(完整版)实际问题与二元一次方程组经典例题

(完整版)实际问题与二元一次方程组经典例题
(完整版)实际问题与二元一次方程组经典例题

实际问题与二元一次方程组经典例题

目标认知

学习目标:

1.能够借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用2.进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性

3.体会列方程组比列一元一次方程容易

4.进一步培养化实际问题为数学问题的能力和分析问题,解决问题的能力

5.掌握列方程组解应用题的一般步骤;

重点:

1.经历和体验用二元一次方程组解决实际问题的过程。

2.进一步体会方程(组)是刻画现实世界的有效数学模型。

难点:正确找出问题中的两个等量关系

知识要点梳理

知识点一:列方程组解应用题的基本思想

列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.

知识点二:列方程组解应用题中常用的基本等量关系

1.行程问题:

(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差=开始时两者相距的路程;;

(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;

②船在静水中的速度-水速=船的逆水速度;

③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.

3.商品销售利润问题:

(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;

注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价

的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:

(1)基本概念

①本金:顾客存入银行的钱叫做本金。②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。⑥利息税:利息的税款叫做利息税。

(2)基本关系式

①利息=本金×利率×期数

②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)

③利息税=利息×利息税率=本金×利率×期数×利息税率。

④税后利息=利息×(1-利息税率) ⑤年利率=月利率×12 ⑥。

注意:免税利息=利息

5.配套问题:

解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。

6.增长率问题:

解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;

原量×(1-减少率)=减少后的量.

7.和差倍分问题:

解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.

8.数字问题:

解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字

9.浓度问题:溶液质量×浓度=溶质质量.

10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式

11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:

在解决问题时,常常需合理安排。需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。

注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。知识点三:列二元一次方程组解应用题的一般步骤

利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:

1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;

3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.

要点诠释:

(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;

(2)“设”、“答”两步,都要写清单位名称;

(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.

解答步骤简记为:问题方程组解答

(4)列方程组解应用题应注意的问题

①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。

经典例题透析

类型一:列二元一次方程组解决——行程问题

1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?

思路点拨:画直线型示意图理解题意:

(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.

(2)有两个等量关系:

①相向而行:汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;

②同向而行:汽车行驶小时的路程=拖拉机行驶小时的路程.

解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.

根据题意,列方程组

解这个方程组,得:

.

答:汽车行驶了165千米,拖拉机行驶了85千米.

总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

举一反三:

【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?

解:设甲、乙两人每小时分别行走千米、千米。根据题意可得:

解得:

答:甲每小时走6千米,乙每小时走3.6千米。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速

船逆流速度=静水中的速度-水速

解:设船在静水中的速度为x千米/时,水速为y千米/时,

则,解得:

答:船在静水中的速度为17千米/时,水速3千米/时。

类型二:列二元一次方程组解决——工程问题

2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?

思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.

解:(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:

解得

答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元。

(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,

故请乙组单独做费用最少。

答:请乙组单独做费用最少。

总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。

举一反三:

【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.

解:设甲、乙两公司每周完成总工程的和,由题意得:

,解得:

所以甲、乙单独完成这项工程分别需要10周、15周。

设需要付甲、乙每周的工钱分别是万元,万元,根据题意得:

,解得:

故甲公司单独完成需工钱:(万元);乙公司单独完成需工钱:(万元)。

答:甲公司单独完成需6万元,乙公司单独完成需4万元,故从节约的角度考虑,应选乙公司单独完成.

类型三:列二元一次方程组解决——商品销售利润问题

3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?

思路点拨:做此题的关键要知道:利润=进价×利润率

解:甲商品的进价为x元,乙商品的进价为y元,由题意得:

,解得:

答:两件商品的进价分别为600元和400元。

举一反三:

【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?

解:设李大叔去年甲种蔬菜种植了亩,乙种蔬菜种植了亩,则:

,解得

答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.

【变式2

A B

进价(元/件)1200 1000

售价(元/件)1380 1200

(注:获利 = 售价—进价)

求该商场购进A、B两种商品各多少件;

解:设购进A种商品件,B种商品件,根据题意得:

化简得:解得:

答:该商场购进A、B两种商品分别为200件和120件。

类型四:列二元一次方程组解决——银行储蓄问题

4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:

解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:

,解得:

答:存教育储蓄的钱为1500元,存一年定期的钱为500元.

总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等

量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.

举一反三:

【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)

思路点拨:扣税的情况:本金×年利率×(1-20%)×年数=利息(其中,利息所得税=利息

金额×20%).不扣税时:利息=本金×年利率×年数.

解:设第一种储蓄的年利率为x,第二种储蓄的年利率为y,根据题意得:

,解得:

答:第一种储蓄的年利率为2.25%,第二种储蓄的年利率为0.99%.

【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?

解:设第一种存款数为X元,则第二种存款数为y元,根据题意得:

,解得:

答:第一种存款数为1500元,第二种存款数为2500元。

类型五:列二元一次方程组解决——生产中的配套问题

5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?

思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).

解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:

答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.

总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.

举一反三:

【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?

思路点拨:两个未知数是制盒身、盒底的铁皮张数,两个相等关系是:①制盒身铁皮张数+制盒底铁皮张数=190;②制盒身个数的2倍=制盒底个数.

解:设x张铁皮制盒身,y张铁皮制盒底,由题意得:

答:用110张制盒身,80张制盒底,正好制成一批完整的盒子.

【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。

解:由一个螺栓套两个螺母的配套产品,可设生产螺栓的有 x人,生产螺母的有y人,

则:,解得:

答:生产螺栓的有25人,生产螺母的有35人。

【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?

解:设用 x立方米的木料做桌面,用y立方米的木料做桌腿,根据题意,得:

,解得:

∴可做50×3=150张方桌。

答:用3立方米的木料做桌面,用2立方米的木料做桌腿,可做成150张方桌。

类型六:列二元一次方程组解决——增长率问题

6. 某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?

总产值(万元)总支出(万元)利润(万元)

去年x y 200

今年120%x 90%y 780

根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的已知量和未知量,可以列出两个等式。

解:设去年的总产值为x万元,总支出为y万元,根据题意得:

,解之得:

答:去年的总产值为2000万元,总支出为1800万元

总结升华:当题的条件较多时,可以借助图表或图形进行分析。

举一反三:

【变式1】若条件不变,求今年的总产值、总支出各是多少万元?

解:设今年的总产值为x万元,总支出为y万元,由题意得:

,解得:

答:今年的总产值为2000万元,总支出为1800万元

思考:本问题还有没有其它的设法?

【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。

思路点拨:由题意得两个等式关系,两个相等关系为:

(1)城镇人口+农村人口=42万;

(2)城镇人口×(1+0.8%)+农村人口×(1+1.1%)=42×(1+1%)

解:设现在城镇人口为x万,农村人口为y万,由题意得:

解得

答:现在城镇人口14万人,农村人口为28万人

类型七:列二元一次方程组解决——和差倍分问题

7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?

思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后,倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组。

解:设原计划“爱心”帐篷厂生产帐篷x千顶,“温暖”帐篷厂生产帐篷y千顶,由题意得:

,解得:

所以:1.6x=1.65=8, 1.5y=1.54=6

答:“爱心”帐篷厂生产帐篷8千顶,“温暖”帐篷厂生产帐篷6千顶.

举一反三:

【变式1】 (2011年北京门头沟区中考一模试题) “地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分—21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.

解:设中国内地去年有x个城市参加了此项活动,今年有y个城市参加了此项活动.

依题意得,解得:

答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动

【变式2】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?

思路点拨:本题关键之一是:小孩子看游泳帽时只看到别人的,没看到自己的帽子。关键之二是:两个等式,列等式要看到重点语句,第一句:每位男孩看到蓝色与红色的游泳帽一样多;第二句:每位女孩看到蓝色的游泳帽比红色的多1倍。找到已知量和未知量根据这两句话列两个方程。

解:设男孩x人,女孩y人,根据题意得:

,解得:

答:男孩4人和女孩有3人。

类型八:列二元一次方程组解决——数字问题

8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。

思路点拨:设较大的两位数为x,较小的两位数为y。

问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100x+y

问题2:在较大数的左边写上较小的数,所写的数可表示为: 100y+x

解:设较大的两位数为x,较小的两位数为y。依题意可得:

,解得:

答:这两个两位数分别为45,23.

举一反三:

【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?

解:设十位数为x,个位数为y,则:

,解得:

答:这两位数为56

【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?

解:设个位数字为x,十位数字为y,根据题意得:

,解得:

答:这个两位数为72.

【变式3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。

解:设原三位数的百位数字为 x,个位数字为y,由题意得:

答:所求三位数是504。

类型九:列二元一次方程组解决——浓度问题

9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?

思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和=50;(2)混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;(3)混合前两种溶液所含水的质量之和=混合后溶液所含水的质量;(4)混合前两种溶液所含纯酒精之和与水之和的比=混合后溶液所含纯酒精与水的比。

解:法一:设甲、乙两种酒精溶液分别取x kg , y kg.依题意得:

答:甲取20kg,乙取30kg

法二:设甲、乙两种酒精溶液分别取10x kg和5y kg,

则甲种酒精溶液含水7x kg,乙种酒精溶液含水y kg,根据题意得:

所以 10x=20,5y=30.

答:甲取20kg,乙取30kg

总结升华:此题的第(1)个相等关系比较明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等。用它们来联系各量之间的关系,列方程组时就显得容易多了。列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么。有时候需要设间接未知数,有时候需要设辅助未知数。

举一反三:

【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?

思路点拨:做此题的关键是找到配制溶液前后保持不变的量,即相等的量。本题主要有两个等量关系,等量关系一:配制盐水前后盐的含量相等;等量关系二:配制盐水前后盐水的总重量相等。

解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克,依题中的两个相等关系得:

,解之得:

答:需要10%的盐水6.4千克与85%的盐水5.6千克

【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?

解:设需要用x千克浓度为35%的农药加水y千克,根据题意得:

,解之得:

答:需要用40千克浓度为35%的农药加水760千克。

类型十:列二元一次方程组解决——几何问题

10.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?

思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x,宽为y,就可以列出关于x、y的二元一次方程组。

解:设长方形地砖的长xcm,宽ycm,由题意得:

答:每块长方形地砖的长为45cm、宽为15cm。

总结升华:几何应用题的相等关系一般隐藏在某些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解。

举一反三:

【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?

思路点拨:此题隐含两个可用的等量关系,其一长方形的周长为铁丝的长48厘米,第二个等量关系是长方形的长剪掉3厘米补到短边去,得到正方形,即长边截掉3厘米等于短边加上3厘米。

解:设长方形的长为x厘米,宽为y厘米,根据题意得:

所以正方形的边长为:9+3=12厘米

正方形的面积为:=144厘米

长方形的面积为:159=135厘米

答:正方形的面积比矩形面积大144-135=9厘米

总结升华:解题的关键找两个等量关系,最关键的是本题设的未知数不是该题要求的,本题要是设正方形的面积比矩形面积大多少,问题就复杂了。设长方形的长和宽,本题就简单多了,所以列方程解应用题设未知数是关键。

【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?

解:设草坪的长为y m 宽为x m,依题意得:

,解得:

答:草坪的长为m,宽为m

类型十一:列二元一次方程组解决——年龄问题

11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?

思路点拨:解本题的关键是理解“6年后”这几个字的含义,即6年后父子俩都长了6岁。今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程。

解:设现在父亲x岁,儿子y岁,根据题意得:

答:父亲现在30岁,儿子6岁。

总结升华:解决年龄问题,要注意一点:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内)。

举一反三:

【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.

思路点拨:本题的关键是两句话,第一句:小李的年龄是他爷爷的五分之一;第二句:他的年龄变成爷爷的三分之一。把未知数设出来,已知量和未知量根据这两句话列两个方程。

解:设今年小李的年龄为x岁,则爷爷的年龄为y岁。根据题意得:

,解得:

答:今年小李的年龄为12岁。

类型十二:列二元一次方程组解决——优化方案问题:

12.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成

你认为选择哪种方案获利最多?为什么?

思路点拨:如何对蔬菜进行加工,获利最大,是生产经营者一直思考的问题. 本题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.

解:方案一获利为:4500×140=630000(元).

方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).

方案三获利如下:

设将吨蔬菜进行精加工,吨蔬菜进行粗加工,则根据题意,得:

,解得:

所以方案三获利为:7500×60+4500×80=810000(元).

因为630000<725000<810000,所以选择方案三获利最多

答:方案三获利最多,最多为810000元。

总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进行比较从中选择最优方案.

举一反三:

【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;

(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?

解:(1)分情况计算:设购进甲种电视机x台,乙种电视机y台,丙种电视机z台。

①若购进甲、乙两种电视机,则:

②若购进甲、丙两种电视机,则:

③若购进乙、丙两种电视机,则:

故商场进货方案为购进甲种25台和乙种25台;或购进甲种35台和丙种15台。

(2)按方案①,获利150×25+200×25=8750元,

按方案②,获利150×35+250×15=9000元

∴选择购进甲种35台和丙种15台。

规律方法指导

1.学习列二元一次方程解应用题,通过深入挖掘隐含的条件,渗透解题的简捷性的数学美以及准确的设元,发挥解题的创造性的数学美.

2.实际问题主要包括:(1)行程问题:(2)工程问题;(3)销售中的盈亏问题;

(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;

(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;

(12)优化方案问题.

3.注意问题:

a:(1)行程问题中注意单位的变换及时间的早晚问题;(2)工程问题注意总的工程量是由几部分组成的;(3)利润问题中注意利润和利息的算法;(4)零件配套问题对零件的配套关系容易弄混。

b:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去。(2)“设”“答”两步,都要写清单位名称。(3)一般来说,设几个未知数,就应列出几个方程并组成方程组。

二元一次方程组应用题经典题有答案

实际问题与二元一次方程组题型归纳(5) 知识点一:列方程组解应用题的基本思想 列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等. 知识点二:列方程组解应用题中常用的基本等量关系 1.行程问题: (1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线 段,用图便于理解与分析。其等量关系式是:两者的行程差=开始时两者相距的路程;; ; (2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。 (3)航行问题:①船在静水中的速度+水速=船的顺水速度; ②船在静水中的速度-水速=船的逆水速度; ③顺水速度-逆水速度=2×水速。 注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。 2.工程问题:工作效率×工作时间=工作量. 3.商品销售利润问题: (1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率; 注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题: (1)基本概念 ①本金:顾客存入银行的钱叫做本金。②利息:银行付给顾客的酬金叫做利息。 ③本息和:本金与利息的和叫做本息和。④期数:存入银行的时间叫做期数。 ⑤利率:每个期数内的利息与本金的比叫做利率。⑥利息税:利息的税款叫做利息税。 (2)基本关系式 ①利息=本金×利率×期数 ②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) ③利息税=利息×利息税率=本金×利率×期数×利息税率。

二元一次方程组计算题50道(答案)

.. 中 考 真 题 50 道 中考真题之《二元一次方程组计算题》 -----专项练习50题(有答案) 1.(2012?德州)已知 ,则a+b 等于( ) A. 3 B C. 2 D. 1 2.(2012菏泽)已知???==1 2 y x 是二元一次方程组81mx ny nx my +=??-=?的解,则n m -2的算术平方根为( ) A .±2 B . 2 C .2 D . 4 3.(2012临沂)关于x 、y 的方程组3, x y m x my n -=?? +=?的解是1,1,x y =??=? 则m n -的值是( ) A .5 B .3 C .2 D .1 4.(2012?杭州)已知关于x ,y 的方程组 ,其中﹣3≤a ≤1,给出下列结论: ①是方程组的解; ②当a=﹣2时,x ,y 的值互为相反数; ③当a=1时,方程组的解也是方程x+y=4﹣a 的解; ④若x ≤1,则1≤y ≤4. 其中正确的是( ) A .①② B .②③ C .②③④ D .①③④ 5. (2012广东湛江) 请写出一个二元一次方程组 ,使它的解是. 6.(2012广东)若x ,y 为实数,且满足|x ﹣3|+ =0,则()2012的值是 1 .

7.(2012安顺)以方程组的解为坐标的点(x ,y )在第 象限. 8.(2012?连云港)方程组的解为 . 9.(2012?广州)解方程组 . 10.(2012广东)解方程组: . 11.(2012?黔东南州)解方程组. 12、(2012湖南常德)解方程组:???==+1-25y x y x 13. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是.. 该方程的解的是 A .0 12 x y =???=-?? B .11x y =??=? C .1 0x y =??=? D .11x y =-??=-? 14. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( ) A .12xy x y =??+=? B . 523 13x y y x -=???+=?? C . 20 135x z x y +=?? ? -=?? D .5723 z x y =???+=?? 15. (2011广东肇庆,4,3分)方程组?? ?=+=-4 22 y x y x 的解是 ① ②

选修4-4 坐标系与参数方程知识点及经典例题

坐标系与参数方程 *选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 第一讲 一、平面直角坐标系 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换???>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

方法1:求伸缩变换后的图形。 由伸缩变换公式解出x、y,代入已知曲线方程就可求得伸缩变换后的曲线方程。 例::在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 方法2:待定系数法求伸缩变换。 求伸缩变换时,先设出变换,再代入原方程或变换后的方程,求出其中系数即可。 例:在同一平面直角坐标系中,求下列图形变换的伸缩变换:

二、极坐标 1.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 2.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 4.极坐标与直角坐标的互化: 如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ). (1)极坐标化直角坐标 (2)直角坐标化极坐标 ? ????ρ2=x 2+y 2,tan θ=y x (x ≠0).

二元一次方程组经典练习题+答案解析100道 (1)

二元一次方程组练习题100道(卷一) 1、?? ?? ?-==312y x 是方程组?????? ?=-=-9 10326 5 23 y x y x 的解 …………( ) 2、方程组? ? ?=+-=5 231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( ) 4、方程组???????=-++=+++2 5323 473 5 23y x y x ,可以转化为?? ?-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2 +(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( ) 6、若x +y =0,且|x |=2,则y 的值为2 …………( ) 7、方程组? ? ?=+-=+8 1043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组?? ???=+=+62 3 131 y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组? ? ?=+=-351 3y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组?? ?=+=-3 51 3y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则3 2-的值为b a ………( ) 12、在方程4x -3y =7里,如果用x 的代数式表示y ,则4 37y x +=( ) 二、选择: 13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;

100道二元一次方程组计算题

1.二元一次方程4x-3y=12,当x=0,1,2,3时,y=______. 2.在x+3y=3中,若用x表示y,则y=______,用y表示x,则x=______. 4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______. (1)方程y=2x-3的解有______; (2)方程3x+2y=1的解有______; (3)方程y=2x-3与3x+2y=1的公共解是______. 9.方程x+y=3有______组解,有______组正整数解,它们是______. 11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程. 12.对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=______;当y=0时,则x=______. 13.方程2x+y=5的正整数解是______. 14.若(4x-3)2+|2y+1|=0,则x+2=______. 的解. 当k为______时,方程组没有解.

______. (二)选择 24.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则[ ] A.y=5x-3; B.y=-x-3; D.y=-5x-3. [ ] 26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ] A.10x+2y=4; B.4x-y=7; C.20x-4y=3; D.15x-3y=6. [ ] A.m=9; B.m=6; C.m=-6; D.m=-9. 28.若5x2ym与4xn+m-1y是同类项,则m2-n的值为 [ ] A.1; B.-1; C.-3; D.以上答案都不对.

参数方程典型例题分析

参数方程典型例题分析 例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0) 分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为, ,点P分所成的比为,那么点P对应的参数是(). (A)(B)(C)(D) 分析将,分别代入参数方程, 得A点的横坐标致为,B点的横坐标为, 由定比分点坐标公式得P的横坐标为 , 可知点P所对应的参数是故应选(C). 例3化下列参数方程为普通方程,并画出方程的曲线. (1)(为参数,)

(2)(为参数); (3)(为参数), 解:(1)∵ ∴, ∴或 故普通方程为(或),方程的曲线如图. (2)将代入得 ∵普通方程为(),方程的曲线如图.

(3)两式相除得代入得 整理得 ∵ ∴普通方程为(),方程的曲线如图. 点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价. 例4已知参数方程 ①若为常数,为参数,方程所表示的曲线是什么? ②若为常数,为参数,方程所表示的曲线是什么? 解:①当时,由(1)得,由(2)得,

∴,它表示中心在原点, 长轴长为,短轴长为焦点在轴上的椭圆. 当时,,, 它表示在轴上的一段线段. ②当()时,由(1)得, 由(2)得.平方相减得, 即 它表示中心在原点,实轴长为,虚轴长为, 焦点在轴上的双曲线. 当()时,,它表示轴; 当()时,, ∵(时)或(时) ∴,∴方程为(), 它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线. 点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数. 例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案) 类型一:列二元一次方程组解决——行程问题 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 解:设甲,乙速度分别为x,y千米/时,依题意得: (2.5+2)x+2.5y=36 3x+(3+2)y=36 解得:x=6,y=3.6 答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。 【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。 解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有: 20(x-y)=280 14(x+y)=280 解得:x=17,y=3 答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时, 类型二:列二元一次方程组解决——工程问题 【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由. 解: 类型三:列二元一次方程组解决——商品销售利润问题 【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩? 解:设甲、乙两种蔬菜各种植了x、y亩,依题意得: ①x+y=10 ②2000x+1500y=18000

二元一次方程组计算题专项训练+

二元一次方程组计算题专项训练 一、用代入法解下列方程组 (1)? ??=+=-5253y x y x (2) ? ? ?=--=523 x y x y 二、用加减法解下列方程组 (1)???-=+-=-53412911y x y x (2)? ??=+=-524753y x y x 三、用适当的方法解下列方程组: 1、? ??=+=+16156653y x y x 2、{ 3x y 304x 3y 17--=+= (3)?????=-= +2.03.05.0523151 y x y x 4、x 2y+2=02y+22x 536????? ---= 7?? ? ??=+=+=+634323x z z y y x 8 234x y y z z x +=?? +=??+=?

四、解答题 1、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =? b =? 2、已知???-==24y x 与? ??-=-=52 y x 都是方程y =kx +b 的解,则k 与b 的值为多少? 3、若方程组322, 543 x y k x y k +=??+=+?的解之和为x+y=-5,求k 的值,并解此方程组. 4、已知方程组4234ax by x y -=??+=?与2 432 ax by x y +=??-=?的解相同,那么a=?b=? 5、关于x 、y 的方程组? ??=-=+m y x m y x 932的解是方程3x +2y =17的一组解,那么m 的值是多少? 6、一个星期天,小明和小文同解一个二元一次方程组{ ax+by=16bx+ay=1 ① ② 小明把方程① 抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{ x=3 y=2,求原方程组的解。

二元一次方程组计算题

23, 328; y x x y =-?? +=? 25, 342;x y x y -=?? +=? 31, 3112; x y x y -=-?? =-? 8320,4580.x y x y ++=?? ++=? 1 36,2 12;2 x y x y ?+=-????+=?? 23(2)1,21;3 a a b a b -+=?? +?=?? ?? ?-=+-=+1)(258 y x x y x ?? ?=-+=-0133553y x y x ?? ?=-=+34532y x y x ???-=+-=+734958y x y x ???=-=+1321445q p q p ?? ?=+-=8372y x x y ? ??=++=+053212y x y x ??? ??=-+=+1 2332 4 1y x x y ? ??=+=+30034150 2y x y x ()()??? ??=--+--=+2 54272y x y x y x y x 6152423+-=+=+y x y x y x ?? ?-=-=+22223y x y x ?? ?-=+=-176853y x y x ?? ?=-=+7382y x y x ?? ?=+=+3435 2y x y x ?? ?=-=+335 y x y x ?? ?=+-+=+++7 )1(3)2(217 )1(3)2(2y x y x

1、明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,?问明明两种邮票各买了多少枚? 2、现有长18米的钢材,要锯成7段,而每段的长只能取“2米或3米”两种型号之一,问两米长和三米长的各应取多少段? 3、将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;?若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼? 4、有48个队共520名运动员参加篮、排球比赛,其中篮球队每队10人,排球队每队12人每个运动员只参加一种比赛.篮、排球队各有多少队参赛? 5、甲、乙两人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙;如果甲让乙先跑2秒钟,甲跑4秒钟就能追上乙.求甲乙两人的速度. 6、已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度。 7、有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6 辆小车一次可以运货35吨。3辆大车与5辆小车一次可以运货多少吨? 8、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1小时后到达县城,他骑车的平均速度是25千米/时,步行的平均速度是5千米/时,路程全长20千米.他骑车与步行各用多少时间? 9、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少? 10、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。”请问老师、学生今年多大年龄了呢? 11、一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50?个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,?多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.

二元一次方程组经典例题及答案

一、工程问题 1、公式:工作量=工作时间×工作效率 公式变形:工作时间=工作量÷工作效率 工作效率=工作量÷工作时间 一般把总工作量看作单位“1” 2、例题: 例1、某工人原计划在限定时间内加工一批零件.如果每小时加工10个零件,就可以超额完成3 个;如果每小时加工11个零件就可以提前1h完成.问这批零件有多少个?按原计划需多少小时完成? 解:设这批零件有x个,按原计划需y小时完成, 根据题意,得 10y=x+3 x=77(个) 11·(10-1)=x y=8(小时) 答:这批零件有77个,按计划需8 小时完

二、银行存款问题 1、公式:本息和=利息+本金 利息=本金×年利率×年数 例1、小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元? 解:设x为第一种存款的方式,y第二种方式存款,则 x+y=4000 x=1500(元) 2.25%* x+2.7%* 3* y=30 3.75 y=2500(元) 解得:第一种存款的金额为1500元,第二种存款的金额为2500元 例2、某企业向商业银行申请了甲、乙两种贷款,共计35万元,每年需付出利息4.4万元。甲种贷款每年的利率是12%,乙种贷款的利率是13%。求这两种贷款的金额分别是多少? 解:设这两种贷款的金额分别x万元、y万元 由题意得: x+y=35 x=15(万元) 12%x+13%y=4.4 y=20(万元) 答:这甲种贷款的金额为15万元、乙种贷款的金额为20万元

二元一次方程组练习题含答案

二元一次方程组专题训练 1、???=-=+33651643y x y x 2、???=+=-6251023x y x y 3、 ???=-=+15 725 32y x y x 4、???=+-=18435276t s t s 5、 ???=-=+574973p q q p 6、???=-=+4 26 34y x y x 7、???-=-=+22223n m n m 8、???=--=-495336y x y x 9、? ??=-=+195420 23b a b a 10、???=-=-y x y x 23532 11、???=-=+124532n m n m 12、???=+=+10 2325 56y x y x 13、???=+=+2.54.22.35.12y x y x 14、?????=-+-= +6 )(3)1(26 132y x x y x 15、?? ???=+--=-+-042 3513042 3512y x y x 16、?????=--= +-4 323122y x y x y x 17、?? ? ??-=-++=-+52251230223x y x y x

二元一次方程组练习题 一、选择题: 1.下列方程中,是二元一次方程的是() A.3x-2y=4z B.6xy+9=0 C.1 x +4y=6 D.4x= 2.下列方程组中,是二元一次方程组的是() A. 2 2 8 423119 (23754624) x y x y a b x B C D x y b c y x x y += +=-=?? = ?? ????+=-==-=???? 3.二元一次方程5a-11b=21 () A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是() A. 3333 ... 2422 x x x x B C D y y y y ==-==-???? ????===-=-???? 5.若│x-2│+(3y+2)2=0,则的值是() A.-1 B.-2 C.-3 D.3 2 6.方程组 43 235 x y k x y -= ? ? += ? 的解与x与y的值相等,则k等于() 7.下列各式,属于二元一次方程的个数有() ①xy+2x-y=7;②4x+1=x-y;③1 x +y=5;④x=y;⑤x2-y2=2 ⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x A.1 B.2 C.3 D.4 8.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,?则下面所列的方程组中符合题意的有() A. 246246216246 ... 22222222 x y x y x y x y B C D y x x y y x y x +=+=+=+= ???? ????=-=+=+=+???? 二、填空题 9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________. 10.在二元一次方程-1 2 x+3y=2中,当x=4时,y=_______;当y=-1时,x=______. 11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______. 12.已知 2, 3 x y =- ? ? = ? 是方程x-ky=1的解,那么k=_______. 13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____. 14.二元一次方程x+y=5的正整数解有______________. 15.以 5 7 x y = ? ? = ? 为解的一个二元一次方程是_________. 16.已知 23 16 x mx y y x ny =-= ?? ?? =--= ?? 是方程组的解,则m=_______,n=______. 三、解答题 17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)?有相同的解, 求a的值. 18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?

2参数方程知识讲解及典型例题

参数方程 一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数 t 的函数,即 ?? ?==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数. 1 y x Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程: 中心在原点,焦点在x 轴上的椭圆: θ θsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)

注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0 θ θ sin cos 00b y y a x x +=+= Eg 3, 4 pt y pt x 222 == (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t ,P 0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程

αα sin cos 00t y y t x x +=+= (t 为参数,t 的几何意义为有向距离) 说明:①t 的符号相对于点P 0,正负在P 0点两侧 ②|P 0P |=|t | 直线参数方程的变式: bt y y at x x +=+=00,但此时t 的几何意义不是有向距离,只有当 t 得 y x Eg

七年级数学二元一次方程组经典练习题及答案(最新整理)

? ? ? ? ? 4x +10 y = 8 ? ? ? ? ? x -y = 9m ? ? ? ? 2 一、判断 ?x = 2二元一次方程组练习题 100 道(卷一) (范围:代数:二元一次方程组) ?x - y = 5 1、? 1 y =- 是方程组 ?3 2 x y 6 的解…………() 10 ??3 ?-= ??2 3 9 2、方程组 ?y = 1-x ?3x + 2 y = 5 的解是方程3x-2y=13 的一个解() 3、由两个二元一次方程组成方程组一定是二元一次方程组() ?x + 3 + y + 5 = 7 ? 4、方程组,可以转化为 ?3x + 2 y =-12 () ? x + 4 + 2 y - 3 = 2 ? ?5x - 6 y =-27 ?? 3 5 5、若(a2-1)x2+(a-1)x+(2a-3)y=0 是二元一次方程,则a 的值为±1() 6、若x+y=0,且|x|=2,则y 的值为2 …………() 7、方程组 ?mx +my =m - 3x 有唯一的解,那么m 的值为m≠-5 …………() ? ?1 x + 1 y = 2 8、方程组?3 3 有无数多个解…………() ??x +y = 6 9、x+y=5 且x,y 的绝对值都小于5 的整数解共有5 组…………() 10、方程组 ?3x -y = 1 的解是方程x+5y=3 的解,反过来方程x+5y=3 的解也是方程组 ?3x -y = 1 的? x + 5 y= 3 解………() 11、若|a+5|=5,a+b=1 则 a 的值为- 2 ………() ? x + 5 y = 3 b 3 12、在方程4x-3y=7 里,如果用x 的代数式表示y,则x = 7 + 3y () 4 二、选择: 13、任何一个二元一次方程都有() (A)一个解;(B)两个解; (C)三个解;(D)无数多个解; 14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()(A)5 个(B)6 个(C)7 个(D)8 个 15、如果 ?x -y =a ?3x + 2 y = 4 的解都是正数,那么a 的取值范围是() (A)a<2;(B) a >- 4 ;(C)- 2

解二元一次方程组练习题经典

学习好资料欢迎下载 解二元一次方程组练习题 梅州)解方程组2013?.1.( 淄博)解方程组.2.(2013? 邵阳)解方程组:2013?.3.( (4.2013?.遵义)解方程组 2013?.湘西州)解方程组:5.( (6.2013?荆州)用代入消元法解方程组. .?汕头)解方程组2013.7( ?2012.8(湖州)解方程组. 学习好资料欢迎下载

广州)解方程组2012?.9.( 常德)解方程组:?10.(2012 2012?.南京)解方程组(11. 厦门)解方程组:12.(2012?. .2011?永州)解方程组:(13. 14.(2011怀化)解方程组:?. 桂林)解二元一次方程组:.?(15.2013 ?(.162010.南京)解方程组: 学习好资料欢迎下载 丽水)解方程组:(2010?17.

广州)解方程组:.?.18(2010 巴中)解方程组:.? 19.(2009 天津)解方程组:? 20.(2008 宿迁)解方程组:.2008? 21.( 桂林)解二元一次方程组:.(22.2011? ?郴州)解方程组:200723.( .?(24.2007常德)解方程组: 学习好资料欢迎下载 宁德)解方程组:2005?25.(

岳阳)解方程组:?.(2011.26 苏州)解方程组:.27.(2005? ?(2005江西)解方程组:28. 29.(2013自贡模拟)解二元一次方程组:.? 黄冈)解方程组:.?(30.2013 解二元一次方程组练习题学习好资料欢迎下载 参考答案与试题解析

一.解答题(共30小题) 梅州)解方程组.2013? 1.( 考点:解二元一次方程组;解一元一次方程. 专题:计算题;压轴题. 分析:①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可. 解答: 解:, ①+②得:3x=6, 解得x=2, 将x=2代入②得:2﹣y=1, 解得:y=1. ∴原方程组的解为. 点评:本题考查了解一元一次方程和解二元一次方程组的应用,关键是把二元一次方程组转化成一元一次方程,题目比较好,难度适中. 2.(2013?淄博)解方程组. 考点:解二元一次方程组. 专题:计算题. 分析:先用加减消元法求出y的值,再用代入消元法求出x的值即可. 解答: 解:, ①﹣2×②得,﹣7y=7,解得y=﹣1; 把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0, 故此方程组的解为:.点评本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键 3.(2013?邵阳)解方程组:.

(完整版)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

经典二元一次方程组知识点整理、典型例题练习总结

《二元一次方程组》 一、知识点总结 1、二元一次方程: 含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程, 它的一般形式是(0,0)ax by c a b +=≠≠. 2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】 3、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组. 4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:1 6x y x y +=?? +=?,1226x y x y +=??+=?;②有且只有一组解,例如:122x y x y +=??+=?;③有无数组解,例如:1 222x y x y +=?? +=?】 5、二元一次方程组的解法:代入消元法和加减消元法。 6、三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。解三元一次方程组的关键也是“消元”:三元→二元→一元 7、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步: (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,; (2)设:找出能够表示题意两个相等关系;并用字母表示其中的两个未知数 (3)列:根据这两个相等关系列出必需的代数式,从而列出方程组; (4)解:解这个方程组,求出两个未知数的值; (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案. 二、典型例题分析 例1、若方程 2132 57m n x y --+=是关于x y 、的二元一次方程,求m 、n 的值. 例2、将方程102(3)3(2)y x --=-变形,用含有x 的代数式表示y . 例3、方程310x y +=在正整数范围内有哪几组解 例4、若23 x y =?? =?是方程组2315x m nx my -=??-=-?的解,求m n 、的值. 例5、已知(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程,求m n 的值.

(计算题)二元一次方程组练习题-直接打印版

萌学教育 二元一次方程组专题训练 1、???=-=+33651643y x y x 2、???=+=-6 251023x y x y 3、 4、???=+-=18435276t s t s 5、 ???=-=+574973p q q p 6、???=-=+4 26 34y x y x 7、???-=-=+22223n m n m 8、???=--=-495336y x y x 9、? ? ?=-=+195420 23b a b a 10、???=-=-y x y x 23532 11、???=-=+124532n m n m 12、?? ?=+=+10232556y x y x 13、???=+=+2.54.22.35 .12y x y x 14、? ????=-+-=+6 )(3)1(26 1 32y x x y x 15、 16 17、 18、 带入消元法: (5) 请用X 表示Y 1)2X+Y=4 2)2X-Y=5 3)Y-X=6 4)2Y-X=7 5)2Y+X=8 6)2X+2Y=10 7)2X-2Y=12 8)3X=2Y 9)4X=6Y 10)3X+2Y=-9 请用Y 表示X 1)2X+Y=4 2)2X-Y=5 3)Y-X=6 4)2Y-X=7 5)2Y+X=8 6)2X+2Y=10 7)2X-2Y=12 8)3X=2Y 9)4X=6Y 10)3X+2Y=-9 ???=-=+1572532y x y x 3216,31;m n m n +=??-=??? ?? ?=--=+-4 323 122y x y x y x 523,611; x y x y -=??+=?234,443; x y x y +=??-= ?

最新极坐标与参数方程经典练习题-带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为122x t y ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB .2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π ,圆C 的极坐标方程 为)4 π ρθ= -. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴 重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+??=-+? (α为参数), 点Q 的极坐标为7 )4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .

二元一次方程组经典题型

1. 已知关于x,y 的方程0)2()3(182=-+---n m y n x m 是二元一次方程,求n m + 2. 已知0)2(352=-+-+x y x ,且42=-kx y ,求k 的值 3. 解方程组????? =+-+=-+-0 4235342 42 353y x y x 解方程组?????=+---=+--2 167101 25y x y x y x y x 4. 已知方程组???=+=-24by ax by ax 的解为???==1 2y x ,求b a 32-的值 5. 已知单项式273+y x b a 和x y b a 2427--是同类项,求y x 23-的值

6. 已知方程组? ??=-=+243y x y x 的解也是方程x y mx 1847-=+的解,求m 的值 7. 已知方程组? ??=-=+m y x m y x 932的解满足方程3885=+y x ,求m 的值 8. 已知方程组???=+-=+k y x k y x 423253的解y x ,互为相反数,求k 的值 9. 已知关于x 的方程x mx 36=+的解是正整数,求m 的值 10. 已知方程组? ??=-=-0362y x my x 的解为正整数,求m 的值

11. 已知方程组???=++=9129by ax x y 的解也是方程组? ??=-=+-133201418y ax y x 的解,求b a 、的值 12. 已知不论n m 、为何值,代数式n m x n m y m n 83)32()(-+++-的值恒为0,求y x 、的 值 13. 已知代数式9113)3()2(+-+++-y x n y x m x y 的值与y x 、的取值无关,求n m 、的值 例: 解下列方程组: ⑴ 41216x y x y -=-??+=? ⑵()()41312223 x y y x y --=--???+=?? ⑶2320235297x y x y y --=??-+?+=?? 典型例题分析 1. 解下列方程组: ⑴()()918523203 2m n m m n ?+=????++=?? ⑵7231 x y x y ?+=??-=-??

相关文档
最新文档