青霉素类药物的结构改造.

合集下载

青霉素类药物

青霉素类药物
பைடு நூலகம்
3.作用于细胞壁,对人体毒性低;
4.对G+菌的作用强,对G-菌的作用弱;
5.不宜与速效抑菌剂合用,拮抗作用。
速效抑菌剂使细菌迅速处于静止状态,使青霉素不能发挥繁殖起杀菌作用;
LOGO
毒性反应 :周围神经炎;青霉素脑病;偶可引起精神病发作。 赫氏反应和治疗矛盾:以青霉素治疗梅毒(钩端螺旋体、雅 司、鼠咬热、炭疽)时可有症状加剧现象,称为“赫氏反应” 电解质失平衡:青霉素钾盐、钠盐应用 二重感染:主要为耐药金葡菌、革兰氏阴性杆菌和白色念珠 菌引起的感染。 出血:凝血功能障碍患者 尿糖假阳性:硫酸铜法 变态反应
括青霉素类、头孢菌素类,头霉素类,单环内酰胺类及其他非典型
β-内酰胺类抗生素。

LOGO
1.作用机制及特点
2.不良反应
3.禁忌症及注意事项 4.药物相互作用
LOGO
1.青霉素类药物能破坏细菌细胞壁; 2.繁殖期杀菌剂,对繁殖期细菌作用强,对静止期 细菌作用弱;
2.25
次数
Q6h
Q8h

Company Logo
LOGO
联用根除幽门螺杆菌, 酸性环境中稳定,胃 肠道吸收率达90%, 对耐青霉素的肺炎链 球菌口服效果好
口服不吸收,不耐酶, 与舒巴坦钠和他唑巴坦 制成复方制剂 与头孢西丁联合呈现拮 抗作用 与能产生低凝血酶原血 症、血小板减少症、胃 肠道溃疡或出血的药物 合用时,可增加凝血机 制障碍和出血危险。
哌拉西林
不耐热,室温放置24h,大部分降解失效;
水溶液易失效并产生致敏物质,现配现用; 易被酸、碱、醇、氧化剂、金属离子等分解破坏。
LOGO
吸收
口服易被胃酸破坏,吸收少而不规则;肌内注射吸收迅速完全,

药物化学重点

药物化学重点

1.药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞之间的相互作用规律的的综合性学科。

研究内容包含化学科学和必须涉及生命科学的内容。

研究任务:为有效利用现有化学药物提供理论基础;研究化学药物的合成原理和路线选择和设计适合国情的产业化工艺;创制新药,发现具有进一步开发前景的先导化合物及新药。

2.以受体(可乐定)、酶(卡托普利)、离子通道、核酸作为药物的作用靶点。

3.苯二氮卓类药物的结构特征:具有苯环和七元亚胺内酰胺环骈合的苯二氮卓母核,其中1,4-苯二氮卓类的催眠镇静作用最强。

4.地西泮的结构…..俗名安定。

化学性质:4,、5位开环位可逆性水解,不影响药物的生物利用度;可进行生物碱的一般反应,加碘化铋钾试液,产生橙红色沉淀。

代谢过程:主要在肝脏代谢,代谢途径为N-1位去甲基、C-3位的氧化,代谢产物仍有活性。

形成的3-羟基化的代谢产物以与葡萄糖醛酸结合的形式排出体外。

5.巴比妥类药物的结构…..分类:长时效,中时效,短时效,超短时效。

鉴别方法:巴比妥类药物与铜盐在有机胺-水溶液中可产生类似双缩脲的颜色反应,如与吡啶-硫酸铜溶液作用生成紫色络合物,含硫巴比妥药物经反应后显绿色。

构效关系…..6.盐酸氯丙嗪的结构…..化学性质:易被氧化渐变色,遇光分解生成自由基,自由基与体内一些蛋白质作用时发生过敏反应;水溶液加硝酸后可能形成自由基或醌式结构而显红色,与三氯化铁试液作用显稳定的红色。

临床用途:常用于治疗精神分裂症和躁狂症,大剂量时可应用于镇吐,强化麻醉及人工冬眠等。

构效关系:活性与2位取代基的吸电子性成正比;2位引入S取代基,脂溶性增加,镇静作用增加,锥体副作用降低;10位N 与侧链碱性氨基间相隔3个直链C原子时作用最强。

…….区别:经典的抗精神病药物是DA受体阻断剂,能阻断中脑-边缘系统及中脑-皮质通路的DA受体,减低DA功能,从而发挥抗精神病作用。

同时也导致了运动功能障碍锥体外系的副作用;非经典抗精神病药特异性地作用于中脑皮质的多巴胺神经元,对治疗精神病有效,而较少产生锥体外系副作用,基本不发生迟发性运动障碍。

试述半合成青霉素的结构改造方法

试述半合成青霉素的结构改造方法

试述半合成青霉素的结构改造方法一、前言半合成青霉素是一种抗生素,广泛应用于医药领域。

为了提高其药效和稳定性,需要对其进行结构改造。

本文将详细介绍半合成青霉素的结构改造方法。

二、半合成青霉素的结构半合成青霉素的分子结构由苯甲酰基、侧链、吡啶环和β-内酰胺环组成。

其中,苯甲酰基和侧链决定了其抗菌活性,吡啶环和β-内酰胺环则是其核心结构。

三、半合成青霉素的结构改造方法1. 苯甲酰基的改造苯甲酰基是半合成青霉素分子中最容易被替换的部分。

常见的替换基团有氨基、羟基等。

将苯甲酰基替换为氨基后得到氨苄青霉素,其抗菌活性比原来的半合成青霉素更强。

2. 侧链的改造侧链也是影响半合成青霉素抗菌活性的重要因素。

常见的改造方法包括延长侧链、改变侧链的位置等。

将侧链延长为2-羟乙基丙酸基后得到氨苄西林,其抗菌活性比氨苄青霉素更强。

3. 吡啶环的改造吡啶环是半合成青霉素分子中不可替代的部分,因此对其进行改造相对困难。

但是,通过在吡啶环上引入新的基团可以提高半合成青霉素的药效和稳定性。

在吡啶环上引入双氢吡啶基后得到噻唑西林,其抗菌活性比半合成青霉素更强。

4. β-内酰胺环的改造β-内酰胺环也是半合成青霉素分子中不可替代的部分。

但是,在β-内酰胺环上引入新的基团可以提高其稳定性和抗菌活性。

在β-内酰胺环上引入硫代甲基后得到甲硫唑林,其抗菌活性比半合成青霉素更强。

四、总结通过对半合成青霉素结构进行改造,可以提高其药效和稳定性。

常见的改造方法包括替换苯甲酰基、延长侧链、在吡啶环上引入新的基团和在β-内酰胺环上引入新的基团等。

这些改造方法为半合成青霉素的应用提供了更多可能性。

青霉素结构的探究

青霉素结构的探究

青霉素结构的探究摘要青霉素是人类抗菌历史上最伟大的产物。

在极其简陋的实验条件下,正是由于科学家不懈地探索,青霉素神秘的结构才逐渐展现在人类面前。

现在广泛用于临床上的β-内酰胺抗生素,大都是在青霉素原有结构基础上修饰改造而来。

关键词青霉素立体构型结构改造青霉素(Penicillin),音译名盘尼西林,人类历史上最负盛名的抗生素,它的研制成功大大增强了人类抵抗细菌感染的能力,带动了抗生素家族的诞生。

由于分子中含有4个原子构成的β-内酰胺结构(图1),故统称为β-内酰胺抗生素。

青霉素分子由氢化噻唑环与β-内酰胺环并和而成,二者构成青霉素分子的母核,在母核上分别连有羧基和酰氨基侧链。

β-内酰胺环为一个平面结构,但2个稠和环不共平面。

青霉素分子中含有3个手性碳原子,只有3个碳原子绝对构型为2S,5R,6R的具有抗菌活性。

从青霉菌培养液中得到6种天然青霉素,现已证实为侧链不同的青霉素(见表1)。

其中以青霉素G的含量最高,效用最好,故在临床上广泛使用。

1 青霉素结构的探索对青霉素结构工作的探索是极其曲折的。

在那个设备粗糙、条件简陋的年代,科学家对青霉素研究的困难程度是现代科学家所无法想象的。

1.1 分子式的确定早期实验曾指出青霉素分子中不含S原子,这个错误的结论直到1943年7月才被纠正。

不同的青霉素水解都可以得到一种氨基酸——青霉胺,其分子式是C5H11NO2S,除此之外还有不同的青霉醛和二氧化碳。

从反应的产物可看出,青霉素分子中含有2个氮原子,4个氧原子和1个硫原子。

再后来研究发现2-戊烯基青霉素的钠盐分子式为C14H19N2O4SNa,苄基青霉素的钠盐分子式为C16H17N2O4SNa。

1.2 6种不同的青霉素化学家们在刚着手研究青霉素时就遇到了很大的困难,在自然界中不止存在一种天然的青霉素。

在英国,采用弗莱明发现青霉素时的表面培养法获得的青霉素与在美国采用玉米浸渍液培养出来的青霉素不一致,后来又陆续发现了另外一些共6种天然的青霉素(表1)。

01759药物化学(二)-简答题

01759药物化学(二)-简答题

01759药物化学(二)简答题1、先导化合物进行前药修饰的目的是什么?(1)增加脂溶性以提高吸收性能;(2)部位特异性;(3)增加药物的化学稳定性:(4)消除不适宜的制剂性质;(5)延长作用时间。

2、简述发现先导物的主要途径。

(1)由天然有效成分获得,包括植物、微生物和内源性活性物质;(2)反义核普酸;(3)基于生物大分子结构和作用机理设计;(4)组合化学;(5)基于生物转化发现。

3、利用前药原理对药物进行结构修饰,可以改变药物的哪些性质?(1)提高药物的组织选择性;(2)提高药物的稳定性;(3)延长药物作用时间;(4)改善药物的吸收;(5)改善药物的溶解度;(6)消除药物的不良味觉;(7)发挥药物的配伍作用。

4、前药的主要特征是什么?(1)原药与暂时转运基团以共价键连接,并且在体内可断裂,形成原药;(2)前药无活性或活性低于原药;(3)前药与暂时转运基团无毒性;(4)前药在体内产生原药的速率是快速的,以保障原药在作用部位有足够的药物浓度,并且应尽量减低前药的直接代谢。

5、叙述前药与软药设计的区别。

(1)前药是指用化学方法由有活性原药转变的无活性衍生物,后者在体内经酶或非酶解作用释放出原药而发挥疗效。

(2)软药系本身其有活性,在体内产生药理作用后可按预知方式和可控速率经进一步代谢转化成无活性产物的药物。

6、药物的第Ⅰ相生物转化的主要目的是什么?第II相生物转化的主要途径有哪几种?第Ⅰ相生物转化的主要目的是增加药物的极性,使之容易排泄。

第Ⅰ相生物转化有如下几种途径①葡萄糖醛酸结合;②硫酸结合;③氨基酸结合;④谷胱甘肽或疏基尿酸结合;⑤甲基化反应;⑥乙酰化反应。

7、简述吗啡及合成镇痛药的立体结构特征。

(1)分子中具有一个平坦的芳环结构,与受体的平坦区通过范德华力结合;(2)有一个叔氮原子的碱性中心,在生理pH条件下,大部分电离为阳离子正电中心,与受体表面的阴离子部位缔合;(3)联结它们两者之间的烃链部分突出于平面的前方,正好与受体的凹槽相适应。

青霉素类抗菌药物

青霉素类抗菌药物

临床用药方案与注意事项
02
注意事项:在使用过程中应注意观察患者的反应情况,如出现异常应及时处理。同时,要注意观察患者的病情变化,根据需要调整用药方案。
03
在使用青霉素类抗菌药物时,必须按照医生的建议进行,注意观察患者的反应情况,如有异常应及时处理。同时,要注意观察患者的病情变化,根据需要调整用药方案。
质量控制标准与体系
01
质量标准
制定严格的质量标准,包括外观、纯度、含量、稳定性等方面,确保产品质量符合要求。
02
质量检验
通过微生物限度检查、高效液相色谱法等检测方法,对产品质量进行严格把关。
生产过程中的质量控制要素
原材料控制
严格控制原材料的质量,包括菌种选育、发酵原料和化学原料等,避免原材料对产品质量的影响。
耐药菌监测与流行病学研究
加强耐药菌监测和流行病学研究,及时掌握耐药菌的流行趋势和传播动态,为防治耐药菌提供科学依据。
耐药菌防治新策略的研究
THANK YOU.
谢谢您的观看
04
青霉素类抗菌药物的制备与质量控制
1
制备工艺与流程
2
3
利用微生物发酵生产青霉素,包括菌种选育、发酵条件优化、发酵过程控制等环节。
发酵工艺
发酵液经过提取和精制,去除杂质,获得高纯度的青霉素产品。
提取工艺
青霉素通过结晶过程形成晶体,便于制剂和储存。
结晶工艺
03
质量管理体系
建立完善的质量管理体系,包括生产过程控制、质量检验、产品稳定性监测等环节,确保产品质量稳定可靠。
市场概况与发展趋势
国内主要生产厂商
国内青霉素类抗菌药物的主要生产厂商包括哈药集团、石药集团、华润三九等大型制药企业。

青霉素类药物的结构改造.1

青霉素类药物的结构改造.1

苯唑西林
Cl
O HH
N
S
Cl
H
N O
CH3 O
N
H COOH
双氯西林
N O
O HH
N H CH3 O
S N
H COOH
3.广谱青霉素
将青霉素6位侧链α-碳原子上引入亲水性基团,可扩大 抗菌谱,得到广谱抗生素
如:
氨苄西林
O
HO
HH
N NH2 H
O
S N
H COOH
阿莫西林
O HH
N NH2 H
O
二、青霉素类结构改造
1.耐酸青霉素
在青霉素6位侧链α碳上引入吸电子基团,阻碍了青霉素在酸 性条件下的电子重排,增加了对酸的稳定性。
如:
非奈西林
O
O
HH
N
SБайду номын сангаас
CH3 H N
O
H COOH
阿度西林
O
H N
H
S
N3 H N
O
H COOH
2.耐酶青霉素
酰胺侧链引入较大的取代基,具有较大的空间位阻,阻
止了β-内酰胺酶的进攻。
青霉素类药物的结构改造
一、青霉素类药物概述
• 1.青霉素结构特征:由β-内酰胺环、氢化噻唑环及
酰基侧链构成
酰胺侧链
O R
HH N H
N O
S COOH
6-氨基青霉烷酸 四氢噻唑环
β-内酰胺环
2. 天然青霉素存在的不足:
不耐酸,只能注射给药 易产生耐药性 抗菌谱窄,仅对革兰阳性菌有效 有严重的过敏反应
S N
H COOH

药物化学 青霉素类详解

药物化学 青霉素类详解

2
青霉素 的结构特征 297

3
青霉素的发现
1928年,Fleming从青霉菌的培养皿中发现。 由于青霉素β-内酰胺的不稳定性,导致他四年 的研究毫无进展。

4
1945 年获诺贝尔奖

5
21
ቤተ መጻሕፍቲ ባይዱ
一个是个苯氧基的青霉素,一个是含有氨基酸 的青霉素。

8
青霉素的稳定性 297
青霉酸
青霉二酸
青霉胺
青霉醛酸
由于他四元环和五元环拼合的时候不在同一个 平面上,N原子和羧基不能共平面,对酸、碱 醇和胺不稳定,这是他的最致命的缺点 。

9
青霉素的作用机制
它是抑制了细胞细胞壁合成中的粘肽转肽酶, 从而阻碍细胞壁的形成,导致细菌死亡。

10
青霉素的作用的选择性
1. 动物细胞无细胞壁 2. 细菌细胞有细胞壁
革兰氏阳性菌(G+),他的细胞壁粘肽含 量比革兰氏阴性菌(G-)高,所以,青霉素这 一类药物对革兰争阳性菌的作用比较强,而对 革兰争阴性菌比较弱。

11
青霉素的过敏反应
过敏源的来源主要来自于一些异蛋白(青霉 噻唑蛋白),主要是在生产过程中引进的,在 贮藏过程中自身开环产生,青霉素的抗生素具 有交叉过敏性反应,所以青霉素类抗生素一定 要做抗过敏的实验,

12
青霉素的缺点
细心与协作精神的胜利
青霉素的发现始于一个现象的意外观察,而 我的唯一功劳仅是没有忽视观察。
Fleming

6
青霉素的来源
1. 生物合成(发酵) 2. 化学全合成 3. 半合成方法

7
青霉素V和青霉素N 300
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O NH2
H N H
O
H S
N H COOH
知识回顾 Knowledge Review
祝您成功!
二、青霉素类结构改造
1.耐酸青霉素
在青霉素6位侧链α碳上引入吸电子基团,阻碍了青霉素在酸 性条件下的电子重排,增加了对酸的稳定性。
如:
非奈西林
O O
CH3
H N H
O
H S
N H COOH
阿度西林
O
NH H S
N3 H
N
O
H COOH
2.耐酶青霉素
酰胺侧链引入较大的取代基,具有较大的空间位阻,阻
止了β-内酰胺酶的进攻。
如苯Leabharlann 西林ClO HHN
S
Cl
N O
H CH3 O
N H COOH
双氯西林
N O
O HH
N
S
H CH3 O
N H COOH
3.广谱青霉素
将青霉素6位侧链α-碳原子上引入亲水性基团,可扩大 抗菌谱,得到广谱抗生素
如:
氨苄西林
O
HO
HH
N NH2 H
O
S N
H COOH
阿莫西林
青霉素类药物的结构改造
一、青霉素类药物概述
• 1.青霉素结构特征:由β-内酰胺环、氢化噻唑环及
酰基侧链构成
酰胺侧链
O R
H N H
O
H S
N COOH
6-氨基青霉烷酸 四氢噻唑环
β-内酰胺环
2. 天然青霉素存在的不足:
不耐酸,只能注射给药 易产生耐药性 抗菌谱窄,仅对革兰阳性菌有效 有严重的过敏反应
相关文档
最新文档