等级资料秩和检验方法步骤
秩和检验

T Tmin( n1orn2 )
3.确定P值范围并作推断
(1)当n1 ≤ 10且n2-n1≤10时,
查附表7的T界值表(P269)
(2)当n1>10或n2-n1>10时,按正态 近似公式(7.3)
相同秩次较多时,校正公式(7.4)
其中 为第j个相同秩次的个数。
二、等级资料的两样本比较(例7.4)
3. 编秩次 (1)d=0 舍去不计,用以检验的有效对子
数n相应减少。
(2)│d│同,取平均秩
4. 求秩和,并定检验统计量
T=T+ orT- (核对:T++T-=(n+1)n/2 )
5.确定P值范围并作推断
(1)当有效对子数n≤50,查附表6的
T界值表(P268)
(2)当n>50时,按正态近似公式(7.1) 相同秩次较多时,校正公式(7.2)
1. 建立检验假设,确定检验水准
H0:总体M1=M2,
即两总体分布位置相同;
H1:总体M1≠M2,
即两总体分布位置不同; α=0.05
2.计算检验统计量u 值
(1)编秩:本例为等级资料,先 按组段计算各等级的合计人数,再 确定秩次范围及平均秩次。
(2)计算秩和,确定T 并求检验统 计量u 值:
以各组段的平均秩次分别与各等级例
在实际应用中,秩和检验法有多种具体化: 配对设计的两样本比较 成组设计两样本比较的秩和检验 成组设计多样本比较的秩和检验 多个样本两两比较的秩和检验
符号检验法
检验目标:X与Y是两个连续型总体,各有分布函数
F1(x)与 F2(x) ,现从中分别抽取两个独立样本 ( X1, X 2 , , X n )与 (Y1,Y2,...,Yn ) ,要在显著性水平
两独立样本秩和检验等级资料

2020/6/8
卫生统计学教研室
多个独立样本秩和检验(计量资 料)
2020/6/8
卫生统计学教研室
❖
结果
2020/6/8
卫生统计学教研室
LOGO
三、 例3 使用中药两与独西立药样治本疗秩百和日检咳验,(并等观级察资其料疗)效,
其数据如下所示。
表3 中西药治疗百日咳疗效比较
组别 治愈 好转 无效 合计
中药
58
35
16
109
西药
37
35
35
107
合计
96
70
50
216
2020/6/8
卫生统计学教研室
两独立样本秩和检验(等级资料)
2020/6/8
Wilcoxon W、Z值;
TEXT
TEXT
2.双侧P值:p=0.043,两组的
血铅值有统计学差异,由于铅
作业组的平均秩次10.19大于 非铅作业组5.50,故铅作业组 的血铅值大于非铅作业组。
检验两抽样总体的位置是否相同,Mann-Whitney U检验、Wilcoxon秩和检验及两组比较的的 2020K/6/8 ruskal-Wallis H检验完全等卫生价统计学。教研室
T值
H值 M值
2020/6/8
卫生统计学教研室
SHale Waihona Puke SS一般操作步骤➢ 计量资料 数据建立正态和方差齐性检验秩和检验
➢ 等级资料 数据建立数据加权秩和检验
2020/6/8
卫生统计学教研室
例1、有9个水一样、,分配别对用重比量较法和的硬秩度联和合检测定验(EDTA)法进
行检测,测得硫酸盐含量的两组资料如下表所示。
医学统计学等级资料分析

资料仅供参考,不当之处,请联系改正。
8.2 两样本比较的秩和检验
检验假设
H0 :A、B两组等级分布相同; H1 :A、B两组等级分布不同(相互偏离)。 =0.05。
8
资料仅供参考,不当之处,请联系改正。
基本思想
如果H0 成立,即两组分布位置相同, 则A组的实
际秩和应接近理论秩和n1(N+1)/2; (B组的实际秩和应接近理论秩和n2(N+1)/2)。
P<0.01,按 =0.05水准,拒绝H0 ,接受H1,差异有统计学
意义。可认为复方猪胆胶囊治疗老年性慢性支气管炎喘息型 与单纯型的疗效有差别。
18
资料仅供参考,不当之处,请联系改正。
8.3 多组比较的秩和检验
Kruskal-Wallis法 先对所有数据编秩;
求秩和T
计算 H 统计量; 查 H 界值表,或2界值表,界定 P 值; 作出结论。
1 2 4.5 4.5 4.5 8.5
B组:
+ ++ ++ ++ +++ +++
6 8 9 10 11 12
4.5 8.5 8.5 8.5 11.5 11.5
5
资料仅供参考,不当之处,请联系改正。
秩和
A组: - 、、+、+、+、 ++ 秩和: 1 2 4.5 4.5 4.5 8.5
TA=25
B组: +、++、++、++、+++、+++ 秩和: 4.5 8.5 8.5 8.5 11.5 11.5
等级资料常用检验方法

有效 35 24
显然,两组反映的信息是不同的,但由于两组的结构百分比无变化 (仅仅是位置不同),不改变检验结果。(χ2=5.224,P>0.05)
等级资料正确的统计分析方法:
非参数统计的秩和检验 Kendall 、spearman等级相关 CMH卡方检验 Ridit分析 线性趋势卡方检验 有序变量的Logistic回归分析
3、结果
Ranks GROUP RESULT 1 2 3 T o ta l N 18 24 22 64 M ean Rank 4 0 .9 2 3 0 .8 8 2 7 .3 9
H =6.528,P =0.038
T e s t S ta tis tic s RESULT C h i-S q u a re df A s ym p . S ig . 6 .5 2 8 2 .0 3 8
同样方法,对表2数据进行秩和检验,结果如下:
GROUP RESULT 1 2 T o ta l
N 60 58 118
M ean Rank 6 1 .5 7 5 7 .3 6
Sum of Ranks 3 6 9 4 .0 0 3 3 2 7 .0 0
μ =0.731,P>0.05
结论:两组疗效差异没有统计学意义。
病情 1 .0 0 0 . 240 .2 7 5 .0 0 0 240 1 .0 0 0 . 240 .3 2 0 .0 0 0 240
疗效 .2 7 5 .0 0 0 240 1 .0 0 0 . 240 .3 2 0 .0 0 0 240 1 .0 0 0 . 240
一、非参秩和检验
由于非参数检验法不考虑数据的分 布规律,检验不涉及总体参数,检验统 计量多是人们在总结经验的基础上创造 出来的,所以这类检验方法的特点是针 对性强。但是不同设计、不同目的所用 的非参数检验法是不同的。
医学统计学等级资料的秩和检验

在某些情况下,可以排除异常值以提高检验的稳定性。但应谨慎处理,确保不会排除对 总体分布有重要影响的值。
稳健统计方法
采用稳健统计方法可以在一定程度上减少异常值对检验结果的影响,如使用中位数、众 数等稳健统计量进行秩和检验。
06
秩和检验的展望
秩和检验的发展趋势
广泛应用
秩和检验作为一种非参数统计方法,在医 学、生物学、环境科学等秩和,判断 两组数据的优劣或差异性,从而 进行假设检验。
适用范围
适用于等级资料和连续变量资料, 尤其适用于小样本和不服从正态 分布的数据。
秩和检验的步骤
01
数据整理
对等级资料进行排序,并赋予相应 的秩。
确定检验统计量
根据秩和计算出检验统计量,如Z值、 H值等。
03
02
计算秩和
在蛋白质组学研究中,秩和检验 用于分析蛋白质表达水平在不同 样本之间的差异。
在其他领域的应用
环境卫生研究
在环境卫生研究中,秩和检验用于评估不同暴露水平对健康的影响。
心理学研究
在心理学研究中,秩和检验用于比较不同干预或实验条件下的心理状态或行为差异。
05
秩和检验的注意事项
样本量的问题
样本量过小
当样本量过小时,无法充分反映总体分布情况,可能导致 检验结果不准确。
等级资料
按照事物的属性特征进行等级划分所得的数据,如 疗效评价中的治愈、显效、好转、无效等。
计量资料
通过度量衡等方法获得的数据,如身高、体重等。
等级资料的特点
有序性
等级资料具有有序性,不同等级之间存在一定的顺序 关系。
差异性
不同等级之间存在差异,同一等级内的数据具有相似 性。
相对性
等级资料的秩和检验

(7)=(2)(6) (8)=(3)(6)
966
2520
14442
17052
20962.5
16447.5
4312
4704
T1=40682.5 T2=40723.5
H0 :两型老慢支疗效分布相同;
H1 :两型老慢支疗效分布不同。
=0.05。
编秩
精品文档
求秩和 T1 、 T2 确定检验统计量T
0.01 0.005
11(11+1)/4=33(理论值)
精品文档
u 的校正
Tn(n1)/40.5
u
n(n1)(2n1) (t3j tj)
24
48
当重复的秩次较多时,u 需要校正:
精品文档
8.6 秩和检验的正确应用
主要对等级资料进行分析;
秩和检验可用于任意分布(distribution free) 的资料;
等级资料的秩和检验
医学统计教研室 程
精品文档
荀鹏
医学研究中的等级资料
疗 效:痊愈、显效、有效、无效、恶化 化验结果:-、、++、+++ 体格发育:下等、中下、中等、中上、上等 心功能分级:I、II、III… 文化程度:小学、中学、大学、研究生 营养水平:差、一般、好
精品文档
等级资料的特点
精品文档
病例号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
两种方法治疗扁平足效果观察
原始记录
量化值
A法 B法
A法 B法
好
差
3
1
好
好
3
3
好
差
3
秩和检验步骤

秩和检验步骤秩和检验(Wilcoxon rank-sum test),也叫Mann-Whitney U检验,是一种非参数检验方法,用于比较两组样本的中位数是否存在差异。
它在样本数据不满足正态分布的情况下,仍然能够有效地进行假设检验。
秩和检验的步骤如下:1. 建立假设:在进行秩和检验之前,我们首先要建立起研究问题的假设。
假设一组数据为样本组A,另一组数据为样本组B,则我们的零假设(H0)可以设定为“样本组A的中位数等于样本组B的中位数”,备择假设(H1)可以设定为“样本组A的中位数不等于样本组B 的中位数”。
2. 数据排序:将两组样本数据合并,并进行排序。
对于相同的数据,可以将其排名取平均值作为排名。
3. 计算秩和统计量:对于样本组A的每个数据,计算其在合并样本中的秩次和。
将这些秩次和之和记为RA。
同样地,对于样本组B的每个数据,计算其在合并样本中的秩次和,记为RB。
秩和统计量U可以通过以下公式计算:U = min(RA, RB)4. 计算临界值:在给定显著性水平下,查找秩和统计量U对应的临界值。
可以使用查找表或计算机软件进行计算。
5. 做出决策:将计算得到的秩和统计量U与临界值进行比较,如果U小于临界值,则拒绝零假设,认为样本组A的中位数与样本组B的中位数存在显著差异;反之,如果U大于临界值,则接受零假设,认为两组样本中位数没有显著差异。
秩和检验的优点是不依赖于数据的分布情况,对于小样本量和非正态分布的数据也适用。
此外,秩和检验还可以应用于有序分类数据或等级数据的比较。
需要注意的是,秩和检验对于两组样本的样本量应该相等或接近,否则可能会影响检验结果的可靠性。
此外,如果样本量较小,可能会导致统计功效不足,即无法准确地检测到中位数的差异。
在实际应用中,秩和检验常用于医学研究、生物学研究以及社会科学等领域。
通过比较不同组别的样本中位数,可以发现变量之间的差异或者评估某个处理对样本的影响。
秩和检验是一种重要的非参数检验方法,能够在数据不满足正态分布的情况下进行假设检验。
非参数统计中的秩和检验方法详解(Ⅰ)

非参数统计中的秩和检验方法详解统计学是一门研究数据收集、分析、解释和展示的学科,它在各个领域都有着广泛的应用。
而在统计学中,参数统计和非参数统计是两种常见的方法。
参数统计是根据总体的参数进行推断,而非参数统计则是不对总体参数做出假设的一种统计方法。
在非参数统计中,秩和检验方法是一种常用且重要的方法。
本文将详细介绍非参数统计中的秩和检验方法。
一、秩和检验简介秩和检验是一种基于秩次的非参数检验方法,它主要用于对两个独立样本或多个相关样本的总体分布进行比较。
这种方法的优势在于对数据的分布形状没有要求,适用于各种类型的数据。
在进行秩和检验时,首先需要将样本数据进行排序,然后根据排序后的秩次进行计算。
接下来,通过比较秩和的大小来进行假设检验,从而得出结论。
二、秩和检验的应用场景秩和检验方法可以应用于诸多实际场景中。
比如,在医学研究中,可以用秩和检验方法来比较两种不同治疗方法的疗效;在工程领域,可以用秩和检验方法来比较不同生产工艺的产品质量;在市场营销中,可以用秩和检验方法来比较不同促销策略的效果等等。
总之,秩和检验方法在实际问题的解决中有着广泛的应用。
三、秩和检验的类型秩和检验包括了许多不同类型,其中最常见的包括Mann-Whitney U检验、Wilcoxon秩和检验和Kruskal-Wallis H检验。
下面将分别对这些检验进行详细介绍。
1. Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。
它基于两组数据的秩次进行比较,通过计算秩和来判断两组数据是否来自同一总体分布。
Mann-Whitney U检验的原假设是两组样本来自同一总体分布,备择假设是两组样本来自不同总体分布。
通过计算U统计量和p值来进行假设检验,从而得出结论。
2. Wilcoxon秩和检验Wilcoxon秩和检验是一种用于比较两个相关样本的非参数检验方法。
它与Mann-Whitney U检验类似,同样是基于秩次进行比较。