人教版七年级上册数学课件 直线、射线、线段2
合集下载
人教版数学七年级上册 4.2.2 线段的度量与比较 课件(共34张PPT)

AMN B
1 AM=MN=NB= 3 AB 或3AM=3MN=3NB=AB
若M、N、P是线段AB的四等分点
AMN P B
1
AM=MN=NP=PB= 4 AB或4AM=4MN=4NP=4PB=AB
练一练
(1)如果点P是AB的中
点,则AP=
1
_ 2_
AB
(2)如果点C,D三等分 A C P D B
AB,则AC=CD=
A
M
B
1
AM = MB = —AB 或2AM=2MB=AB
2
线段的中点的意义
我们来学习用几何符号语言来表示线段的中点
1.如图,如果点M把AB分成两条相等的线段,即 AM=BM,那么点M就是线段AB的中点。
这可以用符号语言表示为:
如图,点M在线段AB上,
∵AM=BM(或AM= 1AB,或AB=2AM)
作业布置
1、已知,如图,点C在线段AB上 ,线段AC=6厘米,BC=4厘米, 点M,N分别是AC,BC的中点, 求线段MN的长度。
A
M
CN
B
问题一
如图:从A地到B地有四条道路,除它们外能否再修一条从A地 到B地的最短道路?如果能,请你联系以前所学的知识,在图 上画出最短路线.
怎样走最近
• A
• B
变式2:如图,一只蚂蚁要从正方体的一个 顶点A沿表面爬行到B点,怎么爬行路线最 短?如果爬行到顶点C呢?说明理由。
AA · ·B ·C ·C
· ·
变式3:如图,一只蚂蚁要从长方体一 个顶点A沿表面爬行到顶点B,怎么爬
行路线最短?说明理由. 想一想: 有几种 情况?
A
B
·
变式4:如图,一只蚂蚁要从两圆点柱之体间底,面圆 上一点A沿表面爬行到B点,线怎段么最爬短行路。线
1 AM=MN=NB= 3 AB 或3AM=3MN=3NB=AB
若M、N、P是线段AB的四等分点
AMN P B
1
AM=MN=NP=PB= 4 AB或4AM=4MN=4NP=4PB=AB
练一练
(1)如果点P是AB的中
点,则AP=
1
_ 2_
AB
(2)如果点C,D三等分 A C P D B
AB,则AC=CD=
A
M
B
1
AM = MB = —AB 或2AM=2MB=AB
2
线段的中点的意义
我们来学习用几何符号语言来表示线段的中点
1.如图,如果点M把AB分成两条相等的线段,即 AM=BM,那么点M就是线段AB的中点。
这可以用符号语言表示为:
如图,点M在线段AB上,
∵AM=BM(或AM= 1AB,或AB=2AM)
作业布置
1、已知,如图,点C在线段AB上 ,线段AC=6厘米,BC=4厘米, 点M,N分别是AC,BC的中点, 求线段MN的长度。
A
M
CN
B
问题一
如图:从A地到B地有四条道路,除它们外能否再修一条从A地 到B地的最短道路?如果能,请你联系以前所学的知识,在图 上画出最短路线.
怎样走最近
• A
• B
变式2:如图,一只蚂蚁要从正方体的一个 顶点A沿表面爬行到B点,怎么爬行路线最 短?如果爬行到顶点C呢?说明理由。
AA · ·B ·C ·C
· ·
变式3:如图,一只蚂蚁要从长方体一 个顶点A沿表面爬行到顶点B,怎么爬
行路线最短?说明理由. 想一想: 有几种 情况?
A
B
·
变式4:如图,一只蚂蚁要从两圆点柱之体间底,面圆 上一点A沿表面爬行到B点,线怎段么最爬短行路。线
人教版七年级上数学课件:直线射线线段第二课时

② 借助于某一物体,如铅笔、小木棒等
试一试
小试牛刀
视察下列三组图形,分别比较线段a、b的长短。再用刻度尺量一下,看看你的视察结果是否正确。
(1)
a
b
(2)
a
b
(3)
a
b
请先画一条线段,再画一条与它相等的线段(不能用尺量),行吗?
想一想:
你能想出几种办法?
可用圆规吗?
a
A B
4.2 直线 射线 线段
第二课时
学习目标
1、会用尺规画一条线段等于已知线段,会比较两条线段的长短.
2、培养动手操作能力,提高抽象概括能 力,能从实际问题中抽 象学问题,初步会数学的建模方法.
3、积极参与实验数学活动中,体会数学是解决实际问题的重要通过对解决问题过程的反思,懂得知识源于生活并用于生活.
答:AC长为3cm,AD长为1.5cm.
1、已知线段AB = 4cm,延长AB到C,使BC = 2AB,若D为AB的中点,则线段DC 的长为 cm。
A
B
C
D
4cm
8cm
2cm
2cm + 8cm = 10cm
10
1、有A、B、C三个城市,已知A、B两城市的距离 为50千米,B、C两城市的距离为 30 千米,那么 A、C两城市的距离是( ) A、80千米 B、20千米 C、40千米 D、处于20千米到80千米间
3.1cm
4.1cm
第三种方法是:叠合法 先把两条线段的一端重合,另一 端落在同侧,根据另一端落下的位 置,来比较
①
②
③
A
B
B
A
A
B
AB>CD
AB=EF
AB<MN
6.2.1 直线、射线、线段 课件 2024-2025学年人教版数学七年级上册

6.2.1直线、射线、线段
情境引入
生活中有哪些物体可以近似地看成线段、射线、 直线?
合作 探究
绷紧的琴弦、人行横道都可以近似 地看做线段。
探照灯的灯光给我们以射线的形象。
向两个方向无限延伸的道路给我们以直 线的形象。
合作探究
合作探究
2.过一点A可以画几条直线? 3.过两点A、B可以画几条直线?
定同一行的树坑所在的直线.
射击训练时,你知道是如何瞄准目标的吗?
合作 探究
三、线段、射线、 直线的表示法
线段 射线 直线
图形
A
B
a
O
A
n
A
B
m
表示
线段 AB、线段BA
线段 a ( 端点的字母 O 写在首位 )
射线 OA 射线 n (点A、B不能取在线尽头。 ) 直线AB(直线BA) 直线 m
在射线的表示法中,要注意两点:
合作探究
•已知一条线段,你能由它得到一条射线和一条直线吗?
A 线直段线ABB B
射线AB
射线、线段都是直线的一部分。
合作探究
端点数
延伸
度量
无端点 1个 2个
向两个方向无限 延伸
不可度量
向一个方向无 限延伸
不可度量
不向任何方向延伸 可度量
AB OP CD
达标检测 判断:
1.射线是直线的一部分。 2.线段是射线的一部分。 3.画一条射线,使它的长度为3cm。 4.如图,画一条线段ab。
(√ )
( √)
(
)
( ×)
×
a
b
5.如图,若射线AB上有一点C,下)射线BA (C)射线BC
(B)射线AC (D)射线CB
情境引入
生活中有哪些物体可以近似地看成线段、射线、 直线?
合作 探究
绷紧的琴弦、人行横道都可以近似 地看做线段。
探照灯的灯光给我们以射线的形象。
向两个方向无限延伸的道路给我们以直 线的形象。
合作探究
合作探究
2.过一点A可以画几条直线? 3.过两点A、B可以画几条直线?
定同一行的树坑所在的直线.
射击训练时,你知道是如何瞄准目标的吗?
合作 探究
三、线段、射线、 直线的表示法
线段 射线 直线
图形
A
B
a
O
A
n
A
B
m
表示
线段 AB、线段BA
线段 a ( 端点的字母 O 写在首位 )
射线 OA 射线 n (点A、B不能取在线尽头。 ) 直线AB(直线BA) 直线 m
在射线的表示法中,要注意两点:
合作探究
•已知一条线段,你能由它得到一条射线和一条直线吗?
A 线直段线ABB B
射线AB
射线、线段都是直线的一部分。
合作探究
端点数
延伸
度量
无端点 1个 2个
向两个方向无限 延伸
不可度量
向一个方向无 限延伸
不可度量
不向任何方向延伸 可度量
AB OP CD
达标检测 判断:
1.射线是直线的一部分。 2.线段是射线的一部分。 3.画一条射线,使它的长度为3cm。 4.如图,画一条线段ab。
(√ )
( √)
(
)
( ×)
×
a
b
5.如图,若射线AB上有一点C,下)射线BA (C)射线BC
(B)射线AC (D)射线CB
七年级上册数学人教版直线射线线段第二课时课件

记做c=a+b,即AC=AB+BC.
c
a
b
AB
C
D
已知线段a、b,你能画线段c,使线段c=a-b?
a
b
AB
C
D
1、如图,点B、C在线段AD上.
则AB + BC =_A_C__; AD – CD =_A_C__;
BC= _A_C_ - _A_B_= _B__D_ - _C_D__.
2、若AB=BC=CD,你能找出哪些等量关系
如图,已知线段AB,延长线段AB到C,使BC=AB.
A
B
C
在所画图中,我们把点B叫做线段AC的中点
如果点B为线段AC的中点,
那么AC= 2
AB= 2 BC;AB= BC =
1 2
AC
如图,要从甲地到乙地去,有3条路线, 请你选择一条相对近一些的路.
①
②
乙地
③
甲地
从甲地到乙地能否修一条最近的路? 如果能,你认为这条路应该怎样修?
l
表示为: 射线 l
生活中线段的长短的比较
怎样比较两个同学的高矮?
叠合法
度量法
第一种:
叠合法
先把两根绳子的一端重合,另一端落在同侧,
根据另一端落下的位置来比较.
试比较绳子AB与绳子CD、绳子EF、绳子MN的大小?
A
BC
E
FM
D N
①C ②E ③M
D
F N
AB=CD AB>EF AB<MN
第二种方法: 度量法 用一把尺子量出两根绳子的长度,再进行比较.
5、某班的同学在操场上站成笔直的一排, 确定两个同学的位置,这一排的位置就确 定下来了,这是因为 __经__过__两__点__有__且__只__有__一__条__直_线_________.
c
a
b
AB
C
D
已知线段a、b,你能画线段c,使线段c=a-b?
a
b
AB
C
D
1、如图,点B、C在线段AD上.
则AB + BC =_A_C__; AD – CD =_A_C__;
BC= _A_C_ - _A_B_= _B__D_ - _C_D__.
2、若AB=BC=CD,你能找出哪些等量关系
如图,已知线段AB,延长线段AB到C,使BC=AB.
A
B
C
在所画图中,我们把点B叫做线段AC的中点
如果点B为线段AC的中点,
那么AC= 2
AB= 2 BC;AB= BC =
1 2
AC
如图,要从甲地到乙地去,有3条路线, 请你选择一条相对近一些的路.
①
②
乙地
③
甲地
从甲地到乙地能否修一条最近的路? 如果能,你认为这条路应该怎样修?
l
表示为: 射线 l
生活中线段的长短的比较
怎样比较两个同学的高矮?
叠合法
度量法
第一种:
叠合法
先把两根绳子的一端重合,另一端落在同侧,
根据另一端落下的位置来比较.
试比较绳子AB与绳子CD、绳子EF、绳子MN的大小?
A
BC
E
FM
D N
①C ②E ③M
D
F N
AB=CD AB>EF AB<MN
第二种方法: 度量法 用一把尺子量出两根绳子的长度,再进行比较.
5、某班的同学在操场上站成笔直的一排, 确定两个同学的位置,这一排的位置就确 定下来了,这是因为 __经__过__两__点__有__且__只__有__一__条__直_线_________.
七年级数学上册课件(人教版)4.2直线、射线、线段 第二

)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
人教版七年级数学上册直线、射线、线段课件

4.2 直线、射线、线段
知识回顾 你还记得这些朋友吗?
直线
射线
线段
知识回顾
概念 名称 直线
射线
线段
延伸方向
可以向两个相反 方向无限延伸 可以向一方无限延伸
不能向任何一方延伸
端点 个数
能否度量
无
不能
一个
不能
两个
能
经过思考与画图,我们可以得到一个基本的事实: 经过两点有一条直线,并且只有一条直线. 简单说成:两点确定一条直线.
向两个方向无限延伸可得到直线.
2.按语句画图: (每小题15分,共60分) (1)直线EF经过点C; (2)点A在直线a外; (3)经过点O的三条线段a、b、c; (4)线段AB、CD相交于点B。
B、点B在直线 l 上 C、点A在直线 l 上
l
B
A
D、直线m不经过B点 m
4.视察下图,图中共有多少条线段?
分别有哪些?
A
答:6条线段.
B
D
分别是线段AB、线段BC、 线段AC、线段AD、线段 BD、线段DC.
C
1.判断下列说法是否正确:(每小题10分。共40分)
(1)线段AB和射线AB都是直线AB的一部分; (2)直线AB和直线BA是同一条直线; (3)射线AB和射线BA是同一条射线; (4)Βιβλιοθήκη 线段向一个方向无限延伸可得到射线,
在生活中你还见过哪 些近似射线的光线呢?
认识射线
把线段的一端无限延伸
线段向一端无限延伸形成的图形叫做射线, 射线只有一个端点。
线段
(无限延伸)
射线
端点
◇直的
◇只有一个端点
◇一端无限延伸
◇不能测量长度,无限长
知识回顾 你还记得这些朋友吗?
直线
射线
线段
知识回顾
概念 名称 直线
射线
线段
延伸方向
可以向两个相反 方向无限延伸 可以向一方无限延伸
不能向任何一方延伸
端点 个数
能否度量
无
不能
一个
不能
两个
能
经过思考与画图,我们可以得到一个基本的事实: 经过两点有一条直线,并且只有一条直线. 简单说成:两点确定一条直线.
向两个方向无限延伸可得到直线.
2.按语句画图: (每小题15分,共60分) (1)直线EF经过点C; (2)点A在直线a外; (3)经过点O的三条线段a、b、c; (4)线段AB、CD相交于点B。
B、点B在直线 l 上 C、点A在直线 l 上
l
B
A
D、直线m不经过B点 m
4.视察下图,图中共有多少条线段?
分别有哪些?
A
答:6条线段.
B
D
分别是线段AB、线段BC、 线段AC、线段AD、线段 BD、线段DC.
C
1.判断下列说法是否正确:(每小题10分。共40分)
(1)线段AB和射线AB都是直线AB的一部分; (2)直线AB和直线BA是同一条直线; (3)射线AB和射线BA是同一条射线; (4)Βιβλιοθήκη 线段向一个方向无限延伸可得到射线,
在生活中你还见过哪 些近似射线的光线呢?
认识射线
把线段的一端无限延伸
线段向一端无限延伸形成的图形叫做射线, 射线只有一个端点。
线段
(无限延伸)
射线
端点
◇直的
◇只有一个端点
◇一端无限延伸
◇不能测量长度,无限长
人教版七年级数学上册教学PPT课件直线、射线和线段

2.下列给线段取名正确的是 ( B )
A.线段M
B.线段m
C.线段Mm
D.线段mn
3.下列四个图中的线段(或直线、射线)能相交
的是( A )
D C
D
D
C
C
AB 2
AB 3
A 4 B
A.(1) B.(2) C.(3) D.(4)
B
A 4.在挂窗帘时,只 要在两边钉两颗钉 子扯上线即可,这 是因为 两点确定一条直线。
C A
BD
点在直线上(直线经过点)
点与一条直线的位置关系 点在直线外(直线不经过点)
任务卡Ⅲ
(2)描述点与直线的位置关系: 点C和直线AB: 点C在直线AB外或直线AB不经过点C ; 点D和直线AB: 点D在直线AB外或直线AB不经过点D ; 点A和直线AB: 点A在直线AB上或直线AB经过点A ; 点B和直线AB: 点B在直线AB上或直线AB经过点B .
可度量 不可度量 不可度量
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
二、合作探究
任务卡Ⅰ 1、直线的性质
(1)经过一个已知点画直线,可 以画多少条?
无数条
(2)经过两个已知点画直线,可 以画多少条?
一条
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
任务卡Ⅱ
1、直线的表示方法:
(1)阅读课本P125,
看下图(a)的直线表示: 直线l
人教版初中数学七年级上册 42直线射线线段共32张

——我说你画
1、直线EF经过点C; 2、点A在直线a外; 3、经过点O的三条线段a、b、c; 4、线段AB、CD相交于点B。
如图,已知三点A、B、C.
A
(1)画直线AB;
B
(2)画射线AC;
C
(3)连接BC.
九.小测验
1、线段a b相交于点O.
.a O
2、点A在直线 l 外
3、已知A 、B、 C、D四个点 (1)画直线AB (2)画射线AC (3)连结 DC
射线、线段都是直线的一部分。
类型 端点数 延伸
度量
线段
2个
不能延伸 可度量
射线
1个
向一个方向 无限延伸
不可度量
直线
无端点
向两个方向 无限 延伸
不可度量
联系:线段向一端无限延长形成射线,向两端无限延长形成直线
1、过一点A可以画几条直线?
·A
1、如果你想将一根细木条固定在墙 上,至少需要几个钉子?
3、过两点A、B可以画几条直线?
b O
a
直线a和b相交于点O
? 线段: (1)用表示端点的两个大写字母表示 (2)用一个小写字母表示
A a
B 线段 AB( 或线段BA) 线段 a
? 射线:用它的端点和射线方向上 的另外任意一点的两个大写字母表 示
O
A
射线 OA( 不能记作 AO )
m
射线 m
下图中,有几条直线,几条射线,几条线段?
·A ·B
直线公理:
. 经过两点有且只有一条直线 存在性 唯一性 简述为:
两点确定一条直线
3、植树时,只要定出两个树坑的位 置就能确定同一行的树坑所在的直线。
我们可以用下列方式表示直线:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结:
学习了直线、射线,能用字母来表示线段、射 线、直线,知道了直线、射线与线段之间的 联系与区别。
Hale Waihona Puke 线线段A.B
.
射线
线段、射线是直线的一部分.
下列图形中,( b )是线段, ( c )是射线,( a )是直线。
。
。
。
。 。
。
a
b
c
画一画,想一想:
1、从一点可以画多少条射线?
.A
2、过一点可以画多少条直线?
线段、射线、直线
制作者: 裕安小学 杨忠兵
.A .C
线段的特征:
.B .D
直,两个端点
.A
.B
.C
.D
边看书边思考下列问题:
▪ 射线是怎样得到的?它有什么特点? 怎样用字母表示?
▪ 直线是怎样得到的?它有什么特点? 怎样用字母表示?
一条线段,将它的一个端点没有限制地延 长,所形成的图形叫做射线。
。
o
3、过两点可以画多少条直线?
。
。
B
A
4、过下面的任意两点画一条直线,你能 画出多少条?
。
。
。 。
。
。
.
B
A
射线AB
一条线段,将它的两个端点没有限制 地延长,所形成的图形叫做直线。
。 。
A B
直线AB 也可以用小写字母表示的,如:a,b,c……
射线、直线与线段三者之间 有什么联系与区别?
射线:直,一个端点,不能量长度
向一端无限延长
线段:直,两个端点,可以量长度
向两端无限延长
直线:直,没有端点,不能量长度