压气机的设计过程
燃气轮机离心压气机的设计与优化

燃气轮机离心压气机的设计与优化随着能源需求的不断增长,燃气轮机作为一种高效、节能的发电设备,受到了广泛的关注和应用。
其中,离心压气机是燃气轮机的核心部件之一,对燃气轮机的性能起着至关重要的作用。
本文将探讨燃气轮机离心压气机的设计与优化。
一、离心压气机的工作原理离心压气机是一种通过离心力使气体加速并增压的机械装置。
其工作原理如下:气体经过进气口进入离心压气机,然后被转子的离心力推向转子周围,同时通过转子的叶片加速,气体在叶片间产生压缩作用,最终达到所需的高压。
离心压气机的转子由多个叶片组成,叶片的形状和布局对其性能有着重要影响。
二、离心压气机的设计要点离心压气机的设计要点包括叶片尺寸、叶片数量、叶片形状以及离心机壳的结构等。
首先,叶片的尺寸决定了流量和压升的大小。
较小的叶片泵送气体的速度较快,但压升较小;较大的叶片泵送气体的速度较慢,但压升较大。
其次,叶片的数量对离心压气机的性能也有影响。
合理的叶片数量能够提高离心机的效率和排气能力。
此外,叶片的形状也是一个关键因素。
常见的叶片形状有直翼型、宽翼型和曲线翼型等。
不同的形状会影响气体流动的速度和流向,从而影响离心压气机的性能。
最后,离心机壳的结构对压气机的稳定性和流动损失也有一定影响。
合理设计离心机壳的进出口角度和形状可以减小流动损失,提高压气机的效率。
三、离心压气机的性能指标及优化方法离心压气机的性能指标主要包括压比、效率和气体流量。
压比指的是出口气体的总压力与进口气体的总压力之比。
效率是指离心压气机输入的机械功与输出的气体功之比。
气体流量则表示单位时间内通过压气机的气体体积。
离心压气机的设计目标是在给定的进口条件下,最大化压比和效率,同时满足所需的气体流量。
离心压气机的优化方法主要有以下几种:首先,可以通过改变叶片的形状和布局来改善离心机的性能。
例如,采用曲线翼型叶片可以提高离心机的效率和压比。
其次,可以通过增加叶片数量和合理设置叶片的进出口角度来改善离心机的性能。
航空发动机原理第五讲 发动机部件工作原理---压气机

29 2014年10月12日
三、轴流式压气机增压原理
级增压原理: 动叶 加功增速 靠扩张叶栅通道减相对速度,增加压力; 静叶 使在动叶中获得能量的气流,通过扩张叶栅通 道减速增压 同时静子还起导向作用将气流引导到一定方向 ,为顺利进入下一级做准备
30 2014年10月12日
速度三角形(出口):
气流流出动叶的相对速度为W2; 叶片转动切线速度为U2; 气流流出动叶的绝对速度为V2。
18 2014年10月12日
三、轴流式压气机增压原理
2、亚音基元级增压原理 气体在动叶栅中的流动:
近似认为动叶前后切向速度不变U1 U2 气流在动叶中相对速度降低,W2 W1(减速增压) 气流流经动叶的绝对速度增加,即V2 V1(转子做功)
19 2014年10月12日
三、轴流式压气机增压原理
2、亚音基元级增压原理 气体在动叶栅中的流动: 伯努利方程(相对坐标系)
dp W22 W12 W fr 0 dp 0 W 2 2 W1
1
2
叶型弯曲形成扩张通道,相对 速度减小,压力提高
20 2014年10月12日
32 2014年10月12日
四、热力过程及主要参数
1、热力过程 理想情况:绝热等熵压缩 实际情况:不可逆压缩(近似多变压缩)
h 2i
理想压缩功
2
P2*
P1*
等熵
实际压缩功
1 S
33 2014年10月12日
四、热力过程及主要参数
2、效率计算
等熵过程的关系式: 等熵压缩功:
T2i p2 i ( ) T1 p1
42 2014年10月12日
离心式压气机的原理与设计(2)

叶轮效率与流体效率
---叶轮效率(1) ---叶轮效率(1) 叶轮效率
* H2 η2 = We
k H = R T2* − T1* k −1
* 2
(
)
叶轮效率η2的定 义:叶轮内气体 的总焓升H2*与叶 轮的有效功We之 比。叶轮效率表 征叶轮工作的完 善程度。
10
叶轮效率与流体效率
---叶轮效率(2) ---叶轮效率(2) 叶轮效率 图3-19表示在不同的a1/t1条件 下,叶轮效率η2与ca1’及u2’的 试验曲线。a1,表示叶轮进口 处两叶片之间最小截面(喉部) 的宽度;t1,表示叶轮进口处 叶片间的节距。 图中u2为叶轮圆周的比速度, a1/t1为喉口宽度与节距之比。 由图可以看出,当ca1=0.250.35时,η2最高;a1/t1的值 越小则η2也越高。
n2 n2 −1
15
叶轮出口空气状态参数的确定(3) 叶轮出口空气状态参数的确定
空气在叶轮任一通道上的流动都不可能是均态的。因 此计算所得数值是空气的平均参数值。 叶轮叶片的出口宽度b由流量方程确定,且应考虑到 叶片实际厚度对流道有效面积的堵塞影响。
M cτ 1 b2 = γ 2πD2 ca1τ 2
14
叶轮出口空气状态参数的确定(2) 叶轮出口空气状态参数的确定
在较为精确的计算中,可以令 Qin = 0.5WId
2 µ 2 u2 可得: T2 = T1 + µ + 0.5α − k 2 R k −1
叶轮出口处的压力,可按多变方程计算:
T2 p2 = p1 T 1
12
叶轮效率与流体效率
---流体效率 ---流体效率
Wad Wad ηh = = 2 Wad max u2
第二章压气机

2.5 工作叶片
31
2.5 工作叶片
32
2.6 榫头
工作叶片通过榫头实现与轮盘的联接。因此,对榫的主 要设计要求是: 1)在尺寸小,重量轻的条件下,将叶身所受的负荷可 靠地传递给轮盘; 2)保证工作时片的准确定位和可靠固定; 3)应有足够的强度、适宜的刚性及合理的受力状态, 尽量避免应力集中 4)结构简单、装拆方便。 目前铀流式压气机转子叶片榫头形式有三种: A)燕尾式 B)销钉式 C)枞树式
6
2.2轴流式压气机
轴流式压气机转子 转子是一个高速旋转对气流做功的组合件。在双转子涡 喷发动机中,压气机又分为低压转子和高压转子;在双转子 涡扇发动机中.低压转子就是风扇转子.或者是风扇转子和 低压压气机转子的组合。压气机转子一船是简支的,也有些 是悬臂 轴流式压气机静子
静子是静子组合件的总称,包括机匣和整流器。在单 转子涡喷发动机中,压气机机匣由进气装置、整流器机匣 和扩压器机匣组成。在双转子压气机中,在风扇和压气机 之间还有一个分流机匣,将内、外涵道的气流分开;在高、 低压压气机之间有一个中介机匣,将气流由低压压气机顺 利引入高压压气机。
13
2.3 轴流式压气机转子的基本结构
加强的盘式转子
14
2.3 轴流式压气机转子的基本结构
鼓盘式转子由若干个轮盘,鼓简和前、后半轴组成。 盘缘有不同形式的榫槽用来安装转子叶片。级间联接可采 用焊接、径向销钉、轴向螺栓或拉杆。转子叶片、轮盘和 鼓简的离心力由轮盘和鼓筒共同承受.扭矩经鼓筒逐级传 给轮盘和转子叶片,转子的横向刚性由鼓筒和连接件保证。
37
2.6 榫头
38
2.6 榫头
槽向固定的方式很多,通常采用卡圈、锁片、档销等锁紧 方式或复合方式,也可利用其他结构件固定,如封严环、径向 销钉等。要根据具体结构和槽向力的大小来选择固定方式。
离心压气机设计-第一部分.

C2
C2 W2
W2
U2 U2 没有滑移情况下叶轮出口速度三角形,左图:径向叶轮,右图:后弯叶轮
叶轮出口几何尺寸的确定-滑移因子的计算
滑移现象的存在减小了切向速度分量的大小,因此减小了叶轮 的压比,并且还使叶轮的耗功量减小。为了获得设计压比,就 要求增大叶轮直径,提高叶轮的旋转速度。这又导致叶轮承受 的应力增加,同时也使摩擦损失增加,降低了压气机的效率。
叶轮出口几何尺寸的确定-滑移因子的计算 对于径向叶轮,式 C 2 U 2 Cm2 tan 2b 可以简化为
C 2 U 2
根据质量流量可以获得出口子午速度为
C m 2 m 2 A2
.
A2 2 r2 b2 ,其中
对于进口没有预旋的径向式叶轮,式(8)可以改写为
p02 p 01
12 11 10 9 8
p02 p 01
Ì ¦ ¦ Ç l=1
k 1 k
2 1 k 1l Mau
È ¹ ± ¹ Ñ Í Ö Ö
7 6 5 4 3 2 1 0.0
图4 零预旋时压比和Mau之间的关系
Ì ¦ ¦ Ç l=0.85¡ Á 0.9
旋转速度越高,压比越高
(11)
对式(11)中的1s求导,令其导数等于零,即可获得在任意给定 的相对马赫数情况下,产生最大流量的相对流动角的计算公式 为
诱导轮
cos2 1s
'2 3 kMa1 s '2 2Ma1 s
'2 4 Ma 1 s 1 1 '2 3 kMa 1 s
2 m 1 A1C m1 r12 s r1h 1C m1 .
航空发动机设计手册第8册—压气机

航空发动机设计手册第8册—压气机航空发动机设计手册第8册—压气机导言航空发动机作为现代飞机的核心部件之一,其设计和性能直接关系到飞机的安全和效率。
而在整个发动机中,压气机作为将空气压缩的部分,具有非常重要的作用。
本文将从深度和广度两个方面对航空发动机设计手册第8册—压气机进行全面评估,并撰写一篇有价值的文章,以帮助读者更全面、深刻地理解这一主题。
一、压气机的作用和原理压气机是航空发动机中的一个重要部件,其主要作用是将从进气口吸入的空气进行压缩,以提高空气的密度和压力,为燃烧室提供更加理想的燃烧条件。
通过高效的压气机设计,可以有效提高发动机的功率输出和燃料效率,从而提高飞机的性能和经济性。
压气机的原理主要是通过旋转的叶片对空气进行不断的加速和压缩,使其内能转化为压缩空气的动能和静能。
二、压气机设计要点及技术挑战在航空发动机设计手册第8册中,对压气机的设计要点和技术挑战进行了详细的介绍。
压气机设计需要考虑叶片的气动性能和结构强度,以确保在高速旋转和高压力下的稳定运行。
压气机的叶片布局和数量、进气口的设计和进气量的控制等都是需要精密计算和优化的关键参数。
压气机在高速飞行状态下还需要考虑气动噪声和振动问题,以确保飞机在各种工况下都能够稳定、安全地运行。
三、压气机的发展趋势和展望随着航空发动机技术的不断进步和飞机性能的不断提高,压气机的设计也在不断发展和演进。
未来的压气机将更加注重高效、轻量化和智能化的设计,以满足飞机对燃料经济性、环保性和安全性的更高要求。
随着电力推进和混合动力技术的发展,压气机在这些新型动力系统中的应用也将得到更加广泛的关注和研究。
总结航空发动机设计手册第8册—压气机作为航空发动机设计的重要参考资料,全面系统地介绍了压气机的设计原理、计算方法和性能特点。
通过对压气机的深度和广度的探讨,我们可以更好地理解航空发动机的工作原理和设计要点,从而更好地应用于飞机研发和运行中。
压气机作为航空发动机的关键部件,其设计和性能对飞机的性能和经济性都具有重要影响,因此其发展趋势和展望也值得我们深入关注和研究。
航空发动机压气机叶片的设计

防喘装置的设计
• 1.喘振原因:进气畸变,吞烟,进气道阻塞 • 2.防喘措施:
• • • • •
放气机构 可调进口导向器叶片 可调静子叶片 处理机匣 多转子
防止外来物砸伤
• 对大涵道比风扇及涡轮轴发动机尤为重要 • 措施: • 叶片上加凸台,带冠; • 小展弦比叶片; • 防尘网 • 离子分离器
轴流式压气机动叶和静叶的作用:基元级工作轮叶栅的作用, 扩压、加功;基元级整流器叶栅的作用,扩压导向。
•
叶片与轮盘的选材
• 压气机工作时,转子与更高的,转速旋转,一般均在,10000转/分以上,
转子上的工作叶片与轮盘均产生,很大的离心力。工作叶片产生的离心 力使叶片收到拉伸,并通过叶片的根部传给轮盘。轮盘除承受本身的离 心力外,还要承受工作叶片传来的离心力,因此轮盘的工作条件比,叶 片,苛刻得多,设计中要保证工作叶片和轮盘足够的强度。
谢谢!
优点
等内径设计
优点
充分提高叶 提高末级叶片效 片切向速度 减少压气机 级数 对气体加功量
小,级数多 切向速度受 强度限制 率(为什么?)
等外径设计
缺点
缺点
个人对这个问题的理解
•
• •
左下图为环壁附面层引起的轴向速度变形示意图,由于附面层逐 级变厚,和流动通道的逐渐减小,因此越往后,轴向速度分布变 形越大。
为什么压气机叶片要分为静子与转子?
•
轴流式压气机工作时工作叶片以很高的速度,旋转,对空气 流做功,不仅使空气受到压缩,压强提高,而且使空气加速, 以较大的速度向后排出,气流离开工作叶片后,进入整流器 片中,整流叶片不仅按一定角度排列,而且叶片间的通道做 成扩散形状,空气流在扩散型的整流叶片通道中,流速降低, 根据伯努利定律,在流动中流速降低出压强必然升高。因此, 空气在整流叶片中得到进一步增强,增压后的空气以一定角 度,流出整流叶片进入下一级工作叶片。
离心压气机设计-第二部分

离心压气机内损失特点
根据上面的分析得出的结论,在叶轮旋转速度和焓变相同情况 下,径流式叶轮机械相对速度的变化小于相应轴流式叶轮机械 相对速度的变化。
由这样的结论我们或许推断出径流式叶轮机械比相应的轴流式 叶轮机械的效率更高一些,而实际上径流式叶轮机械的效率更 低一些。
这种矛盾主要是由于径流式叶轮机械通道形状比较复杂造成的, 工质在径流式叶轮机械内部流动时要流过90弯曲通道,其哥氏 力的方向近似沿周向方向(轴流式叶轮机械哥氏力方向近似沿径 向),这就产生比轴流式叶轮机械中更加强烈的二次流动。
叶片中线上环量rC分布方式分析
WsWpZ 2BdrdsC
rC沿s分布规律可以有多种形式,它可以是线性变化,也可以 是非线性变化;可以是单段曲线,也可以是分段曲线。对于非 线性变化,可以为二次曲线分布,也可以为三次曲线分布。
叶片中线上环量rC分布方式分析
图2至图4 给出了三种叶片表面环量分布和相应的吸力面和压力 面上相对速度分布。
W W
其中分子为叶片吸力面和压力面上的相对速度差,分母为吸力 面和压力面平均速度值。
叶片载荷分布形式 已有的设计经验表明设计的压气机叶片前缘和尾缘的叶片载荷 应尽可能小,以保证获得较好的入口流动状态和最小的叶片出 口落后角。为了减小叶尖泄漏流动,可以采用轮缘载荷相对较 低,轮毂载荷更高一些的分布形式。叶片最大载荷区域应在 50%60%叶片弦长范围内。也就是说叶片叶片方向上的载荷分 布形式近似为抛物线分布形式(图1)。
叶片载荷分布形式
叶片包络角也影响着叶片载荷系数的分布方式和大小。最开始进 行叶片形状设计时调整叶片包络角,叶片包络角在3040范 围内。叶片包络角过大,会对叶片强度带来不利影响,并且还会 导致加工难度增大。在叶片包络角调整后,进行轮毂形状的调整, 这样会改变叶根叶尖载荷系数分布形式及大小。在叶轮子午形状 调整的差不多后,开始叶片轮缘轮毂叶片角分布曲线的调整,在 调整过程中主要实现两个目的,一是使叶轮进口和出口载荷系数 尽可能接近于0,二是使载荷形式近似成抛物线形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压气机的设计过程
设计过程大致可分为五个密切相关的步骤即初步设计、S2通流计算、叶片造型(二元)、叶片造型(三元)和放大尺寸的试验件研究。
这五个步骤环环相扣, 每个阶段采用不同层次的数学物理模型和经验数据, 相互补充, 相互交叉检验, 最终将设计风险降到最小。
西方研制的压气机效率较高, 是与这种设计体系有关的。
以下对各设计步骤作简要说明。
初步设计—事先从整体上论证、预估所设计的风扇压气机方案的可行性
初步设计从压气机总性能的设计要求出发, 采用1D平均流线分析程序和经验数据, 计算出负荷的轴向匹配, 并估算压气机性能(流量、压比、效率和喘振裕度), 确定内外环壁形状、级数和总长度等。
PW、RR和GE等公司都是这样做的。
初步设计十分重要, 而且需要较多的经验。
如这一步犯了基本的错误, 例如选取了较少的级数和较短的长度, 致使叶片负荷过高和展弦比太大, 在以下的通流计算和叶型设计中将无法纠正。
初步设计确保了整个设计方案的可行性。
通流设计—S2程序与经验输入的协调设计
采用S2程序及损失等经验数据, 解决流场的径向平衡和匹配。
开始时叶片展向压比和效率值取自初步设计, 此后在迭代中可进一步修正叶型损失和落后角这些经验数据。
采用扩散因子以及静子根部马赫数限制等准则, 可以得到各流面叶栅的马赫数、气流转折角、扩散因子等的合理值。
在多级压气机中的通流设计中, 环壁堵塞系数的选取
十分关键。
如果选取不准, 则某些级流量会偏离设计点而导致整个压气机前后级不匹配。
另外, 为考虑径向掺混的影响, 通流设计程序中的掺混系数等还须与试验相配合, 进而加以确定, 详见3.5节。
叶片造型(二元)—任意叶型的气动优化造型
20世纪70年代以前, 大多采用标准叶型和经验数据关联进行几何造型。
目前英、法、德的发动机公司已采用S1BYL2、MISES等S1程序进行任意叶型的气动造型。
即通过S2-S2系统, 用S1正问题程序反复计算和修改叶型, 采用叶表面速度分布、损失系数以及叶面附面层参数等准则, 使叶型得以气动优化。
而美国的发动机公司虽没有报道S1程序的名称, 但如NAFCOT计划, 实际上也采用功能相同的S1程序, 即2DEuler解内含该公司积累的经验数据。
这种二元造型法在叶高的大部分区域内是适用的, 但对叶尖、叶根等三元流动较强的区域, 以及弓形静子、前掠、后掠等使S1流面翘曲的叶片, 应采用3D N-S程序进行另外的修改。
叶片造型(三元)—叶片的三元优化造型
3DN-S程序与S2-S1程序相配合, 能在一定程度上算出风扇压气机内流场的细微结构, 这对控制二次流损失、激波邓村面层干扰损失等是有利的。
但由于目前3DN-S程序计算精度还不够高,所以对叶片的三元修改不可能完全依靠计算, 还需经验和技巧。
GE公司为发展先进的复合弯扭叶片, 在低速模拟试验器上进行了多种叶片的试验研究。
RR 公司的Gallimore认为3DN-S计算用于修改叶片时还应凭经验来判断。
放大尺寸的试验件研究—多级核心压气机研究平台
由于多级压气机内流动的复杂性, 经上述四个设计阶段得到的结果在按设计尺寸对压气机进行加工之前, 还应经放大尺寸的试验件的详细测量验证。
GE公司
采用放大尺寸的低速模拟, 对设计参数进行详细测量和研究。
SNECMA公司
该公司将七级高压压气机的后四级各叶片排轴向间距放大约30%, 以便进行详细测量。
并配合S2-S1程序、3D N-S程序等进行分析, 对叶片进行优化修改。
英国NGTE
将C147核心压气机后四级和五级所有几何尺寸放大一倍, 以便在叶片间轴向问隙内进行详细测量和分析, 检验设计的准确程度。
西方发动机公司的经验表明, 经过这五个步骤,一般能取得良好的效果。
我们一台试验件的直接经验也表明, 采用以上多种程序和经验数据的设计步骤是必不可少的, 否则设计过程难以避免不确定性。