误差理论与测量平差基础复习题

合集下载

误差理论和测量平差5道经典习题

误差理论和测量平差5道经典习题

误差理论和测量平差5道经典习题1、以下对于随机变量的描述,正确的是:A. 其数值的符号和大小均是偶然的B. 其数值的符号和大小均是随机的C. 数值的符号和大小均是无规律的D. 随机变量就其总体来说具有一定的统计规律2、以下关于偶然误差的描述正确的是:A. 在一定的观测条件下,误差的绝对值有一定的限值;B. 绝对值较小的误差比绝对值较大的误差出现的概率大;C. 绝对值相等的正负误差出现概率相同;D. 偶然误差的数学期望为零3、下列关于偶然误差的特性描述正确的是:A 绝对值小的误差比绝对值大的误差出现的概率小B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度D 误差的符号只与观测条件有关4、下列观测中,哪些是具有“多余观测”的观测活动A 对平面三角形的三个内角各观测一测回,以确定三角形形状B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状C 对两边长各测量一次D 三角高程测量中对水平边和垂直角都进行一次观测第四次作业:1、求随机变量σμ-=x t 的期望和方差2、设随机变量X~N (0,9),求随机变量函数Y=5X 2的均值3、为了鉴定经纬仪的精度,对已知精确测定的水平角α=45°00′00″作12次观测,结果为:45°00′06″ 44°59′55″ 44°59′58″ 45°00′04″ 45°00′03″ 45°00′04″ 45°00′00″ 44°59′58″ 44°59′59″ 44°59′59″ 45°00′06″ 45°00′03″设α没有误差,试求观测值的中误差。

1、对真值为L ~=100.010m 的一段距离以相同的方法进行了10次独立的观测,得到的观测值见下表,试求该组观测值的系统误差、中误差、均方误差。

误差理论与测量平差基础试题

误差理论与测量平差基础试题

误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。

当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。

(2)尺不水平;系统误差,符号为“-”。

(3)估读小数不准确;偶然误差,符号为“+”或“-”。

(4)尺垂曲;系统误差,符号为“-”。

(5)尺端偏离直线方向。

系统误差,符号为“-”。

第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。

^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。

两组观测值的平均误差相同,而中误差不同。

由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。

本题中?1<?2,因此,第一组观测值的精度高。

^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。

令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。

其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。

TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。

误差理论与测量平差基础试卷一及答案

误差理论与测量平差基础试卷一及答案

误差理论与测量平差基础 试卷一及答案一、填空题(30分)1、测量误差定义为 ,按其性质可分为 、 和 。

经典测量平差主要研究的是 误差。

2、偶然误差服从 分布,它的概率特性为 、 和 。

仅含偶然误差的观测值线性函数服从 分布。

3、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C4、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。

5、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XX D6、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数进行平差,应该利用的平差模型是 ,则方程个数为 , 二、判断题(10分)1、通过平差可以消除误差,从而消除观测值之间的矛盾。

( × )2、观测值iL 与其偶然真误差i∆必定等精度。

(√)3、测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。

( × )4、或然误差为最或然值与观测值之差。

( × )5、若X 、Y 向量的维数相同,则YX XY Q Q =。

( × ) 三 选择题(10分)1、已知)180(3ˆ -++=-=C B A W W A A ,m m m m C B A ===,m m W3=,则A m ˆ=A。

A 、m 32B 、m 32C 、m 32 D 、m 23 2、已知观测值L 的中误差为L m ,L x 2=,2L y =,则xy m = A 。

A 、24L LmB 、L Lm 4C 、22L Lm D 、L Lm 23、条件平差中,已知⎥⎦⎤⎢⎣⎡=8224W Q ,2±=μ,则±=1k m A 。

桂林理工大学《误差理论与测量平差》复习题

桂林理工大学《误差理论与测量平差》复习题

桂林理工大学《误差理论与测量平差》复习题一、 写出五种衡量精度指标的名称,并指出他们之间的关系是什么?答:五种衡量精度指标的名称:方差2σ或中误差σ,平均误差θ,或然误差ρ,相对误差和极限误差; 关系:方差nn ][lim 2∆∆=∞→σ,平均误差σθ54≈,或然误差σρ32≈,相对误差Km 1==观测值大小σ,极限误差=2σ或3σ。

二、已知独立观测值1L 、2L 的中误差分别为1σ、2σ,求下列函数的中误差:(1) 2132L L x -=; (2) 212132L L L x -=;(3) )cos(sin 211L L L x +=。

解 (1) 2132L L x -==[]03221+=⎥⎦⎤⎢⎣⎡⋅KL L L , 利用协方差转播公式:TK KL x K KD D LLxx =+=则,,0[][]22212221222122212949432323232σσσσσσσσσσ+±=+=⎥⎦⎤⎢⎣⎡⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅==x xxx 则,因此,D (2)212132L L L x -=,此式是非线性形式,需要线性化,对上式求全微分得:[]KdL dL dL L L L dL L dL L L dx =⎥⎦⎤⎢⎣⎡⋅--=⋅-+⋅-=21010212011021)3()3()3()3(利用协方差转播公式:[]2221212212221212210102122210102129)3(9)3()3()3()3()3(σσσσσσσσL L L L L L L L L L L L x xxx +-±=+-=⎥⎦⎤⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡⋅--==则,因此,D(3))cos(sin 211L L L x +=,此式是非线性形式,需要线性化,对上式求全微分得:")(cos )sin(sin ")(cos )sin(sin )cos(cos 2021221110212211211ρρdL L L L L L dL L L L L L L L L dx ⋅⎪⎪⎭⎫ ⎝⎛+++⋅⎪⎪⎭⎫ ⎝⎛++++⋅= 222212211************")(cos )sin(sin ")(cos )sin(sin )cos(cos σρσρσ⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++++±=L L L L L L L L L L L L L x三、若要在两坚强点间布设一条附合水准路线,已知每公里观测中误差等于mm 0.5±,欲使平差后线路中点高程中误差不大于mm 0.10±,问该路线长度最多可达几公里?解 设路线总长S 公里,按照测量学上的附合路线计算步骤,则路线闭合差 B Ah H h h Hf -++=21由于是路线中点,故()B A h H h h H f v v -++-=-==21212121则线路中点高程()()数点的高程化成观测值函此步的目的是将线路中中点,2121212121212121ˆ212121111B A BA B A A A H H h h H H h h H h h H h H v h H H ++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++-=-++-+=++=设每公里高差观测中误差为0σ,则021)2/(σσσs h h ==按误差传播定律)(16,10425)52/(41)52/(41)2/(41)2/(414141212100212122220202222ˆ21121km S S s s s s hhh h H≤≤=⋅⨯+⋅⨯=⨯+⨯=+=⎪⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=σσσσσσσ中点四、设1P 点及2P 点的坐标为:⎩⎨⎧==⎩⎨⎧==mY m X m Y m X 00.150000.1800,00.100000.10002211 向量[]TY X Y X 2211,,,的协方差阵为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----823261231420223(cm)2 试求坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵;解:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211120101Y X Y X X X X []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211121010Y X Y X Y Y Y ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆22111121210100101Y X Y X Y Y X X Y X 则坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵:2)(61151001100151122431100110018232612314202231010101cm D D D D Y Y X Y Y X X X ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆∆∆∆∆∆∆五、有三角网(如图1),其中B 、C 为已知点,A 、D 、E 为待定点,观测角i L (i =1,2,…,10)。

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年1.参数平差中,当观测值之间相互独立时,若某一误差方程式中不含有未知参数,但自由项不为0,则此误差方程式对组成法方程不起作用。

( )参考答案:正确2.某测角网的网形为中点多边形,其中共有5个三角形,实测水平角15个进行间接平差,则下列选项正确的是( )。

参考答案:误差方程的个数为15个_待求量的个数为5个3.间接平差中测方向三角网函数模型中,网中所有测站均存在一个定向角平差值参数,其系数为( )。

参考答案:-14.某平差问题有12个同精度观测值,必要观测数为t=6,现选取2个独立的参数参与平差,应列出( )个条件方程。

参考答案:85.在附有参数的条件平差中,法方程的个数为C个。

参考答案:错误6.观测值与最佳估值之差为观测值的真误差。

参考答案:错误7.通过平差可以消除误差,从而消除观测值之间的矛盾。

参考答案:错误8.在附有参数的条件平差法中,任何一个量的平差值都可以表达成( )的函数。

参考答案:观测量平差值和参数平差值9.单位权方差估值与具体采用的平差方法相关。

参考答案:错误10.测量成果精度主要包括观测值的实际精度、观测值经平差得到的观测值函数的精度两个方面。

参考答案:正确11.条件方程类型包括图形条件、极条件、边条件、方位角条件、基线条件等。

参考答案:正确12.极条件方程是以某点为极,列出各图形边长比的和为1。

参考答案:错误13.水准网的条件方程式为符合水准路线。

参考答案:错误14.为了确定一个几何模型,并不需要知道该模型中所有元素的大小,而只需要知道其中部分元素的大小就行了。

参考答案:正确15.必要元素的个数t与几何模型和实际观测量有关。

参考答案:错误16.平差的最终目的都是对参数和观测量作出某种估计,并评定其精度。

参考答案:正确17.间接平差的函数模型中的未知量是t个独立参数,多余观测数会随平差方法不同而异。

误差理论与测量平差试题+答案

误差理论与测量平差试题+答案

《误差理论与测量平差》(1)1.正误判断。

正确“T”,错误“F”。

(30分)2.在测角中正倒镜观测是为了消除偶然误差()。

3.在水准测量中估读尾数不准确产生的误差是系统误差()。

4.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

5.观测值与最佳估值之差为真误差()。

6.系统误差可用平差的方法进行减弱或消除()。

7.权一定与中误差的平方成反比()。

8.间接平差与条件平差一定可以相互转换()。

9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

10.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

11.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

12.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

13.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

14.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

15.定权时σ0可任意给定,它仅起比例常数的作用()。

16.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

17.用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

18. 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。

2. 测量误差的定义为,按其性质可分为、和。

3. 衡量估计量优劣的标准有、、。

9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。

5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。

(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。

Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。

,,zzz122T8. = 。

tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。

f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。

11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。

ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。

E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。

文档:误差理论与测量平差基础习题集(二期)

文档:误差理论与测量平差基础习题集(二期)

误差理论与测量平差基础题库集1.1 设对一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,试根据测量平差概念,按独立等精度最小二乘原理(21min ni i v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。

11223311231.1ˆˆˆ 9.98 ˆˆˆ 10 ˆˆˆ 10.0219.98ˆ110110.02ˆ()130103ˆ9.982ˆ100ˆ10.022T T L X V XL X V XL X V XV X XB B B l V Xcm V Xcm V Xcm ->>⎧==-⎪⎪==-⎨⎪==-⎪⎩⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦==⨯==-==-==-=-1.2 一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,令三次结果的权分别为1,2,1,试按独立非等精度最小二乘原理(21min ni i i p v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。

111231.21001001000202001001ˆ()1(9.9810210.02)104ˆ9.982ˆ100ˆ10.022T T Q P Q X B PB B Pl V Xcm V Xcm V Xcm -->>⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦==⨯+⨯+==-==-==-=-1.3 设一平面三角形三内角观测值为A 、B 、C ,180W A B C =++-︒为三角形闭合差,试根据测量平差概念,按独立等精度最小二乘原理证明三内角的评差值为ˆ3W AA =-、ˆ3W BB =-、ˆ3W C C =-。

()1231231231.3ˆˆˆ18001800011100AB C A V B V C V V V V W V V W V AV W P E Q E>>++-︒=+++++-︒=+++=⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦+===按条件平差法有1123()111311313131ˆ31ˆ31ˆ3T T T T V QA K A K A AA W WW W W A A V A W B B V B W C C V C W -===-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦=+=-=+=-=+=-123ˆˆˆ ˆˆˆ ˆˆˆˆˆ+180 +18010ˆ01ˆ11180ˆˆA A B B A B A B A B A B A X V X A B X V X B C X X V X X C A XV B X C X X ⎧==-⎪⎪==-⎨⎪=--︒=--︒-⎪⎩⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦---︒⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎣⎦按参数平差11()101011010101101111180121801321801331ˆ31ˆ31ˆˆˆ1801803T TB PB B Pl A BC A WA B C A B C B W AA W BB W CA B A W B --=⎥⎡⎤⎡⎤⎛⎫⎛⎫--⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪= ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪--⎝⎭⎝⎭ ⎪ ⎪⎢⎥⎢⎥---︒⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤-⎢⎥--+︒⎡⎤==⎢⎥⎢⎥-+-+︒⎣⎦⎢⎥-⎢⎥⎣⎦=-=-=︒--=︒-+-+即132180313W A B C W CC W=︒---++=-1.4 已知独立等精度观测某三角锁段共得15个三角形,其闭合差如下表 所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《误差理论与测量平差基础》课程试卷
《误差理论与测量平差基础》课程试卷答案
二、问答题(本题共45分,共3小题,每小题15分)
1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L
待定点。

已知点高程为10.500()A H m =,13.000()B H m =,11.000()C H m =。

准路线长度相等。

试按间接平差法求:
(1)
1
P、
2
P两点高程的平差值;
(2)平差后
1
P与
2
P两点间高差的权。

3.在三角网(见图5)中。

独立等精度
观测角度
6
2
1
,
,
,L
L
L ,角度值见下表,已
知一测回测角中误差为"6, AB边长为
S。

试计算每个角度应观测多少测回才能使CD边的边长中误差不超过
50000
1
(取5
10
2
"⨯
=
ρ)。

四.证明题(本题共20分,共2小题,每小题10分)
1.试证明在单一水准路线中,平差后高程最弱点位于水准路线中间。

2.试证明在误差椭圆中,任意两垂直方向上的位差相互独立。

测量平差共3页第3页
武汉大学 测绘学院
误差理论与测量平差基础 课程试卷(A 卷)
出题者:黄加纳 审核人:邱卫宁
一. 已知观测值向量21L 的协方差阵为⎥⎦
⎤⎢⎣⎡--=3112LL D ,又知协因数51
12-=Q ,试求观测值的权阵LL P 及观测值的权1L P 和2L P 。

(10分)
二. 在相同观测条件下观测A 、B 两个角度,设对A ∠观测4测回的权为1,则对
B ∠观测9个测回的权为多少?(10分) 三. 在图一所示测角网中,A 、B 为已知点,B
C α为已知方位角,C 、
D 为待定点,
721,,,L L L 为同精度独立观测值。

若按条件平差法对该网进行平差:
共有多少个条件方程?各类条件方程各有多
少个?
(2).试列出全部条件方程(非线性条件方程要求
线性化)。

(15分)
图一
四. 某平差问题有以下函数模型)(I Q =
⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0
ˆ03060
51
5
4
43
12
1x v v v v v v v v
试问:
(1). 以上函数模型为何种平差方法的模型?
(2). 本题中,=n ,=t ,=r ,=c ,=u ,=s 。

(10分) 五. 在图二所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标
值(见图二,以“km ”为单位),以及0000330001'''=BP α,00003000
2'''=BP α,
km S BP 0.201=,km S BP 0.20
2=,721,,,L L L 为同精度观测值,其中65955906'''=L 。


按坐标平差法对该网进行平差,试列出观
测角6L 的误差方程(设5102⨯=ρ,x
ˆ、 图二 y
ˆ以dm 为单位)。

(10分)
六. 有水准网如图三所示,网中A 、B 为已知点,C 、D 为待定点,51~h h 为高差
观测值,设各线路等长。

已知平差后算得)(482mm V V T =,试求平差后C 、D
两点间高差5
ˆh 的权及中误差。

(10分)
图三
七. 在间接平差中,参数1
ˆt X
与平差值1
ˆn L 是否相关?试证明之。

(10分) 八. 在图四所示水准网中,A 、B 为已知点,已知m H A 00.1=,m H B 00.10=,P 1、
P 2为待定点,设各线路等长。

观测高差值
m h 58.31=,m h 40.52=,m h 11.43=,m h 85.44=,
m h 50.05=,现设11ˆP H X =,2
2ˆP H X =,53ˆˆh X =,试问:(1).应按何种平差方法进行平差?(2).试
列出其函数模型。

(10分)
九. 已求得某控制网中P 点误差椭圆参数031570'=E ϕ、dm E 57.1=和
dm F 02.1=,已知PA 边坐标方位角032170'=PA α,km S PA 5=,A 为已知点,
试求方位角中误差PA ασ
ˆ和边长相对中误差PA
S S PA
σ
ˆ。

(15分)
一. 已知观测值向量21L 的协方差阵为⎥⎦
⎤⎢⎣⎡--=3114LL D ,又知协因数11411=Q ,试求观测值的权阵LL P 及观测值的权1L P 和2L P 。

(10分)
二. 在相同观测条件下观测A 、B 两个角度,设对A ∠观测4测回的权为1,则对
B ∠观测7个测回的权为多少?(10分) 三. 在图一所示测角网中,A 、B 、
C 为已知点,P 为待定点,721,,,L L L 为同精
度观测角值。

若按条件平差法对该网进行平差:
有多少个条件方程?各类条件方程各有多少
个?
(2).试列出全部条件方程(非线性条件方程不必
线性化)。

(15分)
一. 在图三所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标
值(见图三,以“km ”为单位),以及0000225001'''=B P α,000018000
21'''=P P α,
3201=B P S km ,km S P P 0.40
21=,
821,,,L L L 为同精度观测值,其中
20004504'''=L 。

若按坐标平差法对该网进
行平差,试列出观测角4L 的误差方程
图三 (设5102⨯=ρ,x
ˆ、y ˆ以dm 为单位)。

(10分)
一〇. 在间接平差中,参数1
ˆt X 与改正数1
n V 是否相关?试证明之。

(10分)
一一. 某平差问题有以下函数模型)(I Q =
⎪⎪⎩⎪⎪⎨⎧++=+=--=-=2
ˆˆ1ˆ2ˆˆ1
ˆ214
2331211
x
x
v x
v x
x v x
v
03ˆˆˆ321=++-x x x
试问:
(3). 以上函数模型为何种平差方法的模型?
(4). 本题中,=n ,=t ,=r ,=c ,=u ,=s 。

(10分)。

相关文档
最新文档