FPGA的FIR抽取滤波器设计
FPGA的FIR抽取滤波器设计

FPGA的FIR抽取滤波器设计用FPGA实现抽取滤波器比较复杂,主要是因为在FPGA中缺乏实现乘法运算的有效结构,现在,FPGA中集成了硬件乘法器,使FPGA在数字信号处理方面有了长足的进步。
本文介绍了一种采用Xilinx公司的XC2V1000实现FIR抽取滤波器的设计方法。
具体实现结构设计基于抽取滤波器的工作原理,本文采用XC2V1000实现了一个抽取率为2、具有线性相位的3阶FIR抽取滤波器,利用原理图和VHDL共同完成源文件设计。
图1是抽取滤波器的顶层原理图。
其中,clock是工作时钟,reset是复位信号,enable是输入数据有效信号,data_in(17:0)是输入数据,data_out(17:0)是输出数据,valid是输出数据有效信号。
adder18是加法器模块,mult18是乘法器模块,acc36是累加器模块,signal_36to18是数据截位器模块,fir_controller是控制器模块。
控制器定时向加法器、乘法器和累加器发送数据或控制信号,实现流水线操作。
图1 抽取滤波器顶层原理图控制器控制器是抽取滤波器的核心模块,有两个功能:一是接收输入数据,二是向其它模块发送数据和控制信号。
它根据加法器、乘法器和累加器的时序特性,有规律地向加法器发送抽头数据,向乘法器发送系数,向累加器发送控制信号,让加法器、乘法器和累加器在每个时钟周期都完成指定的任务,从而实现流水线操作。
控制器用VHDL语言描述,用寄存器存放抽头和系数。
加法器加法器的输入和输出都是18 bit,用VHDL语言描述实现。
它有两个工作时钟的延迟,在输入数据准备好的情况下,第一个时钟得出相加结果,第二个时钟把相加结果锁存输出。
乘法器乘法器为18 bit输入,36bit输出,用库元件MULT18X18S和36 bit锁存器实现。
MULT18X18S是XC2V1000自带的18×18bit硬件乘法器,单个时钟就可完成乘法运算。
基于FPGA的FIR滤波器设计

该单元 实现 的功能是将输人数据 移位 存储到移位寄存器
中 。对 FR滤 波 器 进 行 分 析 可 知 : 于 每 次 采 样 , 需 要 利 用 I 对 都 本 次 采 样 之 前 的 N 1 采 样 值 ( 处 采样 值 N 1 9, 样 N 一个 此 一 为 )这
号 xt AD转换后 , 成数 字滤波 器 Hz的输入信 号 x )它 经 / ( ) 形 ( ) (, n
是 一 组 由模 拟 信 号 经过 取 样 和 量 化 的数 字 量 ,数 字 滤 波 器 的
1
输 出信号 y ) ( 经过 DA转换恢 复为去噪的模拟信号 y) yn n / (或 () t
r l a i f an m o ls o I I r ial , e ( h y tm i uat n a d v ii in o I ie s eai t z on o i due fF R t s Fn l w m e y 3 t e s se sm I i n er c o fF R ft r o o f at l a g i m ; srb t l r h l orh ditiu e ago i m t t
me t ot iesto hn) nsq o u ain h n i aya 30 1 n( rhUnvri f ia; i ,f ct , ax i n0 0 5 ) N y C Mi t Ed oS T u
摘 要: 数字 滤波 器在数 字信 号处理 中占有很 重要 的地位 , 该文介 绍 了 FR滤 波 器的两种 实 现算法 : I 乘累 加算 法和
Zh n a me,h o Do g- ,e g Ya j nYuSh ngs’ feadT cn lg nEe— a gXio- i a n eF n n-u , ua (( l n eh o y lc Z i c P o 0
基于FPGA的FIR滤波器设计

基于FPGA 的FIR 滤波器设计一 、设计目的为了帮助学生深入理解和消化基本理论、进一步提高综合应用能力并且锻炼独立解决问题的能力,我们将《数字信号处理》、《集成电路原理与应用》和《《FPGA 系统设计与应用》几门课程融合在一起开设的FPGA 综合实验课程设计。
本次完成的是利用FPGA 来完成FIR 滤波器的设计、程序设计和实验调试任务。
二、设计要求(1)基本要求利用所学知识,采用VHDL 语言完成FIR 滤波器的设计仿真。
要求用VHDL 编程设计底层文件,顶层文件可任意(可用原理图方式或文本方式);完成仿真文件(包括MATLAB 和QUARTUSII 两种仿真)并对其结果比较。
具体设计指标如下: (1)采样频率S F =80KHz ;(2)截止频率KHz F C 10=;(3)输入序列为10位(最高位为符号位); (4)窗口类型为kaiser 窗,β=0.5 ; (5)滤波器长度为16 ; (6)输出结果保留10位。
(2)提高部分根据所学知识,设计出一个具有频率控制功能DDS ,要求输出频率分别为10KHz 和100KHz ,将输出的两路数字信号进行叠加,并通过所设计的FIR 滤波器进行滤波,将滤波输出的数字信号通过D/A 转换电路输出波形,并用示波器观察输出波形,并完成测试结果分析。
结构框图如图1-1所示。
图2-1 整体结构框图三、设计原理3.1 FIR 滤波器由线性系统理论可知,在某种适度条件下,输入到线性系统的一个冲击完全可以表征系统。
当我们处理有限的离散数据时,线形系统的响应(包括对冲击的响应)也是有限的。
若线性系统仅是一个空间滤波器,则通过简单地观察它对冲击的响应,我们就可以完全确定该滤波器。
通过这种方式确定的滤波器称为有限冲击响应(FIR)滤波器。
3.2 线性FIR 滤波器原理FIR 滤波器响应(简称FIR )系统的单位脉冲响应()h n 为有限长序列,系统函数()H z 在有限z 平面上不存在极点,其运算结构中不存在反馈支路,即没有环路。
基于FPGA的高速FIR数字滤波器设计的开题报告

基于FPGA的高速FIR数字滤波器设计的开题报告一、选题意义数字信号处理是一种关键技术,广泛应用于通信、雷达、音视频处理等领域。
而数字滤波器是数字信号处理的重要组成部分之一,用于移除信号中的噪声、加强特定频率成分等。
FIR数字滤波器是一种广泛应用的数字滤波器,它具有运算速度快、实现简单等特点。
FPGA作为一种可编程逻辑器件,具有可重构性、高速度、低功耗、高可靠性等优点,在数字信号处理领域得到了广泛应用。
本课题旨在利用FPGA高性能特点,设计开发一种基于FPGA的高速FIR数字滤波器,满足在特定应用场景下对信号的快速处理需求,具有重要的理论意义和实际应用价值。
二、主要内容1. 对FIR数字滤波器的算法原理进行分析和设计,包括常见的窗函数设计、有限脉冲响应设计等,选择比较优的算法。
2. FPGA数字滤波器的硬件设计,包括数据的输入输出接口、滤波算法实现和时序控制器设计。
3. FPGA数字滤波器的仿真设计,包括基于MATLAB的算法仿真和基于ModelSim的硬件仿真等。
4. FPGA数字滤波器的实现与验证,包括采用相应工具对FPGA数字滤波器进行编译下载,将实验结果与仿真结果进行比较与分析。
5. 对设计的FPGA数字滤波器进行性能测试,包括运算速度、滤波效果等方面的测试,将其结果与已有的数字滤波器进行对比分析。
三、技术路线1. 确定常见的FIR数字滤波器设计算法,并选择较优的算法设计数字滤波器。
2. 设计FPGA数字滤波器的硬件结构,包括输入输出模块、滤波模块和时序控制模块等;并根据所选算法设计硬件逻辑。
3. 采用MATLAB进行设计算法的理论分析,从理论上验证算法的优越性。
4. 采用ModelSim进行硬件电路仿真,进行设计参数调整和错误修正,保证硬件逻辑的正确性和同步性。
5. 采用Quartus II进行编译下载,将设计的FPGA数字滤波器实现于FPGA芯片中,测试其性能。
四、研究难点1. 在设计算法时,需要充分了解各种滤波器设计算法的优缺点,并选择适合特定场景的算法。
基于FPGA的FIR滤波器设计与仿真

数字滤波器; 分布 式 算 法 ;P A FG 中图分 类 号 T 3 1 P 1 文 献标 志 码 A
滤波器需 要执行 无 限数量 卷 积 , 能得 到较 好 的 幅度特性 , 相位 特性 其 是非线性 的 ; I 波器 由有 限个 采样 值 组 成 , 构 成 的系 统总 是稳 FR滤 其 定 的 , 易于实现 线性相 位 …. 且 由于 在语音 信 号处 理 、 图像 处理 、 数字 通信等传 输过程 中不能有 明显 的相位失真 , FR滤波器在 满足一定 而 I 对称条件 下可 以实现 I I R滤波器 难 以实 现 的线 性相 位 , 因而得 到广泛
特 别适合如 FR、丌 等数 字信号处 理任务 . I F 利用 F G P A可 以重 复配置 高精 度的 FR滤波器 , 用 V D I 使 H L硬件 描述语 言改变滤 波器 的系数和
阶数 , 能实 现大 量 的卷 积运 算算 法 J 结合 M xls 具软 件 的辅 并 . apu 工
案速 度 快 、 时性 好 、 省 硬 件 资 源 , 实 节 具 有重 要 的 工程 应 用价 值 . 关 键 词
实 现数字化 是 控 制 系统 的重 要发 展 方 向 , 而数 字 信 号处 理 已在
通信 、 语音 、 图像 、 自动控 制 、 达 、 事 、 空 航 天等 领 域 广 泛应 用 . 雷 军 航 数 字信号 处 理 方 法 通 常 涉 及 变 换 、 波 、 谱 分 析 、 码 解 码 等 处 滤 频 编 理¨. 数字滤 波是数 字信号处 理重 要 环节 , 它能 满 足滤 波器 对幅度 和 相 位特性 的严格 要 求 , 克服 模 拟 滤 波器 所 无 法解 决 的 电压 和 温度 漂 移 以及噪声 等 问题 , 而有 限冲激 响应 FR滤 波器在设计 任意 幅频 特性 I 的同时能够保证 严格 的线性相 位特性 . 数 字滤波器 根 据其 冲激 响应 函数 的 时域 特性 , 分 为无 限 长 冲 可
fir数字滤波器的设计与实现

FIR数字滤波器的设计与实现介绍在数字信号处理中,滤波器是一种常用的工具,用于改变信号的频率响应。
FIR (Finite Impulse Response)数字滤波器是一种非递归的滤波器,具有线性相位响应和有限脉冲响应。
本文将探讨FIR数字滤波器的设计与实现,包括滤波器的原理、设计方法和实际应用。
原理FIR数字滤波器通过对输入信号的加权平均来实现滤波效果。
其原理可以简单描述为以下步骤: 1. 输入信号经过一个延迟线组成的信号延迟器。
2. 延迟后的信号与一组权重系数进行相乘。
3. 将相乘的结果进行加和得到输出信号。
FIR滤波器的特点是通过改变权重系数来改变滤波器的频率响应。
不同的权重系数可以实现低通滤波、高通滤波、带通滤波等不同的滤波效果。
设计方法FIR滤波器的设计主要有以下几种方法:窗函数法窗函数法是一种常用简单而直观的设计方法。
该方法通过选择一个窗函数,并将其与理想滤波器的频率响应进行卷积,得到FIR滤波器的频率响应。
常用的窗函数包括矩形窗、汉宁窗、哈密顿窗等。
不同的窗函数具有不同的特性,在设计滤波器时需要根据要求来选择合适的窗函数。
频率抽样法频率抽样法是一种基于频率抽样定理的设计方法。
该方法首先将所需的频率响应通过插值得到一个连续的函数,然后对该函数进行逆傅里叶变换,得到离散的权重系数。
频率抽样法的优点是可以设计出具有较小幅频纹波的滤波器,但需要进行频率上和频率下的补偿处理。
最优化方法最优化方法是一种基于优化理论的设计方法。
该方法通过优化某个性能指标来得到最优的滤波器权重系数。
常用的最优化方法包括Least Mean Square(LMS)法、Least Square(LS)法、Parks-McClellan法等。
这些方法可以根据设计要求,如通带波纹、阻带衰减等来得到最优的滤波器设计。
实现与应用FIR数字滤波器的实现可以通过硬件和软件两种方式。
硬件实现在硬件实现中,可以利用专门的FPGA(Field-Programmable Gate Array)等数字集成电路来实现FIR滤波器。
基于FPGA的异步FIR滤波器接口电路设计

be i gn
f ( 3 ; > =2 k= o k= 3 k r ; k一1 )
i k==2 a 2 <=dti; f ( )rm[ ] aa n es rm[ ]<= a k一1 ; l a k e rm[ ]
EN 1< = ~EN 1 S S :
e ndo
率 的情况下 , 可能少地使用硬件资源 , 口设计 尽 接
。
位 ) 累加 器完 成前 一 级乘 积 与后 一 级 乘积 的 累加 。 ( 定有符 号数 累加模 块 的累加 和输 出为 2 ) 设 1位 。 本设计 将 数据运 算模 块设 计 成 一个 以 E N S 1使
图 3 异 步 FR 滤 波 器 接 口设 计 原 理 框 图 I
能 的有 限状态 机 , 存在 4种状 态 。 共
D :0 3 6 /.sn 10 —8 4 2 1 . 1 0 1 OI 1 . 9 9 j i .0 13 2 .0 2 0 . 2 s
基 于 F GA 的异 步 F R 滤 波 器接 口电路 设 计 P I
李 鸿 , 叶 燕
( 湘潭 职业技术学 院, 湖南 湘潭 4 10 ) 1 12
摘
要 : 绍 了基 于 四相 单轨 握 手 协议 的 异 步 FR 滤 波 器接 1 介 I : 2电路 的设 计 。 分 析 了异 步 接 口 电路 互 联 模 型 及 原
理 , 出了一种基 于存储 器和状 态机 实现异步握 手接 口电路 的全新 方案 , 提 实现 了 FR滤波器功 能和异步接 口控 制 I 功 能。对设计进行 了波形仿真及结果分析 , 验证 了设 计方案的可行性。
表 1 F R 滤 波 器 系数 I
浮点形式 二进制形式 浮点形式 二进制形式
基于FPGA的FIR数字滤波器设计与仿真

a in ls p rto , so ai n o h p n . I l r i w d l s d b c u e o t t c h s itrin a d s a p c t o s s a e a ain r t r t rs a ig F R f t s i ey u e e a s fi s i tp a e d s t o n h r u — f g e o i e s r o
c a a trsi. h a i h o yo i i lf tra d t e meh d o a iai n a e r s a c e . h e i n o e rq i d d gt l h r c e i cT eb sc t e r fd gt le n h t o f e l t r e e r h dT e d sg ft e u r ii t a i r z o h e a i e sgv n u ig t e smu ae s f r fMAT AB.n h i l t r s l i ie . f tri ie sn h i lt o t a e o l w L a d t e smua e e u t sgv n Ke r sf t r d gt l c nr ls se / cl y i sal t n r v e d sr u e l oi m ; n o f n t n y wo d :i e ; ii ; o to y t msf i t n tl i e iw; it b t d ag rt l a a i ao i h wi d w c i u o
y∑c]2 + b2f = 【l ∑X ] n一 [ n
n = 0 L = 0 J
( 3 )
分 布 式 算 法 是 一 种 以 实 现 乘 加 运 算 为 目的 的运 算 方 法 。 它 与传 统 算 法 实 现 乘 加 运 算 的 不 同 在 于执 行 部 分 积 运 算 的先 后顺序。 该算 法 利 用一 个 查 找 表 (U ) 现 映射 , 用 一 个 2 L T实 即 字 宽 、 先 编 好 程 序 的 L T接 收 一个 Ⅳ 位 输 入 向 量 X= 】 预 U I 【 , x0 %[ , , [- l 映 射 , 查 找 表 的 查 找后 直接 输 出 部 分 积 。 1 … x N l】 】  ̄ 的 经 与传 统 算 法 相 比 , 布式 算 法 可 极 大 的 减 少 硬 件 电路 的规 模 , 分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FPGA的FIR抽取滤波器设计
用FPGA 实现抽取滤波器比较复杂,主要是因为在FPGA 中缺乏实现乘法运算的有效结构,现在,FPGA 中集成了硬件乘法器,使FPGA 在数字信号处理方面有了长足的进步。
本文介绍了一种采用Xilinx 公司的XC2V1000 实现FIR 抽取滤波器的设计方法。
具体实现
结构设计
基于抽取滤波器的工作原理,本文采用XC2V1000 实现了一个抽取率为2、具有线性相位的3 阶FIR 抽取滤波器,利用原理
控制器
控制器是抽取滤波器的核心模块,有两个功能:一是接收输入数据,二
是向其它模块发送数据和控制信号。
它根据加法器、乘法器和累加器的时序特性,有规律地向加法器发送抽头数据,向乘法器发送系数,向累加器发送控制信号,让加法器、乘法器和累加器在每个时钟周期都完成指定的任务,从而
实现流水线操作。
控制器用VHDL 语言描述,用寄存器存放抽头和系数。
加法器
加法器的输入和输出都是18 bit,用VHDL 语言描述实现。
它有两个工作时钟的延迟,在输入数据准备好的情况下,第一个时钟得出相加结果,第二
个时钟把相加结果锁存输出。
乘法器
乘法器为18 bit 输入,36bit 输出,用库元件MULT18X18S 和36 bit 锁存器实现。
MULT18X18S 是XC2V1000 自带的18 乘以18bit 硬件乘法器,单个时钟就可完成乘法运算。
36 bit 锁存器工作于时钟的上升沿,用VHDL 语言。