,而每种物质粒子的 排列规律不同,形成电容板 时阻碍外界电磁波穿过的能 力不同,因此各种物质的介 电常数也不同
(9)在“表格”窗口中点“剖面”选项,设置起始里程,如果里程向右减小,选中 “区域减量”。
三、地质雷达典型缺陷图形判定
地质雷达的工作原理

地质雷达的工作原理
地质雷达是一种利用电磁波进行地下探测的仪器。
其工作原理基于电磁波在不同介质中传播时发生反射、折射和透射的特性。
当地质雷达发射电磁波时,电磁波会以波束的形式向地下传播。
当遇到地下不同介质的边界时,如岩石和土壤之间的交界面,部分电磁波会被反射回地面,部分会被介质吸收或透射。
接收到的反射波被地质雷达接收器接收并记录下来,通过测量反射波的强度和时间来获取地下介质的信息。
根据不同介质对电磁波的反射特性,地质雷达可以判断地下的不同结构,例如地层、岩石、空洞或地下水等。
地质雷达使用不同频率的电磁波进行探测,常见的有雷达和探测深度较浅的埋地雷达。
高频率的电磁波能够提供较高的分辨率,但探测深度相对较浅;低频率的电磁波能够达到更大的探测深度,但分辨率相对较低。
除了电磁波的选择,地质雷达的探测结果还受到其他因素的影响,如地下介质的电导率、含水量和形态等。
因此,在实际应用中,地质雷达通常需要与地质勘探的其他方法结合使用,以提供更准确的地下结构信息。
地质雷达在地下探测中的应用研究

地质雷达在地下探测中的应用研究一、引言在当今的工程建设和地质研究领域,对地下情况的准确了解至关重要。
地质雷达作为一种高效、无损的探测技术,正逐渐成为地下探测的重要手段。
它凭借其独特的工作原理和优势,为我们揭开了地下世界的神秘面纱,在诸多领域发挥着重要作用。
二、地质雷达的工作原理地质雷达是一种利用高频电磁波来探测地下介质分布的地球物理方法。
其工作原理类似于雷达系统,通过向地下发射高频电磁波脉冲,这些电磁波在遇到不同介质的界面时会发生反射和折射。
接收天线接收到反射回来的电磁波信号,并将其转换成电信号进行处理和分析。
根据电磁波在地下传播的时间、幅度和波形等特征,可以推断地下介质的分布情况,如地层结构、岩石类型、空洞、含水区域等。
三、地质雷达的系统组成地质雷达系统通常由控制单元、发射天线、接收天线、数据采集单元和处理软件等部分组成。
控制单元负责整个系统的操作和参数设置,发射天线产生并向地下发射电磁波脉冲,接收天线接收反射回来的电磁波信号,数据采集单元将接收到的信号进行数字化采集,处理软件则对采集到的数据进行处理和分析,最终生成地下介质的图像或剖面图。
四、地质雷达在地下探测中的应用领域(一)工程地质勘察在道路、桥梁、隧道等工程建设中,地质雷达可以用于探测地下的基岩面深度、覆盖层厚度、软弱夹层分布等,为工程设计和施工提供重要的地质依据。
例如,在隧道建设前,通过地质雷达探测可以提前发现隧道前方的不良地质体,如溶洞、断层、破碎带等,从而采取相应的预防措施,保障施工安全。
(二)考古勘探在考古领域,地质雷达可以帮助考古学家了解地下遗址的分布和结构,无需进行大规模的挖掘。
它可以探测到地下的古墓、城墙、沟渠等遗迹,为考古发掘提供精确的位置和范围,减少对文物的破坏。
(三)矿产勘查在矿产勘查中,地质雷达可以用于探测地下矿体的分布、形态和规模,以及矿层的厚度和品位等信息。
此外,它还可以用于监测矿山开采过程中的地下变化,预防地质灾害的发生。
地质雷达预报

说明:同步远程数据是将药品和项目等信息从服务器中下载至收费电脑,以便在收费录入明细信息时,不用从服务器获取数据(从数据库获取数据需要时间),提高响应速度。
所以同步远程数据操作对服务器数据库的数据是没有影响的,只要觉得数据有问题都可以随时进行同步操作。
第一步:删除缓存目录,即把从服务器下载的数据删除。
首先,打开计算机(或者我的电脑),进入到C盘,如图:
Win7的
XP的
点击图中红色部分,输入172.16.100.13,即搜索文件夹名字为172.16.100.13,找到文件夹之后,双击进去,将会看到下图中的文件夹,把这个文件夹整个删除掉。
如果提示不能删除,则退出登录系统或者关闭浏览器。
第二步:同步远程资源,即将数据重新从服务器上下载下来。
首先登录系统,进入系统管理->同步远程资源,如图所示:
然后,点击清空本地数据、清空本地资源。
再点击,同步远程资源,
如图:
同步远程资源结束之后,选中下面几张表,然后点击同步远程数据(只点同步远程数据),直到同步成功,如图:
功,如图所示:
同步成功之后,说明所有的表都同步完了,可以收费了。
答:频繁弹出框,数据出错的时候,需要再次同步数据。
如图:。
地质雷达与隧道工程检测-仰拱

03
人员可能存在一定的难度。
04
地质雷达在仰拱检测中的应用
地质雷达在仰拱检测中的优势
无损检测
地质雷达能够实现无损检测,不 会对隧道仰拱结构造成破坏,确 保结构安全。
高精度定位
地质雷达具有高精度定位能力, 能够准确检测出仰拱内部的缺陷 和异常。
实时监测
地质雷达可以实时监测隧道仰拱 的施工情况,及时发现和解决潜 在问题。
地质雷达与隧道工程检测仰拱
目录
• 引言 • 地质雷达检测技术原理 • 仰拱检测的必要性 • 地质雷达在仰拱检测中的应用 • 仰拱检测的未来展望 • 结论
01
引言
仰拱在隧道工程中的重要性
01
仰拱是隧道结构的重要组成部分 ,主要起到承受压力、防止隧道 底部上抬和防止地下水渗漏等作 用。
02
仰拱的质量直接关系到隧道工程 的整体稳定性和安全性,对保障 行车和人员安全具有重要意义。
定期进行仰拱检测,有助于建立和完善隧道健康监测系统,提高隧道运营的安全性 和可靠性。
仰拱检测的常见问题
01
仰拱检测过程中,可能存在信号干扰和杂波影响,导致检测结 果不准确或误判。
02
对于不同地质条件和施工方法的隧道,仰拱检测的标准和规范
可能存在差异,需要针对具体情况制定相应的检测方案。
仰拱检测的数据处理和分析需要专业知识和技能,对于非专业
公路、铁路隧道仰拱检测
检测隧道仰拱的混凝土厚度、密实度等质量指标,以确保隧道结构 的稳定性和安全性。
03
仰拱检测的必要性
仰拱对隧道安全的影响
仰拱作为隧道结构的重要组成部 分,对隧道整体稳定性、安全性
和使用寿命具有重要影响。
仰拱的施工质量问题可能导致隧 道结构失稳、衬砌开裂、渗漏等 安全隐患,严重影响隧道运营安
地质雷达技术讲解

19
数据采集记录表
Page
20
数据采集记录表
Page
21
仪器操作
Page
22
仪器操作
Page
23
仪器操作
Page
24
仪器操作
Page
25
仪器操作
Page
26
数据处理 雷达波在地下的传播过程中各种噪声和杂波的干扰非常严 重,正确识别各种杂波与噪声、提取其有用信息是探地雷 达记录解释的重要的环节,其关键技术是对地质雷达记录 进行各种数据处理。电磁波的传播形式与地震波十分相似,
Page
44
Page
45
静校正/移动开始时间 二维滤波/抽取平均道 偏移/时深转换 图像显示和解释
Page
29
报告编写 1. 委托方名称,工程名称、地点,建设单位、勘察单位、 设计单位、监理单位和施工单位,设计要求,检测目的, 检测依据,检测日期; 2.检测原理及方法; 3.检测里程汇总;
4.问题缺陷汇总表;
Page
8
地质雷达应用领域
市政设施及管线探测
地质与环境探测
铁路工程探测
公路探测
考古探测
建筑结构、桥梁、隧道检测 军事安全探测
Page
9
隧道检测
Page
10
隧道检测 隧道探测要解决的主要问题
隧道衬砌厚度检查
隧道内部结构物检查—钢筋、钢拱架等 隧道衬砌混凝土质量检查 隧道衬砌混凝土密实度检查 隧道衬砌防水板检查
Page
34
检测图像解释 混凝土不密实(衬砌界面的强反射信号同相轴呈绕射弧 形,且不连续较分散)
Page
35
检测图像解释 衬砌厚度变化
电磁波法探测技术—地质雷达

接收天线
直达波
目标体 反射波
6
• 超高频电磁波(10MHz-5000MHz) • 由于地下介质往往具有不同的物理特性,如介质的介电
性、导电性及导磁性差异,因而对电磁波具有不同的波 阻抗,进入地下的电磁波在穿过地下各地层或管线等目 标体时,由于界面两侧的波阻抗不同,电磁波在介质的 界面上会发生反射和折射,反射回地面的电磁波脉冲其 传播路径、电磁波场强度与波形将随所通过介质的电性 质及几何形态而变化,因此,从接收到的雷达反射回波 走时、幅度及波形资料,可以推断地下介质或管线的埋 深与类型。
3
探地雷达探测所使用的中心工作频率在10~5000MHZ范围 时窗在0~20000ns,电磁场以波动形式传播,为辐射场法。 根据不同的地质条件,地面系列的雷达探测深度约在 30~50m,分辨率可达数厘米,深度符合率小于±5cm。
探地雷达的实际应用范围很广,如:
石灰岩地区采石场的探测; 冰川和冰山的厚度等探测; 工程地质探测; 煤矿井探测,泥炭调查; 放身性废弃物处理调查; 水文地质调查; 地基和道路下空洞及裂缝等建筑质量探测; 地下埋设物,古墓遗迹等探查; 隧道、堤岸、水坝等探测。
(1)目的体深度是一个非常重要的问题。如果目的体深度 超出雷达系统探测距离的50%,那么探地雷达方法就要被 排除。雷达系统探测距离可根据雷达探距方程进行计算。
(2)目的体几何形态(尺寸与取向)必须尽可能了解清楚。目 的体尺寸包括高度、长度与宽度。目的体的尺寸决定了雷 达系统可能具有的分辨率.关系到天线中心频率的选用。 如果目的体为非等轴状,则要搞清目的体走向、倾向与倾 角,这些将关系到测网的布置。
探地雷达虽然与探空雷达一样利用高频电磁波束的反射 来探侧目标体,但是探地雷达探测的是在地下有耗介质 中的目的体,因此形成了其独特的发射波形与天线设计 特点。
地质雷达在岩溶勘探中的使用

地质雷达在岩溶勘探中的使⽤地下岩溶勘探地球物理前提:岩溶⼜名karst ,指可溶性岩⽯,特别是碳酸盐类岩⽯(如⽯灰岩、⽯膏等),受含有⼆氧化碳的流⽔溶蚀,有时并加以沉积作⽤⽽形成的地貌。
⽯灰岩在略有酸性的⽔中更易於溶解,⽽这种⽔在⾃然界中⼴泛存在。
⾬⽔沿⽔平的和垂直的裂缝渗透,将⽯灰岩溶解,并以溶液形式带⾛。
沿节理发育的垂直裂隙逐渐加宽、加深,形成⽯⾻嶙峋的地形。
当⾬⽔沿地下裂缝流动时,就不断使裂缝加宽、加深,直到终於形成洞⽳系统或地下河道。
岩溶的存在,成为⼯程施⼯及维护中的重⼤安全隐患。
测量参数:电磁波在地下传播的过程中,碰到介质的分界⾯(即空隙的岩壁),被反射回地⾯。
通过检测岩壁反射的电磁波信号,达到探测地下岩溶的⽬的。
使⽤地质雷达进⾏地下岩溶探测,发射和接受电磁波,主要是测量发射和接收的时间间隔,以计算岩溶的深度和位置。
测量仪器及其⼯作原理:地质雷达(/ground pene ting mdar,简称GPR) 是2O世纪7O年代发展起来的⼀种⽤于确定地下介质分布的⼴谱电磁法,以其⾼分辨率、⾼效率和⽆损探测成为地球物理勘探的有⼒⼯具。
国内外⼀些专家已在⼯程勘察领域中的应⽤做了⼤量的研究⼯作,尤其在空洞探测⽅⾯取得了瞩⽬的成绩,但在岩溶勘察⽅⾯的研究尚还薄弱。
地质雷达的基本原理:地质雷达的⼯作原理基于⾼频电磁波理论,其⼯作⽅式是由地⾯发射天线T向⼤地发射主频为数兆⾄上千兆赫兹的⾼频电磁波。
电磁波在地下传播过程中遇到介质的分界⾯后被反射回地⾯,再由接收天线R接收。
根据接收信号及电磁波在底层中的传播时间便可判断电性界⾯的存在及其埋藏深度。
T X R介质分界⾯其特性参数为:电磁波双程旅⾏时间t (ns ):假定发射天线与接收天线之间的间距为X ,m;H 为反射点埋深,m ;电磁波在介质中的传播熟读为V ,m/ns,则电磁波传播的双程旅⾏时间t (ns )为t=(4H 2+X 2)1/2/V 。
电磁波在介质中的传播速度V (m/ns ):电磁波传播速度V=c/(εr ,µr )1/2,其中c 为电磁波在真空中的传播速度(0.3m/ns );εr 为地下介质的相对电常数;µr 为介质的相对磁导率(µr ≈1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探测原理
地质雷达是以超高频电磁波作为探测场源,由一个发射天线向地下发射一定中心频率的无载波电磁脉冲波,另一天线接收由地下不同介质界面产生的反射回波,电磁波在介质中传播时,其传播时间、电磁场强度与波形将随所通过介质的电性质(如介电常数γE )及测试目标体的几何形态的差异而产生变化,根据接收的回波旅行时间、幅度和波形等信息,可探测地下目的体的结构和位置信息。
其工作原理示意图如下: 接收天线所接收的反射回波旅行时间为:
t =V x
h 224+
式中:t 反射回波走时(ns )
h 反射体深度(m )
X 发射天线与接收天线的距离(m )
V 雷达脉冲波速(m/ns )
雷达波在物体或介质中的传播速度V 与介质的相对介电常数γE 有如下关系:》
介质1
介质2
无载波脉冲时域接收机
分析计算处理后
反射、散射脉冲
输出显示
接收反射
发射电磁目的体
C
V=
E
式中C为真空中的电磁波传播速度(C=0.3m/ns)
通过雷达图像确定异常,并根据电磁波旅行时间确定异常位置。
介质的弹性限度内介质的剪切应力与应变的比值称剪切模量
介质的弹性限度内介质的应力与应变的比值称之为弹性模量。