离心式压气机任意型叶型设计方法

合集下载

离心式压气机的原理与设计(2)

离心式压气机的原理与设计(2)
9
叶轮效率与流体效率
---叶轮效率(1) ---叶轮效率(1) 叶轮效率
* H2 η2 = We
k H = R T2* − T1* k −1
* 2
(
)
叶轮效率η2的定 义:叶轮内气体 的总焓升H2*与叶 轮的有效功We之 比。叶轮效率表 征叶轮工作的完 善程度。
10
叶轮效率与流体效率
---叶轮效率(2) ---叶轮效率(2) 叶轮效率 图3-19表示在不同的a1/t1条件 下,叶轮效率η2与ca1’及u2’的 试验曲线。a1,表示叶轮进口 处两叶片之间最小截面(喉部) 的宽度;t1,表示叶轮进口处 叶片间的节距。 图中u2为叶轮圆周的比速度, a1/t1为喉口宽度与节距之比。 由图可以看出,当ca1=0.250.35时,η2最高;a1/t1的值 越小则η2也越高。
n2 n2 −1
15
叶轮出口空气状态参数的确定(3) 叶轮出口空气状态参数的确定
空气在叶轮任一通道上的流动都不可能是均态的。因 此计算所得数值是空气的平均参数值。 叶轮叶片的出口宽度b由流量方程确定,且应考虑到 叶片实际厚度对流道有效面积的堵塞影响。
M cτ 1 b2 = γ 2πD2 ca1τ 2
14
叶轮出口空气状态参数的确定(2) 叶轮出口空气状态参数的确定
在较为精确的计算中,可以令 Qin = 0.5WId
2 µ 2 u2 可得: T2 = T1 + µ + 0.5α − k 2 R k −1
叶轮出口处的压力,可按多变方程计算:
T2 p2 = p1 T 1
12
叶轮效率与流体效率
---流体效率 ---流体效率
Wad Wad ηh = = 2 Wad max u2

离心压气机理论-第一部分-2010

离心压气机理论-第一部分-2010
图1 单级离心压气机剖面图
离心压气机基本理论
离心压气机叶轮可分为带叶冠叶轮和不带叶冠叶轮两种两种, 前者又叫闭式叶轮,后者又叫开式叶轮。图2和图3给出了这两 种叶轮形式。
图2 不带叶冠叶轮
图3 带叶冠叶轮
离心压气机基本理论
燃气轮机和涡轮增压器由于转速很高,通常使用开式叶轮。因 为增加叶冠会增加叶轮质量,使转子惯性增加,从而导致整机 性能恶化。
5级轴流+1级离心 5.30
3级轴流+1级离心 5.73
1级离心
1.60
2级离心
3.2-3.4
4级轴流+1级离心 4.2
2级离心
4.0
总增压比 17.00 14.72 8.0-8.30 13.14 14.38 15.00
为什么采用离心压气机? 因为单级压比大,由于流量小,可以保证出口端压气机末级叶 片高度在合适的范围内,不会过小。
离心压气机概述
涡轮增压器是径流式叶轮机械应用的最为广泛的一个领域。 如果说燃气轮机是改进叶轮机械设计和制造技术的驱动力,那 么涡轮增压技术和涡轮增压器的广泛使用为径流式叶轮机械的 发展提供了广阔的市场。
废气涡轮增压的设想首先由瑞士人波希在1905年提出,当时获 得了德国和美国的专利。 1911年波希在单缸机上首次完成涡轮增压的台架试验。 1925年,波希又提出了脉冲增压的设想。 到1940年代,涡轮增压在船用和陆用大型发动机上得到了大量 推广使用。 直到1950年,涡轮增压器才在大型柴油机上得到广泛使用。
16 PWC
14
Байду номын сангаас
PWC
12
10
PWC&Boeing
PWC209
&319

离心式压气机的原理与设计(1)

离心式压气机的原理与设计(1)

n1 n1 −1
ξin为损失系数,可取 0.05 ~ 0.10
23
空气在进口段中的流动
---进口气流角 ---进口气流角
以叶轮旋转轴为中心轴, 作圆柱面切割叶轮,然后 展开,可以得到如左所示 的叶轮进口处的速度三角 形的图。 叶片安装角βg1,30-35° 进口气流角β1 气流冲角i,3-5° i=βg1- β1
---叶轮的结构(1) ---叶轮的结构(1) 叶轮的结构
铸造叶轮毛坯, 带长短叶片
26
空气在叶轮内的流动
---叶轮的结构(2) ---叶轮的结构(2) 叶轮的结构
五轴铣床铣削叶轮,一般用于大直径的叶轮制造
27
空气在叶轮内的流动
---叶轮的结构(3) ---叶轮的结构(3) 叶轮的结构
叶轮平衡去重位置
28
空气在叶轮内的流动
---导风轮与工作叶轮 ---导风轮与工作叶轮
离心式压气机叶轮由导风轮和工作叶轮两部分 组成。导风轮将流入气体由轴向转为径向;工 作叶轮使气体由内向外作径向流动。通常将直 径方向尺寸基本不变的一段叫做导风轮。 车辆用增压器由于压气机叶轮小型化及采用精 密铸造工艺,而将导风轮和工作叶轮铸成一个 整体,并统称压气机叶轮。
n k Wr = − n − 1 k − 1 R T4* − T1*
(
)
(3-6)
20
空气在进口段中的流动
---进口的形式(1) ---进口的形式(1) 进口的形式
车辆用增压器的进口型式一般为圆锥形或圆柱形,图 3-6(a)。极少部分的进口采用预扭叶片,以扩大压气 机的流量范围。
21
空气在进口段中的流动
前弯叶片,工作叶轮可将较多的能量传递给空气, 但是,这部分多出来的能量是以增加叶轮出口处的 气流速度的方式,即增加动能的方式传递给空气, 因而必须经过叶轮之后的扩压段,和涡壳通道才能 转变为气体的压力能。由于扩压段及涡壳中的效率 较低,这种形式的叶轮降低了压气机的级效率。 目前用的极少。

离心压气机设计方法综述--

离心压气机设计方法综述--

离心压气机设计方法综述压缩机是把原动机的机械能转变为气体能量的一种机械,分为容积式和透平式两种。

透平式压缩机是一种叶片式旋转机械,其中气体压力的提高是利用叶片和气体的相互作用来实现的,按照结构分为离心式压气机和轴流式压气机两种。

离心式压气机中气体压力的提高,是由于气体流经叶轮时,由于叶轮旋转,使气体受到离心力的作用而产生压力,与此同时气体获得速度,而气体流过叶轮,扩压器等扩张通道时,气体的流动速度又逐渐减慢从而使气体压力得到提高。

设计一台离心压气机包括多方面的内容,主要有:结构设计;通流部分的选择和计算;强度与振动计算;工艺设计;自动控制和调节;以及驱动型式等问题。

这里主要讨论前两项。

在离心压气机设计方法上,先后出现了几何设计方法,二维气动设计方法,准三维气动设计方法,全三维气动设计方法。

以这些方法为理论基础,建立了离心压气机计算机辅助集成设计系统。

这种设计系统的建立,为高性能离心压气机设计提供了有效工具。

最早用于离心压气机叶轮叶片的成形方法是几何成型方法,这是一种比较简单的成型方法。

国内增压器研究领域在50年代从前苏联引进的径向叶片的“双回转中心法”是几何成型方法中的代表,并在国内涡轮增压器领域得到广泛的应用。

该方法成型规律比较简单,使用该方法设计前倾后弯曲线不太可能。

于是产生了离心压气机叶轮的“骨架成型法”,这种方法可以弥补“双补转中心法”的不足。

但是,成型后弯叶片时,需要数控铣床。

早期设计离心压气机叶轮时,设计人员认为叶片型线是由二次曲线组成的,如使用圆弧线,抛物线等代表叶型、轮缘、轮毂型线形状。

使用二次曲线表示的叶片型线形状的一般表达式为f ez dr cz brz ar +++++=22222γθ式中,r 为半径,z 为叶轮轴向坐标,a,b,c,d,e,f 为系数。

系数决定叶轮进口角度和叶型型线。

Eckerdt 即采用上式设计了Eckerdt 叶轮。

Whitfield 等人认为叶轮型线可由下式表示:(){}(){}1//=+++f e d e z b a ϕ式中,ϕ既可代表半径r 也可代表周向角度θ。

某离心叶轮叶片改型设计研究

某离心叶轮叶片改型设计研究

10.16638/ki.1671-7988.2021.05.019某离心叶轮叶片改型设计研究*覃玄,朱涛(湖北汽车工业学院汽车工程学院,湖北十堰442002)摘要:该文以某高压比离心叶轮为研究对象,以改善叶轮流动特性和提升叶轮的气动性能为目标对其叶片进行改型设计。

文章基于ANSYS BladeGen,采用四阶Bezier曲线对叶轮叶顶弧线以及叶根弧线进行参数改变,通过流场数值模拟分析得到最终设计叶型。

数值模拟结果表明,新设计叶型离心叶轮相较于原叶轮压比提高了0.87%,效率提升了5.69%,达到了本次改型设计的目标。

关键词:离心叶轮;Bezier曲线;叶型设计中图分类号:U462 文献标识码:A 文章编号:1671-7988(2021)05-66-04Research on the Blade Modification Design of a Centrifugal Impeller*Qin Xuan, Zhu Tao( Hubei University of Automotive Engineering Department of Automotive Engineering, Hubei Shiyan 442002 )Abstract: This article is aimed to improve the flow characteristics and aerodynamic performance of a centrifugal impeller. Based on ANSYS BladeGen, by using four order Bezier curve the parameters of tip arc and the hub arc were changed, then the final blade was obtained through the numerical calculation of the flow field. The results show that, the newly designed centrifugal impeller has a 0.87% increase on the pressure ratio and a 5.69% increase on the efficiency, which also has achieved the goal of this article.Keywords: Centrifugal impeller; Bezier curve; Blade designCLC NO.: U462 Document Code: A Article ID: 1671-7988(2021)05-66-04引言压气机是废气涡轮增压器的重要组成部分,本文研究的离心叶轮则为压气机的核心部件[1]。

微型燃气轮机的离心式压气机叶片设计及计算分析

微型燃气轮机的离心式压气机叶片设计及计算分析

微型燃气轮机的离心式压气机叶片设计及计算分析王瑞浩;李政;张力敏【摘要】离心式压气机作为微型燃气轮机的核心部件,对其整体性能有重要影响.为使微型燃气轮机上所用离心式压气机的叶片形状达到所需压比、效率等性能的目的,利用Concepts NREC软件完成了一台适用于100 kW、60000 rpm微型燃气轮机的离心压气机的一维方案设计、准三维设计和造型.利用经过校核的全三维CFD 软件所设计的离心压气机性能进行了验算,结果表明,该离心压气机内流流动参数分布合理,各项性能完全满足设计指标要求.【期刊名称】《黑龙江科学》【年(卷),期】2019(010)010【总页数】4页(P14-17)【关键词】微型燃气轮机;离心式压气机;叶片设计;气动设计;计算验证【作者】王瑞浩;李政;张力敏【作者单位】哈尔滨工程大学动力与能源工程学院,哈尔滨150001;哈尔滨工程大学动力与能源工程学院,哈尔滨150001;哈尔滨工程大学动力与能源工程学院,哈尔滨150001【正文语种】中文【中图分类】S216.41 引言微型燃气轮机相对于中大型燃气轮机来说,是一类新兴的小型热力发电机,其单机功率范围为25~300 kW,基本技术特征是采用离心式压气机及回热循环。

部分学者认为,微型燃气轮机发电技术有可能掀起“电源小型分散化”的技术革新热潮,成为21世纪能源技术的主流。

离心式压气机作为微型燃气轮机的核心部件,对其整体性能有重要影响。

为使微型燃气轮机上所用离心式压气机的叶片形状达到所需压比、效率等性能的目的,可利用Concepts NREC软件完成一维方案设计、准三维设计和造型。

利用经过校核的全三维CFD软件所设计的离心压气机性能进行验算,设计出一款符合微型燃气轮机功率和转速需要的离心式压气机。

2 一维设计对离心压气机的气动设计主要是设计其几何特征。

要确定轮毂直径、轮缘直径、出口宽度、扩压器内外直径、扩压器宽度、叶片数量等参数。

设计的基础方案是基于Concepts NREC公司的Compal软件。

基于NURBS离心式压气机参数化造型设计及气动优化

基于NURBS离心式压气机参数化造型设计及气动优化

第33卷第l期李磊等:基于NURBS离心式压气机参数化造型设计及气动优化083阶导数的五次多项式法构造扩压器平面叶栅型线,草图拉伸生成扩压器直叶片;利用回转特征生成叶轮,通过计算机辅助技术快速实现离心式压气机几何模型创建,在此基础上开展优化设计,改善离心式压气动的气动性能。

1径流式叶片造型设计叶片通常以截面型线积叠成型,其型线设计需要满足,①型线光顺性;②提供尽可能的造型;③灵敏度高;④尽可能少的设计变量等要求。

对于离心叶轮采用的径流式叶型,具有周向、轴向跨度大的特点,呈现三元特征,研究表明能够反映内部流动特性的叶型具有较好的气动性能。

通常这种叶型型线形式自由,利用多项式、Bezier曲线不能进行很好地描述,非均匀有理B样条克服了Bezier局部调整以及B样条进行二次曲线表达的缺陷m],表示与设计自由曲线形状的能力强大,对于表示具有三元特征的径流式叶片型线拥有独特的优势。

一条k次NURBS曲线可以表示为~分段有理多项式矢函数∑coidiNi,I(“)P(Ⅱ)=旦}——一(1)2:吡Ⅳi,‘(M)其中,P(u)表征NURBS曲线,di(i=l,…,n)为控制点,毗为对应控制点的权重因子,M.。

(11,)为k次规范B样条基函数。

由参数“组成的非递减节点矢量u=[M。

,…,Ⅱ∥一,“Ⅲ+。

]按照德布尔一考克斯递推公式得到Ni,o(“):flo‘V“i≤u<11,i+1其他【Ni,k(“)=::;;::j:÷%』V:,t一-(u)+::;兰』也+-。

t一-(M)(2)图1给出利用19个极点构造的三次非均匀有理B样条表达的径流式叶片型线,通过改变控制点坐标和权重因子,实现叶型的局部或全局调整。

直纹面旧1由于具有表达简单、利于制造等优点,在径流式叶身成型中被广泛应用,图1b为实际生成的直纹面形式的径流式叶片。

2扩压器参数化造型设计扩压器在离心压气机机中起到整流作用,由于没有承受惯性力的作用,常采用直叶片形式。

第二章 离心式压气机的原理与设计

第二章 离心式压气机的原理与设计

内燃机增压技术第二章离心式压气机的原理与设计(3)魏名山第二章离心式压气机的原理与设计(3)z集气器(涡壳)z离心式压气机计算示例z压气机特性集气器---形状(2)集气器---形状(3)z涡壳截面的形状可以有很多种,以梨形的损失最小,但各种形状相差不大,所以在设计时更多地是考虑尺寸上的小型化。

近年来逐渐多采用的鸭蛋形截面涡壳能得到最小的外形尺寸。

集气器---流道计算(4)z将某一个确定的R H值代入上式,就可以求出一个对应的φ值。

如此变更不同的R值,就H可得到相应的不同的φ值。

将一系列φ值与它对应的R值制成表格或曲线后,再反过来由H表格或曲线用插值法,求出各所需的指定整数φ值及对应的R值。

离心式压气机计算示例---命题z 试为6150柴油机设计一台废气涡轮增压器。

增压前发动机的功率N e =184kW ,转速为2000RPM ,比油耗g e 为250g/kWh ,机械效率ηM =0.75。

增压后功率要求提高100%,环境压力P 0=98066.5Pa ,环境温度T 0=303K 。

离心式压气机计算示例---某些系数的选取z选定发动机的充气系数z过量空气系数z 扫气系数05.17.19.0===H H v H ϕαη离心式压气机计算示例---功率z 增压后发动机的功率N eHkW368%)1001(=+=e e N N H离心式压气机计算示例(1)z压气机具体的结构尺寸,可按照王延生、黄佑生著《车辆发动机废气涡轮增压》或朱大鑫著《涡轮增压与涡轮增压器》上所列的表格进行计算。

z其基本思路为:根据前述发动机计算,算出压比、流量后,按经验值假设压气机叶轮的出口直径,和压气机的绝热效率。

同时对计算过程中所涉及到的一些系数如各处的流动损失系数设值。

离心式压气机计算示例(2)z根据压比算出压气机绝热功,根据压气机绝热功和压头系数算出叶轮出口圆周速度,然后算出叶轮旋转速度。

z根据流量算进口面积和进口直径。

z然后根据前述的计算公式,从进口开始算到出口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档