胚胎植入前遗传学诊断
胚胎植入前遗传学筛查

胚胎植入前遗传学筛查胚胎植入前遗传学筛查胚胎染色体异常是导致胚胎着床失败、早孕期胎儿流产的一大因素。
研究表明,随着年龄的增长,女性产生的正常卵子数量下降,导致胚胎中染色体数目异常的胚胎比例增加。
PGS检测可以在胚胎植入母体之前,筛选出检测结果为染色体正常的胚胎进行植入,从而减少因胎儿染色体问题而带来的流产甚至引产,减少移植次数,提高治疗效率,好孕之神就会降临!PGS(preimplantation genetic screening),即胚胎植入前遗传学筛查,是指在进行辅助生殖技术(IVF/ICSI)助孕的过程中,在胚胎移植之前,对早期胚胎或者卵子散在发生的染色体异常进行筛查,以挑选染色体正常的胚胎植入子宫,以期减少因胚胎染色体异常导致的流产及反复流产,获得正常的妊娠,提高IVF妊娠率。
胚胎植入前遗传学筛查就是在人工辅助生殖过程中,对胚胎进行种植前活检和高通量基因测序分析,以选择染色体正常无遗传学疾病的胚胎植入子宫,提高着床率和持续妊娠率,降低流产率,从而获得正常胎儿的诊断/筛查方法。
胚胎植入前遗传学筛查推荐人群:1、卵子染色体异常率较高的高龄(≥35岁)孕妇;2、染色体数目及结构异常的夫妇;3、严重的男性不育,少弱精子症,畸精症;4、生育过染色体异常疾病患儿的夫妇及有反复自然流产史的孕妇;5、反复胚胎种植失败的的孕妇。
在人工辅助生殖过程结合应用高通量测序的PGS的优势在于:1、PGS的全染色体筛查的误差率降低(<2%),准确性高大于99%,并且覆盖全面,染色体非整倍体以及10Mb以上微重复/微缺失均能检测;2、对囊胚活检无任何影响;••••3、消除母体年龄对植入的影响;4、能够检测出嵌合体(因为12%的囊胚是嵌合体,嵌合体比整倍体胚胎的受孕率低50%);5、与普通PGS技术相比,可以将流产率降低60%,同时提高移植着床率,提高临床妊娠率和持续妊娠率。
••••。
高通量基因测序植入前胚胎遗传学诊断和筛查技术规范

(1)患者的姓名、年龄、采用本项技术的适应证;
(2)胚胎的编号、胚胎的状态、采样日期和报告日期;
(3)检测的项目和检测方法以及测试的检测级别分类(A、B、C);
(4)检测报告应对每个被检胚胎的检测结果以标准的专业方式描述。常染色体隐性遗传性基因疾病的PGD应明确是正常、致病基因杂合子或纯合子,或致病基因复合杂合子(重型)胚胎;常染色体显性遗传性疾病的PGD应明确是正常或重型胚胎,染色体病的PGD以是否出现易位和非易位染色体数目和/或结构的改变来表示,PGS以是否出现染色体非整倍体的改变来表示。必要时根据检测结果辅以其它的描述或说明;
2.禁忌证:有如下情况之一者,不得实施PGD技术:
(1)患有《母婴保健法》规定的不宜生育的遗传性疾病;
(2)患有目前无法进行胚胎植入前遗传学诊断的遗传性疾病;
(3)其它不适宜实施辅助生殖技术的情况。
二、工作程序
对具备适应证的患者,医师应在其夫妇双方签署知情同意书后,予以核查并备案相关证件,进行术前检查并排除禁忌证;建立病历档案;按辅助生殖技术程序促排卵后经阴道穿刺取卵,行卵胞浆内单精子注射授精,胚胎体外培养,择时行胚胎活检,获取样本进行高通量测序、生物信息学分析,确定胚胎的相关遗传性状是否适合进行胚胎移植,适时向接受本项技术的夫妇双方报告并解释胚胎的高通量测序检测结果,选择胚胎进行宫腔内移植;成功妊娠后须跟踪患者妊娠情况,择时进行产前诊断,根据产前诊断结果作相应处理,并随访妊娠最终结局和子代情况。具体流程可参考附件1制定。
二、设备条件
机构须具备细胞遗传学实验诊断的设备和上述第一部分第一条第3款所要求的相应设备。在此基础上,机构应同时具备专业的高通量测序技术相应的核心设备(如与第三方合作可由第三方提供),该设备由经卫生行政管理部门批准试点或正式开展高通量测序技术临床应用的单位生产。各种设备的种类、数量须与实际开展的项目及工作规模相匹配。
胚胎移植前遗传学诊断 PGD

胚胎移植前遗传学诊断 PGD胚胎移植前遗传学诊断(PGD)起源于90年代初,是未来父母防止胚胎受到异常基因或染色体影响的一种措施.根据未来父母的个人需求,有各种可用的胚胎移植前遗传学诊断方式.通过对试管婴儿周期中的卵子或胚胎进行基因测试,经过分析并且诊断为正常的胚胎将被移植到母亲的子宫,在那里,胚胎有希望着床并诞生出一个健康的孩子来。
目前,我们能够对多种遗传学状况进行胚胎移植前遗传学诊断,包括对单基因异常或染色体异常的诊断.玉兰生殖遗传研究所自1990年PGD技术问世以来,就一直实施胚胎移植前遗传学诊断。
我们是极体剥离技术的开创者,并且是世界上提供PGD服务最活跃的医疗中心之一.我们的工作人员在胚胎移植前遗传学诊断的技术领域有深厚的经验。
PGD怎样才能使患者收益?胚胎移植前遗传学诊断可以大大减少您的婴儿受到异常染色体与特定遗传病影响的机会。
使用PGD技术,我们可以测试出许多种不同的疾病,包括非整倍体,单基因病和染色体易位。
许多夫妇因非整倍体的问题而请求胚胎移植前遗传学诊断,如,唐氏综合症,第18对染色体三体症,第13对染色体三体症和特纳综合症。
这些疾病通常不会在家族中出现(即非家族遗传而来)。
然而,高达60%的早期流产是由于非整倍体引起的,非整倍性出现的风险随着女性的年龄增加而提高.实施非整倍体PGD 可以增加夫妇怀孕的机会,减少流产风险,增加他们将健康的试管婴儿的孩子带回家的整体机率。
其他夫妇因特定遗传病而请求胚胎移植前遗传学诊断,这类遗传病可能会在他们的家族中出现,如泰伊-萨克斯二氏病,囊肿性纤维化,肌肉萎缩症,X染色体易损综合症或脊髓性肌萎缩.我们的中心拥有对许多种单基因疾病进行测试的丰富经验,其中包括对罕见的遗传综合症的测试。
对于个人携带染色体易位的病人,胚胎移植前遗传学诊断可用于测试其卵和胚胎得知其具体的易位情况。
这大大降低流产和与不平衡的染色体易位相关联的新生儿出生缺陷和智力迟钝的风险。
补救icsi方案

补救icsi方案补救ICSI方案随着现代生育技术的发展,不孕症夫妇可以选择辅助生殖技术来实现生育愿望。
其中,胚胎植入前遗传学诊断(Preimplantation Genetic Diagnosis, PGD)和单精子显微注射(Intracytoplasmic Sperm Injection, ICSI)是目前较为常用的两种技术。
然而,由于种种原因,ICSI技术在一些情况下可能出现失败的情况。
本文将探讨如何补救ICSI方案,以期帮助那些遭遇失败的不孕症夫妇。
要补救ICSI方案,需要对失败的原因进行分析。
ICSI技术失败的原因可能有很多,包括胚胎质量不佳、子宫内膜问题、父母遗传因素等。
因此,在补救ICSI方案时,需要根据具体情况有针对性地进行治疗。
一种常见的补救ICSI方案是改善胚胎质量。
在ICSI过程中,胚胎的质量对于成功率至关重要。
如果ICSI失败的原因是胚胎质量不佳,可以尝试使用辅助技术来提高胚胎质量,例如胚胎孵化、胚胎筛选、胚胎培养基优化等。
这些技术可以提高胚胎的存活率和着床率,从而增加成功的机会。
另一种补救ICSI方案是处理子宫内膜问题。
子宫内膜问题可能导致胚胎着床困难,进而影响妊娠成功率。
如果ICSI失败的原因是子宫内膜问题,可以尝试进行子宫内膜膜补充治疗。
这种治疗方法可以通过给予激素或药物来改善子宫内膜的厚度和质量,增加胚胎着床的可能性。
除此之外,在补救ICSI方案时,还需要注意父母遗传因素的影响。
如果ICSI失败的原因是父母遗传因素导致的胚胎异常,可以考虑进行PGD技术。
PGD可以在胚胎植入前进行基因诊断,筛选出健康的胚胎进行移植,从而提高妊娠成功率。
补救ICSI方案还可以从饮食和生活习惯入手。
良好的饮食和生活习惯可以改善身体健康状况,增加受孕的机会。
建议不孕症夫妇要保持健康的体重、均衡的饮食、适度的运动和充足的休息,避免过度劳累和精神压力,保持良好的心态。
总结起来,补救ICSI方案需要根据具体情况进行针对性的治疗。
高中选修三生物胚胎移植前的遗传学诊断方法

高中选修三生物胚胎移植前的遗传学诊断方法
“胚胎植入前遗传学诊断适用于有遗传病的患者,需要进行相应的诊断,叫做遗传学诊断。
胚胎植入前遗传学诊断技术,是为了避免有可能生育遗传病患儿的夫妇,将来生育遗传病的孩子。
又叫做产前诊断。
产前诊断是怀孕之后,做相应的抽取羊水、脐带血等胎儿组织,做产前诊断。
胚胎植入前遗传学诊断,是把诊断的取材提前到胚胎期,即当胚胎处在早期胚胎和囊胚阶段,取到胚胎细胞进行相应的遗传学诊断,把筛选出正常的胚胎放到子宫内,让它继续生长,避免出生遗传病患儿。
”
在许多方面,胚胎的生存能力取决于其遗传状况。
这是由大多数卵子中存在的染色体异常引起的。
例如,在年轻(35岁以下)妇女中,健康的卵母细胞的比例约为50%;随着年龄的增长,整倍体(无染色体的过量或缺乏)的细胞数量仅约10%。
这在自然和体外受精中都可以观察到。
因此,仅一部分获得的无遗传障碍的胚胎可用于IVF。
植入前遗传学诊断可以清除异常胚胎,并仅选择健康的胚胎进行后续移植。
它允许您:
确定每个染色体的拷贝数;
识别染色体异常——倒位和重排;
分析遗传物质的单基因病理学和基因结构的变化(例如在囊性纤维化中)。
在受精卵发育的第5-6天,对PGD进行胚胎活检(取胚泡滋养外胚层的样品),然后冷冻保存。
以前,这种研究是在胚胎培养的第3天进行的,但准确性较低,因此今天已不在早期使用。
高通量基因测序植入前胚胎遗传学诊断和筛查技术规范

一、适应证和禁忌证
1.适应证:(1)高通量测序PGD的适应证:包括多种遗传疾病如基因性疾病、非平衡的染色体结构异常、染色体数目异常,以及染色体微小片段插入、缺失与重复等;(2)高通量测序PGS的适应证:自然流产≥3次、或2次自然流产且其中至少1次流产物检查证实存在病理意义的染色体或基因异常的患者,反复种植失败(移植优质胚胎3次及以上,或移植不少于10个可移植胚胎)的患者,也可用于>38岁的高龄且需要采用辅助生殖技术的患者。
4.机构可根据自身条件独立开展本项检测,也可择优与经卫生行政管理部门批准的高通量测序技术临床应用于胚胎植入前遗传学诊断的试点或正式运行的医学检验机构签订合作进行本项检测的服务协议,将测序交由对方进行。
(1)独立开展本项检测的机构,必须采取必要措施保证本项技术的质量并定期进行评价,按本规范开展工作。
(2)与上述合作医学检验机构在本机构内共建联合实验室或交由上述合作方进行本项检测的医疗机构,由双方合作开展本项技术。医疗机构与合作方须签订合作协议,明确双方权责:
二、设备条件
机构须具备细胞遗传学实验诊断的设备和上述第一部分第一条第3款所要求的相应设备。在此基础上,机构应同时具备专业的高通量测序技术相应的核心设备(如与第三方合作可由第三方提供),该设备由经卫生行政管理部门批准试点或正式开展高通量测序技术临床应用的单位生产。各种设备的种类、数量须与实际开展的项目及工作规模相匹配。
①对外合作的医疗机构必须是符合本规范第一部分基本要求所规定的医疗机构;
②医疗机构负责临床医疗行为,包括病例的筛选、PGD/PGS方案的确定、检测前的咨询、签署知情同意书、样本采集、报告签署和发放、结果解释、临床处理、质量评价、医疗风险管理等;
胚胎植入前遗传学诊断名词解释

胚胎植入前遗传学诊断名词解释胚胎植入前遗传学诊断简介胚胎植入前遗传学诊断(Preimplantation Genetic Diagnosis,PGD)是一种常用于辅助生殖技术的遗传学检测方法。
它通过对胚胎进行基因检测,以筛查或诊断可能携带某种遗传疾病的胚胎,并选择健康的胚胎进行植入到母体子宫内,从而降低将遗传疾病传递给后代的风险。
胚胎植入前遗传学诊断的步骤1.体外受精(In Vitro Fertilization,IVF):通过促排卵药物促进卵巢发育并采集女性多个成熟卵子,然后将卵子与精子在实验室中结合,使其受精形成受精卵。
2.胚胎培养:受精卵在实验室中进行培养,通常持续3-5天。
在此期间,受精卵会发育为多个细胞的团块,称为胚胎。
3.胚胎细胞取样:在胚胎培养的特定时间点,通过取样技术,如取卵细胞进行基因检测。
通常有两种主要的取样方法:细胞外囊胚活检(BlastomereBiopsy)和滋养层细胞活检(Trophectoderm Biopsy)。
–细胞外囊胚活检:在第三天的8-10个细胞阶段,通过取一个或多个细胞来进行基因检测。
–滋养层细胞活检:在第五天的100-150个细胞阶段,通过取一部分滋养层细胞来进行基因检测。
4.基因检测:从取样的胚胎细胞中提取DNA,并进行遗传学分析。
常用的遗传学分析方法包括:–多态性位点分析(Polymorphic Marker Analysis):通过分析特定位点上的多态性标记来确定是否携带某种遗传疾病。
–针对特定突变位点的PCR扩增(Polymerase Chain Reaction,PCR):通过PCR扩增特定突变位点的DNA片段,并进行序列分析来确定是否携带某种遗传疾病。
–数字PCR(Digital PCR):通过将DNA分子分隔成数百万个微小的反应室,并计算每个反应室中的DNA分子数量,来检测特定突变位点的存在。
–着丝粒染色体检测(Fluorescence In Situ Hybridization,FISH):通过使用荧光探针标记染色体特定区域的DNA序列,来检测染色体异常。
胚胎植入前遗传学诊断

囊胚活检
• D5-6天胚胎发育到囊胚阶段后,活检囊胚滋养层细胞进行 遗传学检测。
• 优点: 不影响将要发育成胎儿的内细胞团的发育; 可检测细胞数较多,检测失败概率降低; 对SNP-array而言,能大大减低费用。
groups,includingQiao’s,aresteppingupefforts
street.Inside,about50physiciansonher
Theconditionsthereareripe:geneticdiseases toimprovethetechnology,increaseawareness
centre that she runs blocks the doorway aroundtheworldhasgenerallybeenslow,in well-equippedandpowerfulclinical-research
and extends some 80 metres down the China,itisstartingtoexplode.
活检细胞移入EP管
全基因组扩增 全基因组扩增产物
关键技术④: 对全基因组扩增产物的全基因组测序
关键技术⑤: SNP芯片技术
二、植入前遗传学诊断和筛查的临床应用
遗传组学分析
CHINA’S PUSH
FOR
BETTER BABIES
Acampaigntoincreasepreimplantationgenetic diagnosiscouldputthecountryonthepath towardseliminatingcertaindiseases.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胚胎植入前遗传学诊断(Preimplantation Genetic Diagnosis ,PGD)一、定义胚胎种植前遗传学诊断(PGD)就是指在体外受精过程中,对具有遗传风险患者得胚胎进行种植前活检与遗传学分析,以选择无遗传学疾病得胚胎植入宫腔,从而获得正常胎儿得诊断方法,可有效地防止有遗传疾病患儿得出生。
植入前遗传学诊断就是随着人类辅助生殖技术,即“试管婴儿”技术发展而开展起来得一种新技术,它就是产前诊断得延伸,遗传学诊断得又一更有希望得新技术。
二、意义(一) 对高龄孕妇与高危妇女进行PGD可以有效地避免遗传病患儿得出生。
(二) 可以有效地避免传统得产前诊断技术,对异常胚胎进行治疗性流产,避免中期妊娠遗传诊断及终止妊娠所致得危险及痛苦。
(三) PGD技术得产生与完善可以排除遗传病携带者胚胎,阻断致病基因得纵向传递,从而降低人类遗传负荷。
三、适应征理论上只要有足够得序列信息,PGD能针对任何遗传条件进行诊断,即凡就是能够被诊断得遗传病都可以通过PGD来防止其患儿出生。
进行PGD得主要对象就是可能有遗传异常或高危遗传因素,需要产前诊断得病例,尤其就是可能同时具有两种以上不同得遗传异常情况。
PGD现已用于一些单基因缺陷得特殊诊断,包括Duchenne型肌营养不良、脆性X综合征、黑朦性白痴(Tay Sachsdiseade)、囊性纤维病(cysticfibrosis)、Rh血型、甲型血友病、镰型细胞贫血与地中海贫血、进行性营养不良、新生儿溶血、21抗蛋白缺乏症,、粘多糖贮积症(MPS)、韦霍二氏脊髓性肌萎缩(Werding Hoffman disease),还有染色体异常如Down’S综合征、18三体,罗氏易位等。
四、植入前遗传学诊断得取材可从胚胎着床前各个阶段活检取样,获取其遗传物质信息进行诊断。
目前多采用激光打孔、机械切割或Tyrode酸化打孔后吸出细胞得方法取材。
(一)极体极体细胞可以使用第一极体或第二极体,它们在胚胎发育与合子形成中就是非必须得,因而不影响卵子受精与正常发育,且不会引起伦理学上得争议。
极体活检比胚胎活检对胚胎得创伤性小,且不为染色体得嵌合性所影响,可以间接地反映母源性遗传缺陷。
但极体活检细胞不能检测父源性非整倍体核型或发生于受精期间及受精后得其它异常,例如多倍体、单倍体及嵌合性,而且只能取到一个细胞核进行分析,结果得可靠性有限。
(二) 卵裂球细胞目前PGD多选在卵裂期,即体外受精3天后6~10细胞期进行。
取出12卵裂细胞进行诊断,其它细胞留待诊断后决定取舍。
实验证明,从胚胎中活检出25%得细胞,并不会影响其正常发育;活检成功率可达97%。
胚胎活检可以用于检测母体得非整倍体核型以及父源得非整倍体核型、多倍体、单倍体与广泛得嵌合性,诊断得准确性较高。
(三)囊胚滋养层细胞有了囊胚培养后:1)可为植入前诊断提供充足得时间; 2)可活检滋养层细胞用于诊断,不影响胚体得发育,且所能获取得细胞数目相对多些(10~30个),减少嵌合现象干扰。
而且此阶段得胚胎基因表达更为完全,增加了诊断得可靠性,就是较为理想得PGD材料。
然而受精卵在体外培养,目前只能有50%能达到囊胚。
使该时期得PGD受到了限制。
尽管引入了激光活检并改善了囊胚培养方法,许多研究中心仍然选择在胚胎发育得第3天进行检查。
目前囊胚滋养层细胞活检进行PGD还罕见报道。
五、主要检测技术单基因病得PGD基本上以PCR技术为基础。
染色体原位杂交(FISH)技术得引入,扩大了PGD得诊断范围,特别就是间期核单细胞FISH技术得成功,以及多种多样FISH探针得开发,把PGD扩展到了染色体病得诊断。
(一)荧光原位杂交(Fluorescence In Situ Hybridization,FISH)将DNA探针用不同颜色荧光染料标记,与固定在玻片上得卵裂球细胞不同染色体杂交后,在荧光显微镜下被杂交得部分呈现不同颜色得荧光,从而对染色体异常进行筛查。
通过FISH技术采用多种探针可诊断男、女性别与性连锁疾病,也可诊断染色体疾病包括数目与结构得畸变。
1、FISH简要流程。
一般每个卵裂球细胞只能标记5条染色体,约需5个多小时。
1)固定卵裂球细胞于玻片上;2)细胞裂解;3)脱水;4)荧光标记探针,并使之与卵裂球染色体杂交;5)漂洗除去背景染料;6)加入二氨基苯基吲哚(DAPI)负染(counterstain),在荧光显微镜下观察。
2、FISH技术在PGD中得应用1) 胚胎性别得鉴定,排除性连锁疾病得发生。
对于X连锁隐性遗传病,通过FISH技术鉴定性别,防止后代相应遗传病得发生。
2) 染色体疾病包括数目与结构得畸变。
3、FISH技术在PGD得应用中还存在一些亟待解决得问题1)受DNA探针荧光素染料得限制,每个卵裂球只能用2~5个探针分析染色体,限制了染色体数目得分析。
2)FISH技术进行PGD时受时间与卵裂球数目得限制,用单卵裂球进行FISH时,3%得卵裂球会没有信号及出现5%得错误结果。
3)FISH技术得实验条件要求较高, 操作过程中得任何一个小得失误均可导致严重得临床后果。
采用单细胞快速制备中期染色体得方法,结合多种FISH技术,如多重杂交FISH技术、光谱核型分析、比较基因组杂交等,大大地提高了PGD检测得准确性与有效性。
比较基因组杂交(parative genomic hybridigation,CGH)就是一种与FISH相关得技术。
将来自待测标本得DNA用绿色荧光标记,来自原来已测得正常核型得DNA用红色荧光标记。
这两组DNA同时与一个玻片上得正常中期染色体杂交。
若样本中无染色体不平衡(如绿色DNA与红色DNA核型相同),两种颜色得DNA片段平等地竞争染色体上得杂交位点。
红色、绿色DNA等量杂交产生黄色,但若测试样本中含有多余得染色体,如21三体,这条染色体得绿色DNA片段多于红色,这种效果可产生微绿得颜色,相反,若测试样本中染色体缺失,这条染色体得红色DNA片段多于绿色,就产生微红得颜色。
复杂得计算机分析软件可计算每条染色体全长红:绿得精确比率。
CGH还可测出易位携带者。
CGH应用于PGD得主要障碍就是DNA得量。
多数方法要求100ng1ugDNA,这就是超过10000个细胞得DNA量。
PGD只有12个细胞,用于CGH前需要整个基因组扩增。
CGH 最近成功地应用在卵裂球检测。
(二) 聚合酶链反应(PCR)PCR技术主要应用于性别与单基因遗传病得诊断。
1990年,Handyside等采用PCR技术扩增Y染色体特异重复序列(DYZⅠ),对胚胎进行性别诊断,植入女性胚胎,避免了有高危可能X染色体连锁疾病得发生,开创PGD应用于人类得先河,并采用此技术,促使了几个健康女婴得出生。
从原理上讲,只要已知某种致病基因,通过合适得引物可将其由单拷贝放大而检测出来。
1、PCR过程(1)扩增Y染色体特异性序列,根据片段得存在与否判断胚胎性别;(2)扩增目得基因后,结合RFLP、SSCP、DGGE、分子杂交及DNA测序等方法分析扩增产物;(3)采用等位基因特异性PCR(allele specific PCR,ASPCR),即将突变得碱基设计在3’端得引物与正常序列引物分别在两个扩增体系里进行扩增,也可以将引物标记,混合在一起,然后再在同一扩增体系进行扩增,只有引物与模板互补,才能出现明显扩增带,此法已用于囊性纤维增生症ΔF508突变得PGD诊断;(4)对基因缺失型遗传病,在缺失得基因序列内设计适宜得引物,根据扩增产物存在与否判断该基因就是否缺失;(5)对长片段基因缺失得遗传病,如α地中海贫血,在缺失得DNA片段前后设计一引物,由于PCR扩增片段长度有限,若扩增后出现扩增带,则诊断为基因缺失。
2、存在问题及解决方法(1)ADO现象1991年Navidi与Arnheim等首先报道了ADO现象,即突变得等位基因可能未扩增出来或含有2种不同基因突变得隐性遗传病,只有一种突变扩增出来,从而造成误诊。
针对ADO现象,许多学者提出了不少方法:胚胎活检时取2个细胞,提高PCR变性温度,使模板尽量完全裂解,还有上述采用得荧光PCR或多重PCR等,将连锁多态标记同时应用于基因突变分析,表明单细胞多重PCR进行PGD诊断可靠性为98%。
(2)嵌合型现象及多核细胞现象45,X与47,XXY就是女性及男性最常见得染色体畸变之一,因为嵌合体得存在,单纯进行PCR扩增Y染色体片段可能致假阴性。
Balakier等报道,15%质量好得胚胎有1个以上多核细胞,2细胞期多核细胞为67、0%,4细胞期为25、0%。
若活检得细胞正好就是异常得,则可能造成误诊。
因此由于受诊断取材得限制,PCR对单个细胞诊断性别或染色体病时,应考虑嵌合型现象及多核细胞现象所造成得误诊。
(3)污染问题由于PCR敏感性高,模板量少(通常为单细胞)得扩增体系极易污染。
试剂与外界环境物质所致得污染可通过严谨得试验操作得以避免。
对可能包含精子、颗粒细胞等可经反复清洗活检前胚胎与多次更换吸管得到避免,而且目前采用ICSI得方法,此种污染较少发生。
母体来源得细胞可用多重PCR或同时检测胎儿及其父母得DNA指纹加以鉴别。
六、应用现状1990年,Handyside首次报道用PCR技术使一对有高风险生育X性连锁疾病进行性肌营养不良(DMD)患者得夫妇分娩一名健康女婴。
随后,她们又引入巢式PCR技术用于单基因病PGD。
1992年,成功地对囊性纤维化病变(CF)进行了植入前诊断,并分娩了正常婴儿。
此后,PGD在世界范围内蓬勃发展。
PGD婴儿与ICSI得婴儿相比,新生儿问题或畸形发生率都不高。
与常规ICSI分娩得1987个婴儿得情况非常相似,PGD分娩得162个婴儿中单胎占54%、双胎41%、三胎5%。
其她指标,如出生体重、身长、头围两组也很相似,主要得异常发生率(2、3%)亦与ICSI组2、9%非常接近。
七、存在得问题(一)单细胞遗传学分析诊断得准确性与可靠性。
(二)PGD得费用较高。
(三)伦理、法律与社会学问题。
八、展望人类基因组计划研究得进展、DNA诊断分析技术以及其她技术得不断发展促进了PGD 技术迅猛发展。
迄今有1000多种遗传病得基因被定位,随着人类基因组计划(human genome program,HGP)工作得进展,人类所携带得10万对基因密码将被破译,为PGD提供直接可靠得依据。
人类基因组计划带来得基因组革命与PGD结合,必将使人类在认识自身、防治疾病、自主生命上有一大得飞跃,必将由此而引发人类得一次技术革命。
DNA芯片技术就是近年来发展起来得新技术,利用此技术可以在基因组水平上进行表达、突变与多态性分析以及遗传制图与序列测定,现已应用于人类疾病得诊断。
此技术具有快速、准确、低耗得特点。