大数据知识体系大全
大数据必备基础知识

大数据必备基础知识在当今信息爆炸的时代,大数据正日益成为各行各业的关键词之一。
无论是企业决策还是科学研究,了解大数据的基础知识都是必不可少的。
本文将从大数据的定义、特点、技术和应用等方面,介绍大数据必备的基础知识。
一、大数据的定义及特点大数据是指规模巨大、类型多样、生成速度快,无法用传统的数据管理技术进行采集、存储、管理和分析的数据集合。
大数据的特点主要体现在以下几个方面:1. 规模巨大:大数据的规模通常以TB、PB甚至EB来衡量,具有海量的数据量。
2. 类型多样:大数据涵盖了结构化数据、半结构化数据和非结构化数据等多种类型的数据。
3. 生成速度快:大数据的生成速度非常快,数据源源不断地产生,需要及时处理和分析。
4. 数据价值潜力大:大数据中蕴含着丰富的信息和价值,通过分析可以发现新的商业机会和潜在风险。
二、大数据的技术支持为了有效处理和分析大数据,需要借助一系列的技术手段和工具。
以下是大数据的几个关键技术:1. 数据采集与存储:大数据的采集和存储是第一步,包括数据的获取、传输和存储等技术。
常用的数据采集和存储技术包括网络爬虫、分布式文件系统和关系数据库等。
2. 数据处理与分析:大数据的处理和分析是核心环节,包括数据清洗、数据集成、数据挖掘和机器学习等技术。
常用的数据处理和分析技术包括Hadoop、Spark和机器学习算法等。
3. 数据可视化与展示:大数据的可视化与展示是将数据分析结果以直观的图表形式展示出来,帮助用户更好地理解和利用数据。
常用的数据可视化与展示技术包括Tableau、D3.js和Power BI等。
三、大数据的应用领域大数据的应用广泛,几乎涉及了所有行业和领域。
以下是一些典型的大数据应用场景:1. 金融行业:大数据在金融风控、高频交易和反欺诈等方面有广泛应用,可以帮助银行和投资机构预测风险、优化决策。
2. 零售行业:大数据可以通过分析客户购买行为和偏好,实现精准营销和个性化推荐,提升用户体验和销售额。
大数据学知识点总结

大数据学知识点总结引言随着数字化时代的到来,大数据已经成为了信息时代最重要的组成部分之一。
在各行业的发展中,大数据的应用正在广泛的推进,而在大数据的应用中,大数据学作为一个核心学科正在逐渐得到重视。
大数据学通过对大数据的采集、存储、处理与分析,为各行业提供了丰富的数据支持,因此大数据学的学习和掌握对于未来的发展至关重要。
本文将对大数据学的知识点进行总结,包括大数据的概念、大数据技术、大数据的应用、大数据的发展趋势等内容。
一、大数据的概念1.大数据的定义大数据是指规模大、类型多、更新快的数据集合,大数据的处理和分析需要特殊的技术和工具,以便从这些数据中提取出有价值的信息。
2.大数据的四个特点(1)规模大:大数据的数据量通常非常庞大,以至于传统的数据处理方式无法很好地处理这些数据;(2)类型多:大数据的类型多种多样,包括结构化数据、半结构化数据和非结构化数据;(3)更新快:大数据的更新速度非常快,需要实时收集和处理数据;(4)价值密度低:大数据中包含了大量的无价值数据,需要通过分析和挖掘来找到有价值的信息。
3.大数据的价值大数据的价值主要体现在两个方面:一是通过大数据的分析可以帮助企业做出更加精准的决策,提高生产效率和企业竞争力;二是大数据的分析可以帮助企业发现商机和趋势,促进创新和发展。
二、大数据技术1.大数据的采集技术大数据的采集技术包括了数据的传感器采集、日志采集、文档采集、网络爬虫采集等方式,通过这些方式可以有效地将数据收集到系统中。
2.大数据的存储技术大数据的存储技术是大数据技术中的一个核心部分,存储技术包括了分布式文件系统、对象存储、数据库等多种方式,以便保证数据的高效存储和管理。
3.大数据的处理技术大数据的处理技术包括了数据清洗、数据预处理、数据分析等多种方式,以便将大数据进行整理、提取、分析等处理,为数据的后续应用提供支持。
4.大数据的分析技术大数据的分析技术是大数据技术中最重要的一块,包括了数据挖掘、机器学习、人工智能等多种分析方式,可以提供对大数据的深层次挖掘和分析。
大数据基础知识入门

大数据基础知识入门大数据是当今社会不可忽视的重要组成部分,其对商业、科学、医疗等领域都产生了深远的影响。
作为一门新兴的技术和概念,了解大数据的基础知识是非常重要的。
本文将介绍大数据的定义、特征以及其在不同领域的应用。
一、大数据的定义大数据指的是规模巨大、类型繁多且产生速度快的数据集合。
传统的数据处理技术已经无法胜任大数据的处理任务,因此需要新的技术和工具来帮助分析处理大数据。
二、大数据的特征1. 三个V:大数据的特征可以用“三个V”来概括,即Volume(数据量大)、Velocity(数据产生速度快)和Variety(数据类型多样化)。
2. 可信度低:由于大数据的多样性和复杂性,数据的质量和可信度往往较低,需要进行数据清洗和处理。
3. 快速决策:大数据的处理速度非常快,可以帮助决策者更快地做出准确的决策。
三、大数据的应用1. 商业领域:大数据在商业领域的应用非常广泛。
通过对大数据的分析,企业可以更好地了解消费者的需求,优化产品设计,并制定更精确的市场营销策略。
2. 科学研究:大数据在科学研究中扮演着重要角色。
科学家可以通过对大数据的分析来发现规律、预测趋势,并进行更深入的研究。
3. 医疗健康:大数据在医疗健康领域的应用不断增加。
医疗机构可以通过大数据分析来改进临床治疗,预防疾病,并提供个性化的医疗服务。
4. 城市管理:大数据在城市管理中的应用可以提高城市的智能化程度。
例如,通过对大数据的分析,城市可以更好地优化交通流量、提高能源利用效率等。
四、大数据处理工具和技术为了更好地处理和分析大数据,许多工具和技术得到了广泛应用。
以下列举几种常用的大数据处理工具和技术:1. Hadoop:是一个开源的大数据处理框架,能够高效地存储和处理大规模数据。
2. Spark:是一种快速、通用的大数据处理引擎,具有高效的内存计算能力。
3. NoSQL数据库:与传统的关系数据库相比,NoSQL数据库具有更好的横向扩展性和性能表现,适用于大数据存储和查询。
大数据原理知识点总结

大数据原理知识点总结
大数据原理涉及多个知识点,包括数据存储、数据处理、数据
分析和数据可视化等方面。
首先,大数据的存储涉及到分布式存储
系统,如Hadoop分布式文件系统(HDFS)和NoSQL数据库(如MongoDB、Cassandra等)。
这些系统能够存储海量数据并实现高可
靠性和高可扩展性。
其次,大数据处理涉及到并行计算和分布式计算,其中包括MapReduce编程模型和Spark等计算框架。
这些技术能够对海量数
据进行高效的处理和计算。
另外,大数据分析涉及到数据挖掘、机器学习和统计分析等技术。
通过对大数据进行分析,可以发现数据中的模式、趋势和规律,从而为决策提供支持。
最后,大数据可视化是将分析结果以直观的图表或图形的方式
展现出来,帮助用户更好地理解数据。
这包括数据可视化工具如Tableau、Power BI等,以及图表库如D3.js等。
总的来说,大数据原理涉及到数据存储、处理、分析和可视化
等多个方面的知识点,需要综合运用多种技术和工具来处理和分析海量数据。
这些知识点的理解和掌握对于从事大数据相关工作的人员来说至关重要。
大数据知识点全面总结

大数据知识点全面总结目录一、什么是大数据1.1 大数据的定义1.2 大数据的特点1.3 大数据的价值二、大数据的应用场景2.1 金融领域2.2 零售领域2.3 医疗健康领域2.4 交通领域2.5 农业领域三、大数据的技术工具3.1 Hadoop3.2 Spark3.3 Flink3.4 Kafka3.5 Elasticsearch四、大数据的挑战与解决方案4.1 数据存储与管理4.2 数据处理与分析4.3 数据安全与隐私4.4 数据可视化与决策支持五、大数据未来发展趋势5.1 人工智能与大数据的融合5.2 云计算与大数据的融合5.3 边缘计算与大数据的融合5.4 行业应用与大数据的融合六、结语一、什么是大数据1.1 大数据的定义大数据是指规模巨大、种类繁多、处理速度快的数据集合。
它包括结构化数据、半结构化数据和非结构化数据。
结构化数据是以表格形式存储的数据,如关系数据库中的数据;半结构化数据是具有一定组织结构但不符合传统关系数据库模式的数据,如XML、JSON格式的数据;非结构化数据是没有固定结构的数据,如文本、图像、音频、视频等。
1.2 大数据的特点大数据具有5V特征:Volume(数据量大)、Velocity(处理速度快)、Variety(种类繁多)、Veracity(真实性)、Value(价值高)。
Volume:大数据的数据量通常以TB、PB、甚至EB计算,远超传统数据库能力。
Velocity:大数据的处理速度要求非常高,需要能够实时或近实时地处理数据。
Variety:大数据的数据种类繁多,包括结构化数据、半结构化数据和非结构化数据。
Veracity:大数据的真实性要求高,需要通过数据清洗、质量控制等手段保证数据的准确性和一致性。
Value:大数据的价值非常大,可以挖掘出隐藏在其中的商业洞见和价值。
1.3 大数据的价值大数据具有重要的商业价值。
通过对大数据的分析和挖掘,可以为企业带来以下益处:- 更好的决策支持- 更精准的市场营销- 更高效的运营管理- 更好的客户服务- 更快的产品创新二、大数据的应用场景2.1 金融领域在金融领域,大数据被广泛用于风险管理、信用评估、欺诈检测、投资决策等。
万字长文解读最新最全的大数据技术体系图谱!

万字长文解读最新最全的大数据技术体系图谱!正文开始大数据技术发展20年,已经形成覆盖面非常庞大的技术体系,最近信通院发布了《大数据白皮书2020》(关注本公众号后,后台回复“big2020”获得PDF),提供了一张非常全面的大数据技术体系图谱,如下图所示:从这张图谱可以看到,大数据技术体系可以归纳总结为数据分析应用技术、数据管理技术、基础技术、数据安全流通技术四大方向,每个方向大数据技术的产生都有其独特的背景。
1、基础技术:主要为应对大数据时代的多种数据特征而产生大数据时代数据量大,数据源异构、数据时效性高等特征催生了高效完成海量异构数据存储与计算的技术需求。
面对迅速而庞大的数据量,传统集中式计算架构出现难以逾越的瓶颈,传统关系型数据库单机的存储及计算性能有限,出现了规模并行化处理(MPP)的分布式计算架构,如分析型数据库GreenGreenplum。
面对分布式架构带来的海量分布式系统间信息协同的问题,出现了以Zoomkeeper为代表的分布式协调系统;为了将分布式集群中的硬件资源以一定的策略分配给不同的计算引擎和计算任务,出现了Yarn等集群管理及调度引擎;面对海量计算任务带来的管理复杂度大幅提升问题,出现了面向数据任务的灵活调度工作流平台。
面向海量网页内容及日志等非结构化数据,出现了基于Apache Hadoop和Spark生态体系的分布式批处理计算框架;面向对于时效性数据进行实时计算反馈的需求,出现了Apache Storm、Flink等分布式流处理计算框架。
面对大型社交网络、知识图谱的应用要求出现了以对象+关系存储和处理为核心的分布式图计算引擎和图数据库,如GraphX、neo4j等;面对海量网页、视频等非结构化的文件存储需求,出现了mongoDB 等分布式文档数据库;面向海量设备、系统和数据运行产生的海量日志进行高效分析的需求,出现了influxdb等时序数据库;面对海量的大数据高效开放查询的要求,出现了以Redis为代表的K-V数据库。
大数据知识体系结构

大数据知识体系结构
大数据知识体系结构是指大数据领域的知识所构成的体系结构,包括了大数据的概念、技术、工具、应用等方面的知识。
大数据知识体系结构主要分为以下几个方面:
1.大数据概述:介绍大数据的定义、特点、发展历程等方面的知识。
2.大数据技术:包括数据存储、数据处理、数据分析等方面的知识。
数据存储方面主要介绍了大数据的存储结构、存储方式、存储技术等;数据处理方面主要介绍了大数据的处理方式、处理技术等;数据分析方面主要介绍了大数据的分析方法、分析技术等。
3.大数据工具:包括数据采集工具、数据处理工具、数据分析工具等方面的知识。
数据采集工具主要用于采集海量数据,包括网络爬虫、数据抓取等;数据处理工具主要用于对海量数据进行处理,包括Hadoop、Spark等;数据分析工具主要用于对海量数据进行分析,包括R、Python等。
4.大数据应用:包括大数据在各个领域的应用,如金融、医疗、交通、电商等。
大数据应用涉及到数据挖掘、数据分析、数据可视化等方面的知识。
5.大数据安全:包括大数据的安全问题、安全措施等方面的知识。
大数据安全问题包括数据泄露、数据篡改等;安全措施包括身份认证、数据加密等。
大数据知识体系结构是大数据领域研究和应用的基础,对于学习
和应用大数据具有重要意义。
大数据常见知识点总结

大数据常见知识点总结随着互联网的迅猛发展和数字化时代的到来,人们对数据的需求也越来越大。
在这样的背景下,大数据概念应运而生。
大数据指的是规模庞大、结构复杂、更新速度快的数据。
这些数据需要利用先进的技术和方法进行存储、管理和分析,以发现其中蕴藏的价值。
大数据的应用覆盖了各个领域,包括商业、医疗、金融、通信等,因此大数据技术也成为了当今社会中备受关注的一个热门话题。
本文将对大数据的常见知识点进行总结,以帮助读者更好地了解和应用大数据技术。
一、大数据的特点1.1 巨大的数据量大数据的特点之一就是数据量巨大。
这些数据可能来自于各种不同的来源,包括传感器、社交媒体、移动设备、传统数据库等。
这些数据源的不断增加导致数据量呈现爆炸式增长,这也是大数据的一个显著特点。
1.2 多样的数据类型大数据的数据类型非常多样化,包括结构化数据(如关系数据库中的数据)、半结构化数据(如XML、JSON格式的数据)和非结构化数据(如文本、图像、音频、视频等)。
这些不同类型的数据需要针对其特点采用不同的处理和分析方法。
1.3 高速的数据更新大数据的更新速度通常非常快,尤其是在物联网和社交媒体等领域。
这就要求大数据系统能够实时地进行数据采集、处理和分析,以及及时获取有价值的信息。
1.4 数据价值的发现大数据中包含了丰富的信息和价值,但如何从中挖掘出有用的信息是一个具有挑战性的问题。
大数据技术可以帮助人们从海量数据中发现新的知识、规律和商业价值。
二、大数据技术2.1 数据采集和存储技术数据采集是大数据处理的第一步,而数据存储又是大数据处理的基础。
常见的数据采集技术包括ETL(Extract, Transform, Load)工具、日志文件抓取等,数据存储技术包括关系数据库、NoSQL数据库、分布式文件系统等。
2.2 数据处理技术数据处理是大数据的关键环节,常见的数据处理技术包括MapReduce、Spark等。
这些技术可以帮助人们对大数据进行分布式计算和并行处理,以高效地对大数据进行处理和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据知识体系
很多人都看过不同类型的书,也接触过很多有关大数据方面的文章,但都是很零散不
成系统,对自己也没有起到多大的作用,所以作者第一时间,带大家从整体体系思路上,了
解大数据产品设计架构和技术策略。
大数据产品,从系统性和体系思路上来做,主要分为五步:
o针对前端不同渠道进行数据埋点,然后根据不同渠道的采集多维数据,也就是做大数据的第一步,没有全量数据,何谈大数据分析;
o第二步,基于采集回来的多维度数据,采用ETL对其各类数据进行结构化处理及加载;
o然后第三步,对于ETL处理后的标准化结构数据,建立数据存储管理子系统,归集到底层数据仓库,这一步很关键,基于数据仓库,对其内部数据分解成基础的同类数据集市;
o然后基于归集分解的不同数据集市,利用各类R函数包对其数据集进行数据建模和各类算法设计,里面算法是需要自己设计,个别算法可以用R函数,这个过程产品和运营参与最多;这一步做好了,也是很多公司用户画像系统的底层。
o最后根据建立的各类数据模型及算法,结合前端不同渠道不同业务特征,根据渠道触点自动匹配后端模型自动展现用户个性化产品和服务。
建立数据采集分析指标体系是形成营销数据集市的基础,也是营销数据集市覆盖用户
行为数据广度和深度的前提,数据采集分析体系要包含用户全活动行为触点数据,用户结构
化相关数据及非结构化相关数据,根据数据分析指标体系才能归类汇总形成筛选用户条件的
属性和属性值,也是发现新的营销事件的基础。
构建营销数据指标分析模型,完善升级数据指标采集,依托用户全流程行为触点,建
立用户行为消费特征和个体属性,从用户行为分析、商业经营数据分析、营销数据分析三个
维度,形成用户行为特征分析模型。
用户维度数据指标是不同维度分析要素与用户全生命周期轨迹各触点的二维交叉得出。
目前做大数据平台的公司,大多数采集的数据指标和输出的可视化报表,都存在几个关键问题:
o采集的数据都是以渠道、日期、地区统计,无法定位到具体每个用户;
o计算统计出的数据都是规模数据,针对规模数据进行挖掘分析,无法支持;
o数据无法支撑系统做用户获客、留存、营销推送使用。
所以,要使系统采集的数据指标能够支持平台前端的个性化行为分析,必须围绕用户为主线来进行画像设计,在初期可视化报表成果基础上,将统计出来的不同规模数据,细分定位到每个用户,使每个数据都有一个用户归属。
将分散无序的统计数据,在依据用户来衔接起来,在现有产品界面上,每个统计数据都增加一个标签,点击标签,可以展示对应每个用户的行为数据,同时可以链接到其他统计数据页面。
由此可以推导出,以用户为主线来建立数据采集指标维度:用户身份信息、用户社会生活信息、用户资产信息、用户行为偏好信息、用户购物偏好、用户价值、用户反馈、用户忠诚度等多个维度,依据建立的采集数据维度,可以细分到数据指标或数据属性项。
①用户身份信息维度
性别,年龄,星座,居住城市,活跃区域,证件信息,学历,收入,健康等。
②用户社会生活信息维度
行业,职业,是否有孩子,孩子年龄,车辆,住房性质,通信情况,流量使用情况……
③用户行为偏好信息
是否有网购行为,风险敏感度,价格敏感度,品牌敏感度,收益敏感度,产品偏好,渠道偏好……
④用户购物偏好信息
品类偏好,产品偏好,购物频次,浏览偏好,营销广告喜好,购物时间偏好,单次购物最高金额……
⑤用户反馈信息维度
用户参与的活动,参与的讨论,收藏的产品,购买过的商品,推荐过的产品,评论过的产品……
基于采集回来的多维度数据,采用ETL对其各类数据进行结构化处理
及加载
o数据补缺:对空数据、缺失数据进行数据补缺操作,无法处理的做标记
o数据替换:对无效数据进行数据的替换
o格式规范化:将源数据抽取的数据格式转换成为便于进入仓库处理的目标数据格式
o主外键约束:通过建立主外键约束,对非法数据进行数据替换或导出到错误文件重新处理
o数据合并:多用表关联实现(每个字段加索引,保证关联查询的效率)
o数据拆分:按一定规则进行数据拆分
o行列互换、排序/修改序号、去除重复记录
数据处理层由Hadoop集群组成, Hadoop集群从数据采集源读取业务数据,通过并行计算完成业务数据的处理逻辑,将数据筛选归并形成目标数据。
提取与营销相关的客户、产品、服务数据,采用聚类分析和关联分析方法搭建数据模型,通过用户规则属性配置、规则模板配置、用户画像打标签,形成用户数据规则集,利用规则引擎实现营销推送和条件触发的实时营销推送,同步到前端渠道交互平台来执行营销规则,并将营销执行效果信息实时返回到大数据系统。
根据用户全流程活动行为轨迹,分析用户与线上渠道与线下渠道接触的所有行为触点,对营销用户打标签,形成用户行为画像,基于用户画像提炼汇总营销筛选规则属性及属性值,最终形成细分用户群体的条件。
每个用户属性对应多个不同属性值,属性值可根据不同活动个性化进行配置,支持用户黑白名单的管理功能。
可以预先配置好基于不同用户身份特性的活动规则和模型,当前端用户来触发配置好的营销事件,数据系统根据匹配度最高的原则来实时自动推送营销规则,并通过实时推送功能来配置推送的活动内容、优惠信息和产品信息等,同时汇总前端反馈回的效果数据,对推送规则和内容进行优化调整。
大数据系统结合客户营销系统在现有用户画像、用户属性打标签、客户和营销规则配置推送、同类型用户特性归集分库模型基础上,未来将逐步扩展机器深度学习功能,通过系统自动搜集分析前端用户实时变化数据,依据建设的机器深度学习函数模型,自动计算匹配用户需求的函数参数和对应规则,营销系统根据计算出的规则模型,实时自动推送高度匹配的营销活动和内容信息。
机器自学习模型算法是未来大数据系统深度学习的核心,通过系统大量采样训练,多次数据验证和参数调整,才能最终确定相对精准的函数因子和参数值,从而可以根据前端用户产生的实时行为数据,系统可自动计算对应的营销规则和推荐模型。
大数据系统在深度自学习外,未来将通过逐步开放合作理念,对接外部第三方平台,扩展客户数据范围和行为触点,尽可能覆盖用户线上线下全生命周期行为轨迹,掌握用户各行为触点数据,扩大客户数据集市和事件库,才能深层次挖掘客户全方位需求,结合机器自学习功能,从根本上提升产品销售能力和客户全方位体验感知。
了解最新课程及报名优惠信息,请访问光环大数据官方网站:
学大数据,就选光环大数据!16年老品牌,上市机构有保障!。