自然数整数问题

合集下载

四年级数学下册一自然数与整数2《认识负数》基础习题浙教版

四年级数学下册一自然数与整数2《认识负数》基础习题浙教版

《认识负数》基础习题1、先读一读,再把正数和负数填在相应的圆圈里.-7 +24 0 +22 -1 -1022、用正数和负数表示下面的海拔高度.艾丁湖是中国最低的地方,比海平面低155米. 海拔()米。

长白山天池湖面高于海平面2189米。

海拔( )米。

3、判断题。

(1)0可以看成是正数,也可以看成是负数。

( )(2)海拔-100米表示比海平面低100米。

( )(3)0℃表示没有温度.()(4)正数和负数表示一对相反意义的量。

( )(5)“-4”读作负四,“+4”读作正四。

()(6)不带“-”号的数都是正数。

()4、按从大到小的顺序写出5个正数和5个负数。

正数:;负数:.5、你能在括号里填上合适的数吗?(1)升降机上升8米记作+8米,下降5米记作()米。

(2)一幢大楼18层,地面以下有2层。

地面以上第3层记作+3层,地面以下第1层记作()层,地面以下第2层记作()层.(3)学校举行自然科学知识竞赛,抢答题的评分规则是答对一题加100分,答错一题扣10分.如果把加100分记作+100分,那么扣10分应记作()分。

参考答案:1、先读一读,再把正数和负数填在相应的圆圈里。

-7 +24 0 +22 -1 -102正数:+24,+22负数:-7,-1,-1022、用正数和负数表示下面的海拔高度.艾丁湖是中国最低的地方,比海平面低155米。

海拔(-155)米.长白山天池湖面高于海平面2189米. 海拔(+2189)米。

3、判断题。

(1)0可以看成是正数,也可以看成是负数。

(×)(2)海拔-100米表示比海平面低100米.(√)(3)0℃表示没有温度。

(×)(4)正数和负数表示一对相反意义的量.(√)(5)“-4”读作负四,“+4”读作正四。

(√)(6)不带“―”号的数都是正数。

(×)4、按从大到小的顺序写出5个正数和5个负数。

正数:1,2,3,4,5,负数:-4,-5,-6,-7,-85、你能在括号里填上合适的数吗?(1)升降机上升8米记作+8米,下降5米记作(-5)米。

整数与自然数之间概念

整数与自然数之间概念

整数与自然数之间概念1.引言1.1 概述自然数和整数是数学中两个重要的概念,它们在我们的日常生活中起着至关重要的作用。

自然数是指从1开始逐个增加的正整数,即1、2、3、4……,而整数则是包括正整数、负整数和0在内的数的集合。

自然数的概念最早出现在人类漫长的历史中,是人们对于繁衍后代、计算物品数量等需求的产物。

自然数具有一些显著的特点,首先它们是不以0开头的正整数,其次自然数的排列是无穷无尽的,可以无限地向上延伸。

此外,自然数之间存在着一种自然的顺序关系,即自然数的大小是可以比较的,比如说3一定大于2,这种顺序关系在我们的日常生活中起到了重要的作用。

与自然数相比,整数的定义范围更加广泛。

整数包括了自然数,同时还包括了负整数和0。

负整数是对正整数的扩展,它们是以负号“-”开头的整数,如-1、-2、-3等。

整数的引入使我们能够更全面地描述现实世界中的各种情况,比如说温度上升和降低的情况,负债和正债的情况等等。

整数的引入扩展了数学的应用范围,使得我们能够更精确地描述和计算各种现象。

自然数和整数之间存在着密切的关系。

自然数是整数的一部分,可以认为整数是由自然数和负整数组成的。

自然数和整数在数学中都有着丰富的理论基础和广泛的应用。

它们在加法、减法、乘法、除法等运算中都有着特定的规则和性质,通过对自然数和整数的研究,我们能够更好地理解和掌握更为复杂的数学概念和运算方法。

综上所述,自然数和整数是数学中两个重要的概念,它们各自具有不同的定义和特点,但又存在着密切的联系。

对于我们来说,了解和掌握自然数和整数的概念是非常重要的,它们在我们的日常生活和学习中都有着广泛的应用和意义。

通过深入研究和探索自然数和整数,我们能够更好地理解数学的本质,提升我们的数学思维能力和解决问题的能力。

1.2 文章结构文章结构部分的内容:文章的结构按照以下方式组织:引言、正文和结论。

在引言部分,我们将对整数和自然数的概念进行概述,阐明文章结构和目的。

自然数的整除

自然数的整除

三、倍和倍内,教学因数和倍数只在 整数范围内讨论,学生可以说“18是3和6的倍数”,但是 不能说“18是4的倍数”。这是受小学生知识水平的限制, 在教学时将讨论的范围缩小了。 但是实际上,倍和倍数的概念,是可以推广到有理数 和实数范围内的。例如18÷4=4.5 ,我们可以说18是4的 4.5倍。为避免概念混淆,我们在说到“倍数”时,指的 是二者间有倍数关系,而不提多少倍。 例如,我们可以说18是4的倍数,也可以说 “18是4的4.5倍”, 但是不会说“18是4的4.5倍数”。
整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
数的奇偶 一、定义
自然数分类可以分为奇数和偶数两类 1、偶数的定义:偶数指能被2整除的数,如0,2,4,6,···。
记作2n(n为整数)。
2、奇数的定义:奇数指不能被2整除的数(即余数为1), 如1,3,5,7,···。记作2n+1(n为整数)。 每个整数不是偶数,就是奇数,二者必居其一。
整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
质数的判断
一、查表法(希腊学者埃拉斯托尼)
二、试除法
例如:判断197是否是质数。 可以用2、3、5、7、11等小于(197)
½ 的质数去试除。
最大素数(长达17,425,170 位):
257885161-1
如果你一秒钟写一个数字,每 天写12小时,那么只要403天 就可以写完这个质数了。

自然 整


整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
整除、倍数和因数 一、定义
1、整除的定义:对于整数a和整数b,如果存在一个整数k, 使得a=b·k,那么就说a能被b整除,记作b|a。它的意义是a恰

四年级下册数学单元测试-1.自然数与整数 浙教版(含答案)

四年级下册数学单元测试-1.自然数与整数 浙教版(含答案)

四年级下册数学单元测试-1。

自然数与整数一、单选题1.个位上是( )的数是5的倍数A. 0B. 5C. 0或52.把54按照9个一份来分,求可以分成多少份?正确的解答是()A. 54+9=63(份)B. 54÷6=9(份)C. 54÷9=6(份)D. 54-6=48(份)3.1头小猪有4条腿,()头小猪有20条腿。

A. 6B. 4C. 54.下列结论中错误的是()。

A. 零不是正数B. 零是整数C. 零不是自然数二、判断题5.因为5.4÷6=0.9,所以5.4是6的倍数,6是5.4的因数。

()6.3和7是21的质因数。

()7.在气温由0℃下降到-5℃的过程中,气温共下降了5℃。

()8..奇数×偶数=奇数.()三、填空题9.从左到右在直线上填上合适的自然数.________10.二(1)班同学48人去种树,分成6组,平均每组有________人?11.加上________个就能化成最小的合数;减去________个就能化成最小的质数。

12.一个两位数是5的倍数,各个数位上数字的和是6,这个两位数是________或________四、解答题13.5个小朋友给30棵小树浇水,平均每个小朋友浇水多少棵树?14.有36个苹果,把它放在13个盘子里,每个盘子里只能放奇数个,这件事能办到吗?五、应用题15.把24个苹果平均分给3个班,每班分到多少个?参考答案一、单选题1.【答案】C【解析】【解答】个位上是0或5的数是5的倍数,故答案为:C.【分析】根据2、3、5的倍数特征进行解答.2.【答案】C【解析】求可以分成多少份?就是求54里面有几个9,(六)九五十四.正确的解答是54÷9=6(份),选C.3.【答案】C【解析】【解答】20÷4=5(头)故答案为:C。

【分析】根据题意可知,已知1头小猪有4条腿,要求几头小猪有20条腿,就是求20里面有几个4,用除法计算,据此列式解答。

五年级上册数学知识点归纳认识整数和自然数

五年级上册数学知识点归纳认识整数和自然数

五年级上册数学知识点归纳认识整数和自然数五年级上册数学知识点归纳——认识整数和自然数数学是一门非常重要的学科,它贯穿我们的生活始终。

在学习数学的过程中,我们接触到了很多的概念和知识点。

在五年级上册的数学课程中,我们主要学习了整数和自然数的概念与性质,下面就来对这些知识进行归纳总结。

一、自然数的认识自然数是从1开始的正整数,用N表示。

在我们的日常生活中,自然数无处不在,比如1、2、3、4、5……等等,我们可以用自然数来表示物体的数量、排名或者顺序等。

自然数是我们最常接触到的数字,也是最容易理解和运算的。

二、整数的认识整数包括自然数、负整数和0,整数用Z表示。

自然数是整数的子集,而负整数则是自然数的补集。

整数可以用来表示具有正负差异的数量或情况,比如温度的正负,欠债和负资产等。

我们可以用“+”和“-”符号来表示整数的正负。

三、自然数和整数的关系自然数是整数的一部分,每一个自然数都是整数。

自然数中没有负数和零,而整数中包括了自然数,并且增加了负数和零。

我们可以用自然数和整数来解决不同类型的问题,比如自然数可以用来表示物体的数量,而整数可以用来表示温度的正负。

四、整数的比较在学习整数的过程中,我们需要掌握整数的比较规则。

当两个整数进行比较时,可以用数轴来帮助我们理解。

我们从数轴上可以看出,整数从左到右逐渐增大,当一个整数的绝对值大于另一个整数时,这个整数就比较大。

如果两个整数的绝对值相等,那么它们的正负决定了大小关系,正数大于负数,负数小于正数。

五、整数的运算在学习整数的过程中,我们还需要了解整数的运算。

整数的加减法比较简单,符号相同则加法,符号不同则减法,并保留同号。

乘法同样也要考虑整数的正负,同号得正,异号得负。

除法则需要特殊注意,除数不为零时,两个整数同为正或负时,结果为正,异号时结果为负。

六、整数的应用整数在实际应用中有着广泛的运用,比如表示温度、海拔高度、账户余额等。

在解决实际问题时,我们可以将问题抽象成整数的运算,通过整数的加减乘除等运算规则来求解。

自然数,正整数,整数之间的关系

自然数,正整数,整数之间的关系

自然数,正整数,整数之间的关系
自然数、正整数和整数是数学中的三个重要概念。

自然数就是从1开始往后无限延伸的数字,用符号N表示。

正整数是指大于0的自然数,用符号Z+表示。

而整数是包括了正整数、负整数和0的数,用符号Z表示。

因此,自然数是正整数的一个子集,而正整数是整数的一个子集。

同时,整数也可以表示为自然数和负整数的并集,即Z= N ∪ {-N}。

这些不同的数集在数学中有着不同的应用和意义,对于理解数学知识和解决实际问题都有着重要的作用。

- 1 -。

自然数与整数(有答案)

自然数与整数(有答案)

一.选择题(共14小题)1.两个质数的积一定是()A.质数B.合数C.奇数D.偶数2.a,b是两个自然数,且a=2×3×5×b,则b一定是a的()A.质因数B.质数C.约数D.互质数3.在自然数中,凡是5的倍数()A.一定是质数B.一定是合数C.可能是质数,也可能是合数4.一个合数的因数有()A.无数个B.2个C.三个或三个以上5.正方形的边长是质数,它的周长和面积一定是()A.奇数B.合数C.质数6.一个两位数个位数字既是偶数又是质数,十位数字既不是质数又不是合数,则这个两位数是()A.32 B.16 C.127.有5个不同质因数的最小自然数是()A.32 B.72 C.180 D.23108.在任何质数上加1,它们的和是()A.合数B.偶数C.奇数D.不能确定9.下面四句话中,正确的有()句.(1)最小合数是最小质数的倍数;(2)三角形的面积一定,它的底和高成反比例;(3)某厂去年一至十二月份的生产数量统计后,制成条形统计图,它更能反映月与月之间的变化情况;(4)据统计,大多数的汽车事故发生在中等速度的行驶中,极少数事故发生的速度大于150km/h的行驶过程中,这说明高速行驶比较安全.A.1句 B.2句 C.3句 D.4句10.两个质数的积一定是()A.质数B.奇数C.合数D.偶数11.把60分解质因数是60=()A.1×2×2×3×5 B.2×2×3×5 C.3×4×512.要使三位数43□是2和3的公倍数,在□中有()种填法.A.0 B.1 C.2 D.313.下面四个数都是自然数,其中S表示0,N表示任意的非零数字,那么这四个数中()一定既是2的倍数,又是3的倍数.A.NNNSNN B.NSSNSS C.NSNSNS D.NSNSSS14.下列算式中是整除的是()A.14÷0.7=20 B.11÷5=2.2 C.143÷13=11 D.15÷2=7.5二.填空题(共16小题)15.30以内的质数中,有个质数加上2以后,结果仍然是质数.16.如果a是质数,那么它有个因数,最大的因数是;如果b=a ×3,那么a和b的最小公倍数是.17.1到9的九个数字中,相邻的两个数都是质数的是和,相邻的两个数都是合数的是和.18.连续三个非零的自然数中,必有一个是合数..(判断对错)19.公因数的两个数,叫做互质数.相邻的两个非0整数是互质数;1和其他任意一个自然数一定组成互素数.20.的两个自然数叫做互素数.分子、分母是的分数叫做简分数.21.在2,5,9,15,23,57这些自然数中,是素数,是合数;是奇数,是偶数;即是偶数又是素数,即是奇数又是合数.22.A,B,C为三个不同的素数,已知3A+2B+C=22,则A=,B=,C=.23.甲=2×2×2×3,乙=2×2×3×5,甲、乙的最大公因数是,最小公倍数是.24.三个质数相乘的积是30,这三个质数分别是.25.分解质因数:45=64=.26.最小的自然数是.27.温度0℃就是没有温度.(判断对错)28.填上>、<或=.56+25﹣1756+(25﹣17)25×(40×8)25×40×25×8900平方厘米0.09平方米0.060 6.06.29.在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于.30.从1005个桃子中最少拿出个后,正好平均分给10只猴子.三.计算题(共2小题)31.计算下面各题,能简算的要简算45+(1115+310 )38+47+5866﹣(34﹣25 )415+79﹣415+29.32.递等式计算91﹣39÷13+2375×(96﹣144÷24)692﹣[(430+870)÷13].四.解答题(共6小题)33.两个互素数的最小公倍数是111,这两个数是和或者和.34.一胎所生的哥俩叫孪生兄弟.数学上把相差2的两个质数叫“孪生质数”或“双生质数”.请写出5对孪生质数.35.在下面的□中填上数字,使所得的数是既是3的倍数,又是5的倍数:21□34□57□005□1□36.□里最大能填几?74□995≈74万74□9950000≈75亿565050>5□5049365874□021≈365875万.37.口算:42÷6+43=9×8÷12=125﹣5×5=54﹣18+9=48÷6×5=36×0+64=0÷12÷6=35÷7×16=17+0÷17=0.53+0.4=7.6﹣6.7=5.4+1.6=3.26﹣1.6=3.82+2.24=7﹣3.44=6.82+1.34=3.5+2.4= 6.6+5.1=7.7﹣3.7=5.4+6.6=7.25+1.75=38.脱式计算75×12+280÷35 180÷[36÷(12+6)]38×101﹣38680+21×15﹣36024×134﹣34×24 848﹣800÷16×1265×102 81+82+86+79+75+782018年03月17日小学数学组卷参考答案与试题解析一.选择题(共14小题)1.两个质数的积一定是()A.质数B.合数C.奇数D.偶数【分析】根据质数和合数的含义解决本题,一个数,如果只有1和它本身两个因数,这样的数叫做质数;一个数,如果除了1和它本身还有其它因数,这样的数叫做合数;也就是只要是找到除了1和它本身外的1个因数,那么这个数就是合数.【解答】解:质数×质数=积,积是两个质数的倍数,这两个质数也就是这个积的因数,这样积的因数除了1和它本身外还有这两个质数,所以它们的积一定是合数;故选:B.2.a,b是两个自然数,且a=2×3×5×b,则b一定是a的()A.质因数B.质数C.约数D.互质数【分析】因为a,b是两个自然数,且a=2×3×5×b,b是a的因数,a是b的倍数,据此解答即可.【解答】解:a,b是两个自然数,且a=2×3×5×b,则b一定是a的约数.故选:C.3.在自然数中,凡是5的倍数()A.一定是质数B.一定是合数C.可能是质数,也可能是合数【分析】根据倍数、质数、与合数的意义,即可作出选择.【解答】解:因为5的倍数中,除了5是质数外,其他都是合数.故选C.4.一个合数的因数有()A.无数个B.2个C.三个或三个以上【分析】质数又称素数是指一个大于1的自然数,除了1和它本身两个因数外,再也没有其它的因数;合数是指一个大于1的自然数,除了1和它本身两个因数外,还有其它的因数,说明一个合数有3个或3个以上的因数.据此做出选择即可.【解答】解:一个合数有3个或3个以上的因数.故选:C.5.正方形的边长是质数,它的周长和面积一定是()A.奇数B.合数C.质数【分析】根据质数与合数的定义,及正方形的周长和面积的计算方法,可知它的周长和面积一定是合数.【解答】解:正方形的周长=边长×4;正方形的面积=边长×边长;它的周长和面积都至少有三个约数,所以说一定是合数.答:它的周长和面积一定是合数.故选B.6.一个两位数个位数字既是偶数又是质数,十位数字既不是质数又不是合数,则这个两位数是()A.32 B.16 C.12【分析】一个两位数个位数字既是偶数又是质数,说明个位数字是2;十位数字既不是质数又不是合数,说明十位数字是1,进一步写出此数,再做选择.【解答】解:十位数字既不是质数又不是合数,说明十位数字是1,个位数字既是偶数又是质数,说明个位数字是2,所以此数是:12.故选:C.7.有5个不同质因数的最小自然数是()A.32 B.72 C.180 D.2310【分析】根据质数的定义,最小的五个质数是2,3,5,7,11.由此即可解决问题.【解答】解:根据质因数的定义可以得出最小的五个质数是2,3,5,7,11;2×3×5×7×11=2310;所以有五个不同质因数的最小自然数是2310;故选:D.8.在任何质数上加1,它们的和是()A.合数B.偶数C.奇数D.不能确定【分析】任何一个质数加上1,它可能是合数,如5+1=6,又是偶数,也可能是奇数,如2+1=3,又是奇数,无法确定.【解答】解:任何一个质数加上1,它是合数、质数、奇数、偶数的可能性都有,不能确定;故选:D9.下面四句话中,正确的有()句.(1)最小合数是最小质数的倍数;(2)三角形的面积一定,它的底和高成反比例;(3)某厂去年一至十二月份的生产数量统计后,制成条形统计图,它更能反映月与月之间的变化情况;(4)据统计,大多数的汽车事故发生在中等速度的行驶中,极少数事故发生的速度大于150km/h的行驶过程中,这说明高速行驶比较安全.A.1句 B.2句 C.3句 D.4句【分析】根据题意,对各选项进行依次分析、进而得出结论.【解答】解:(1)最小的合数是4,最小的质数是2,4是2的倍数,所以最小合数是最小质数的倍数,说法正确;(2)因为三角形的底×高=面积×2(一定),是乘积一定,符合反比例的意义,所以当三角形的面积一定时,它的高和底成反比例;(3)因为折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况,所以某厂去年一至十二月份的生产数量统计后,制成条形统计图,它更能反映月与月之间的变化情况,说法错误;(4)据统计,大多数的汽车事故发生在中等速度的行驶中,极少数事故发生的速度大于150km/h的行驶过程中,这说明高速行驶比较安全,说法不正确;因为交通事故的原因不一定是车速过高,资料统计的交通事故原因包括酒驾、疲劳驾驶等,高速行驶不安全;故选:B.10.两个质数的积一定是()A.质数B.奇数C.合数D.偶数【分析】自然数中除了1和它本身外还有别的因数的数为合数.由此可知,两个质数的积的因数除了1和它本身外,还有这两个质数,所以两个质数的积一定为合数.【解答】解:根据合数的定义可知,两个质数的积一定为合数.故选:C.11.把60分解质因数是60=()A.1×2×2×3×5 B.2×2×3×5 C.3×4×5【分析】对于此类选择题应采用逐一排除的方法进行分析排除,然后选出正确的答案.【解答】解:A:因为1既不是质数也不是合数所以错,B:2、3、5都是60的质因数,且2×2×3×5=60,所以B正确.C:4不是质数,利用短除法可以求得60=2×2×3×5,故选:B.12.要使三位数43□是2和3的公倍数,在□中有()种填法.A.0 B.1 C.2 D.3【分析】根据2、3的倍数的特征,个位上是0、2、4、6、8的数都是2的倍数,各位上的数字之和是3的倍数,这个数一定是3的倍数,要使三位数43□是2和3的公倍数,空格里面可以填2或8.据此解答.【解答】解:要使三位数43□是2和3的公倍数,空格里面可以填2或8.也就是有2种填法.故选:C.13.下面四个数都是自然数,其中S表示0,N表示任意的非零数字,那么这四个数中()一定既是2的倍数,又是3的倍数.A.NNNSNN B.NSSNSS C.NSNSNS D.NSNSSS【分析】同时有因数2和3的数,也就是同时是2和3的倍数的数,这样的数要满足个位上是0、2、4、6、8,而且各个数位上的数的和是3的倍数;据此逐项分析得解.【解答】解:A、N+N+N+S+N+N=5N+S,由于N是任意自然数,所以此数不一定有因数2,5N+S也不一定是3的倍数,所以此数也不一定有因数3,不符合题意;B、N+S+S+N+S+S=2N+4S,由于N是任意自然数,所以此数不一定有因数2,2N+4S 也不一定是3的倍数,所以此数也不一定有因数3,不符合题意;C、N+S+N+S+N+S=3N+3S,由于S等于0,所以此数一定有因数2,3N+3S一定是3的倍数,所以此数一定有因数3,符合题意;D、N+S+S+N+S+S=2N+4S,由于N是任意自然数,所以此数不一定有因数2,2N+4S 也不一定是3的倍数,所以此数也不一定有因数3,不符合题意.故选:C.14.下列算式中是整除的是()A.14÷0.7=20 B.11÷5=2.2 C.143÷13=11 D.15÷2=7.5【分析】整除:是指一个整数除以一个不为0的整数,得到的商是整数,而没有余数,我们就说第一个整数能被第二个整数整除;根据整除的意义,逐项分析后再选择.【解答】解:A、14÷0.7=20,除数是小数,不是整除算式;B、11÷2=5.5,商是小数,不是整除算式;C、143÷13=11,被除数、除数和商都是整数,是整除算式;D、15÷2=7.5,商是小数,不是整除算式;故选:C.二.填空题(共16小题)15.30以内的质数中,有5个质数加上2以后,结果仍然是质数.【分析】根据质数的意义可知,30以内的质数有2、3、5、7、11、13、17、19、23、29,将它们与2相加即可知结果仍是质数的有几个.【解答】解:30以内的质数有:2、3、5、7、11、13、17、19、23、29,加2后结果还是质数的是3+2=5,5+2=7,11+2=13,17+2=19,,29+2=31;即加2后还是质数的有3、5、11、17、29共五个;故答案为:5.16.如果a是质数,那么它有2个因数,最大的因数是a;如果b=a×3,那么a和b的最小公倍数是b.【分析】质数只有1和它本身两个因数;一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;因为b=a×3,所以a是b的倍数,当两个数是倍数关系时,较大的数是它们的最小公倍数,据此判断即可.【解答】解:如果a是质数,那么它有2个因数,最大的因数是a;如果b=a ×3,那么a和b的最小公倍数是b;故答案为:2,a,b.17.1到9的九个数字中,相邻的两个数都是质数的是2和3,相邻的两个数都是合数的是8和9.【分析】根据质数与合数的定义,及自然数的排列规律,最小的质数是2,最小的合数是4,由此解答.【解答】解:最小的质数是2,那么相邻的两个数都是质数的是2和3;相邻的两个数都是合数的是8和9;故答案为:2和3,8和9.18.连续三个非零的自然数中,必有一个是合数.错误.(判断对错)【分析】根据自然数的排列规律,相邻的自然数相差1;一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.【解答】解:根据自然数的排列规律和质数与合数的意义,连续三个非零的自然数中,必有一个是合数.此说法错误.例如:1,2,3,是连续三个非零的自然数,其中1既不是质数也不是合数,2和3都是质数;故答案为:错误.19.公因数只有1的两个数,叫做互质数.相邻的两个非0整数是互质数;1和其他任意一个自然数一定组成互素数.【分析】根据互质数的意义,公因数只有1的两个数叫做互质数.据此解答.【解答】解:公因数只有1的两个数叫做互质数.相邻的两个非0整数是互质数;两个不同的质数是互质数;2和任何一个奇数是互质数;1和任意一个非0偶数是互质数.故答案为:只有1.20.公因数只有1的两个自然数叫做互素数.分子、分母是互质数的分数叫做简分数.【分析】根据互质数的意义,公因数只有1的两个数叫做互质数,根据最简分数的定义:当分子和分母是互质数时,这个分数就是最简分数.【解答】解:公因数只有1的两个自然数叫做互素数.分子、分母是互质数的分数叫做简分数;故答案为:公因数只有1,互质数.21.在2,5,9,15,23,57这些自然数中,2、5、23是素数,9、15、57是合数;5、9、15、23、57是奇数,2是偶数;2即是偶数又是素数,9、15、57即是奇数又是合数.【分析】自然数中,能被2整除的数为偶数,不能被2整除的数为奇数;自然数中,除了1和它本身外,没有别的因数的数为质数;除了1和它本身外还有别的因数的数为合数.【解答】解:在2,5,9,15,23,57这些自然数中,2、5、23是素数,9、15、57是合数;5、9、15、23、57是奇数,2是偶数;2即是偶数又是素数,9、15、57即是奇数又是合数.故答案为:2、5、23;,9、15、57;5、9、15、23、57;2;2;9、15、57.22.A,B,C为三个不同的素数,已知3A+2B+C=22,则A=5,B=2,C= 3.【分析】先根据质数的含义:除了1和它本身以外,不含其它因数的数是质数;列举出小于22的质数,然后结合题意,进行假设,继而得出结论.【解答】解:小于22的质数有:2,3,5,7,11,13,17,19,先考虑A=2,发现3A为偶数,2无论与什么数相乘都是偶数,22位偶数,偶数减去偶数还是得偶数,而是偶数又是质数的数只有2,而A=2,C就不能为2,所以,A不能为2;同理可得:C不能为2;考虑B=2,A=3,则C=9,不是质数,不符合题意;若B=2,A=5,则C=3,符合题意;所以B=2,A=5,则C=3;故答案为:5,2,3.23.甲=2×2×2×3,乙=2×2×3×5,甲、乙的最大公因数是12,最小公倍数是120.【分析】求两个数的最大公约数和最小公倍数的方法:这两个数所有的公因数的乘积就是这两个数的最大公约数;这两个数的所有公因数和它们各自独有质因数的连乘积就是这两个数的最小公倍数,由此即可解决问题.【解答】解:,甲、乙的最大公因数是2×2×3=12,最小公倍数:2×2×2×3×5=120;故答案为12,120.24.三个质数相乘的积是30,这三个质数分别是2、3、5.【分析】分解质因数的意义:把一个质数写成几个质数相乘的形式叫做分解质因数,据此把30分解质因数,然后求出这三个质数.【解答】解:30=2×3×5,所以三个质数相乘的积是30,这三个质数分别是2、3、5;故答案为:2、3、5.25.分解质因数:45=3×3×564=2×2×2×2×2×2.【分析】分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.【解答】解:45=3×3×564=2×2×2×2×2×2故答案为:3×3×5,2×2×2×2×2×2.26.最小的自然数是0.【分析】根据自然数的意义(包括0和正整数),求出即可.【解答】解:最小的自然数是0,故答案为:0.27.温度0℃就是没有温度×.(判断对错)【分析】温度0℃是水结成冰时的温度,同时也是零上温度和零下温度的分界点,据此可知温度0℃不是没有温度,也是温度中的一个具体的值.【解答】解:因为温度0℃是水结成冰时的温度,也是零上温度和零下温度的分界点,是一个具体的温度值;所以温度0℃就是没有温度的说法是错误的;故答案为:×.28.填上>、<或=.56+25﹣17=56+(25﹣17)25×(40×8)<25×40×25×8900平方厘米=0.09平方米0.060< 6.06.【分析】(1)、(2)可以先算出两边的得数,再比较大小.(3)面积单位之间的换算,根据面积单位之间的换算的进率完成.(4)这两个小数的大小比较,由于它们的整数部分不同,整数部分大的就大.据此得出答案.【解答】解:(1)56+25﹣17=64,56+(25﹣17)=64;所以56+25﹣17=56+(25﹣17).(2)25×(40×8)=25×320=8000,25×40×25×8=200000.(3)1平方米=10000平方厘米,900÷10000=0.09(平方米)(4)0<6,所以0.060<6.06.故答案为:=,<,=,<.29.在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于45.【分析】因为被减数、减数与差的和等于120,又被减数=减数+差,所以被减数是60;再根据差是减数的3倍,如果减数是1份数,则差为3份数,被减数60相当于是4份数,差占了60的,即为45.【解答】解:120÷2=60;1+3=4;60×=45;故答案为:45.30.从1005个桃子中最少拿出5个后,正好平均分给10只猴子.【分析】要想正好平均分给10只猴子,那么桃子的总数必须是10的倍数,所以确定出只要从1005个桃子中最少拿出5个即可.【解答】解:1005﹣5=1000(个),因为1000是10的倍数,所以从1005个桃子中最少拿出5个后,正好平均分给10只猴子.故答案为:5.三.计算题(共2小题)31.计算下面各题,能简算的要简算45+(1115+310 )38+47+5866﹣(34﹣25 )415+79﹣415+29.【分析】(1)根据加法结合律简算;(2)按照从左到右的顺序计算;(3)先算小括号里面的减法,再算括号外的减法;(4)根据加法交换律和结合律简算.【解答】解:(1)45+(1115+310 )=45+1115+310=1160+310=1470(2)38+47+58=85+58=143(3)66﹣(34﹣25 )=66﹣9=57(4)415+79﹣415+29=(415﹣415)+(79+29)=0+108=10832.递等式计算91﹣39÷13+2375×(96﹣144÷24)692﹣[(430+870)÷13].【分析】(1)先算除法,再算减法,最后算加法;(2)先算小括号里面的除法,再算小括号里面的减法,最后算括号外的乘法;(3)先算小括号里面的加法,再算中括号里面的除法,最后算括号外的减法.【解答】解:(1)91﹣39÷13+23=91﹣3+23=88+23=111(2)75×(96﹣144÷24)=75×(96﹣6)=75×90=6750(3)692﹣[(430+870)÷13]=692﹣[1300÷13]=692﹣100=592四.解答题(共6小题)33.两个互素数的最小公倍数是111,这两个数是1和111或者3和37.【分析】先把111分解质因数,进而确定质因数即可.【解答】解:111=3×37;所以这两个数可能是:1和111,3和37.故答案为:1、111,3、37.34.一胎所生的哥俩叫孪生兄弟.数学上把相差2的两个质数叫“孪生质数”或“双生质数”.请写出5对孪生质数.【分析】根据“孪生质数”的定义,找出相邻并且相差2的质数进行书写即可.【解答】解:根据“孪生质数”的定义可以写出如下:3和5,5和7,11和13,17和19,29和31.35.在下面的□中填上数字,使所得的数是既是3的倍数,又是5的倍数:21□34□57□005□1□【分析】根据5的倍数的特征,一个数的个位是0或5,这个数就是5的倍数;根据3的倍数的特征,一个数各位上数的和是3的倍数,这个数就是3的倍数;要想同时是3、5的倍数,这个数的个位一定是0或5,各位上数的和一定是3的倍数,解答即可.【解答】解:由分析可知:21□,既是3的倍数,又是5的倍数,□可填0;34□5,既是3的倍数,又是5的倍数,□可填0、3、6、9;7□00,既是3的倍数,又是5的倍数,□可填2、5、8;5□1□,既是3的倍数,又是5的倍数,□可都填0.故答案为:0;0、3、6、9;2、5、8;0.36.□里最大能填几?74□995≈74万74□9950000≈75亿565050>5□5049365874□021≈365875万.【分析】74□995≈74万,显然是用“四舍”法求得,所以口里能填0~4;74□9950000≈75亿,显然是用五入法求得,所以口里能填5~9;565050>5□5049,最高位相同,后四位5050>5049,所以口里能填0~6;365874□021≈365875万,显然是用五入法求得,所以口里能填5~9.【解答】解:74□995≈74万,显然是用“四舍”法求得,所以口里能填0~4,最大是4;74□9950000≈75亿,显然是用五入法求得,所以口里能填5~9,最大是9;565050>5□5049,最高位相同,后四位5050>5049,所以口里能填0~6,最大是6;365874□021≈365875万,显然是用五入法求得,所以口里能填5~9,最大是9.故答案为:4,9,6,9.37.口算:42÷6+43=9×8÷12=125﹣5×5=54﹣18+9=48÷6×5=36×0+64=0÷12÷6=35÷7×16=17+0÷17=0.53+0.4=7.6﹣6.7=5.4+1.6=3.26﹣1.6=3.82+2.24=7﹣3.44=6.82+1.34=3.5+2.4= 6.6+5.1=7.7﹣3.7=5.4+6.6=7.25+1.75=【分析】根据整数加减乘除法和小数加减法的计算方法进行计算.【解答】解:42÷6+43=509×8÷12=6125﹣5×5=10054﹣18+9=4548÷6×5=4036×0+64=640÷12÷6=035÷7×16=8017+0÷17=170.53+0.4=0.937.6﹣6.7=0.95.4+1.6=73.26﹣1.6=1.663.82+2.24=6.067﹣3.44=3.566.82+1.34=8.163.5+2.4=5.96.6+5.1=11.77.7﹣3.7=4 5.4+6.6=127.25+1.75=938.脱式计算75×12+280÷35 180÷[36÷(12+6)]38×101﹣38680+21×15﹣36024×134﹣34×24 848﹣800÷16×1265×102 81+82+86+79+75+78【分析】(1)先同时计算乘法和除法,再算加法;(2)先算小括号里面的加法,再算中括号里面的除法,最后算括号外的除法;(3)运用乘法分配律简算;(4)先算乘法,再算加法,最后算减法;(5)运用乘法分配律简算;(6)先算除法,再算乘法,最后算减法;(7)先把102分解成100+2,再运用乘法分配律简算;(8)根据加法交换律和结合律简算.【解答】解:(1)75×12+280÷35=900+8=908;(2)180÷[36÷(12+6)]=180÷[36÷18]=180÷2=90;(3)38×101﹣38=38×(101﹣1)=38×100=3800;(4)680+21×15﹣360=680+315﹣360=995﹣360=635;(5)24×134﹣34×24=24×(134﹣34)=24×100=2400;(6)848﹣800÷16×12=848﹣50×12=848﹣600=248;(7)65×102第21页(共22页)=65×(100+2)=65×100+65×2=6500+130=6630;(8)81+82+86+79+75+78=(81+79)+(82+78)+(86+75)=160+160+161=481.第22页(共22页)。

小学数学认识整数和自然数

小学数学认识整数和自然数

小学数学认识整数和自然数数学是一门普遍认为抽象而晦涩的学科,但是对于小学生来说,数学是一个有趣和实用的学科。

在小学数学的学习过程中,认识整数和自然数是其中的一个重要部分。

本文将介绍整数和自然数,并探讨如何在小学生中培养对整数和自然数的认识。

1. 自然数的概念自然数是我们在日常生活中经常使用的数,它包括0和正整数。

自然数从1开始,依次往后增加,没有终止点。

小学生在学习数学的早期阶段,通常先从自然数的概念开始。

他们可以通过数数物品、数学游戏等方式来了解自然数及其运算。

2. 整数的概念整数是包括正整数、负整数和0的数集。

正整数是比0大的数,负整数是比0小的数。

在小学生的数学教学中,通常在初中才会引入负整数的概念,所以在这里主要讨论正整数和0。

3. 整数和自然数的关系整数是自然数的一个扩展,自然数是整数的一个子集。

自然数包含在整数中,同时整数还包含了负整数和0。

小学生在学习整数的过程中,可以通过数轴、图形等方式来帮助他们理解整数和自然数的关系。

4. 整数和自然数的运算在小学数学中,自然数的运算通常只限于加法和乘法。

而整数的运算除了加法和乘法外,还包括减法和除法。

对于小学生来说,他们首先需要掌握自然数的加法和乘法运算,然后在此基础上引入整数的加法和乘法运算。

自然数的加法和乘法比较简单,小学生可以通过数学游戏、实际问题等方式来培养他们的计算能力。

在引入整数的加法和乘法运算时,可以使用数轴和图形来帮助他们理解和计算。

5. 整数和自然数的应用整数和自然数在日常生活中有许多应用。

比如,在温度计上,负数表示低温,正数表示高温;在地理坐标上,正数表示东经和北纬,负数表示西经和南纬等等。

通过这些实际应用,可以帮助小学生更好地理解整数和自然数的概念和运算。

6. 培养小学生对整数和自然数的认识在小学数学教学中,培养小学生对整数和自然数的认识是一个渐进的过程。

教师可以通过有趣的数学游戏、实际问题、图形和实物等多种方式来引导学生理解和运用整数和自然数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档