概率与数理统计第八章 --第十一章例题
概率论与数理统计 第8章

现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。
概率论与数理统计课后习题答案 第八章

有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (
∵
该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设
解: (1)作假设
概率论与数理统计第八章假设检验

为判断所作的假设是否正确, 从总体中抽取 样本, 根据样本的取值, 按一定的原则进行检 验, 然后, 作出接受或拒绝所作假设的决定.
整理课件
2
我们主要讨论的假设检验的内容有
参数检验 总体均值、均值差的检验 总体方差、方差比的检验
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W|H0)
此时称W为拒绝域,整为理课检件 验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
于是, 我们判断正确的概率是1-0.043=95.7%
整理课件
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设
再作一个备择假设
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们
之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧
道南的概率是
P= 0.353 ≈ 0.043.
《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。
设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。
3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。
解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。
概率论与数理统计第八章假设检验习题解答

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
概率论与数理统计第8章例题

第八章例题1.在假设检验中,检验水平α的意义是:原假设0H 成立,经检验被____________的概率(填写“拒绝”或“接受”) 拒绝2.在假设检验中,犯第一类错误是指___ 弃真。
即0H 正确却被拒绝 __3. ),(~2σμN X ,当2σ未知时,为检验假设00:μμ=H 须构造统计量__________ nS x /μ- 4.从已知标准差 5.2σ=的正态总体中,抽取容量为16的样本,算得样本均值27.56x =,试在显著水平0.05α=之下,检验假设0:26H μ=.(0.025 1.96u =) 解:0:26H μ=)1,0(~/00N n x U σμ-=;0.05α=,/20.025 1.96u u α==; 算得 1.2u ==; 由于0.025u u <,所以在显著水平0.05α=之下,接受假设0:26H μ=.5.某产品按规定每包重为10kg ,现从中抽取6包进行测试,得9.7 10.1 9.8 10.0 10.2 9.6若包重服从正态分布2(,)N μσ,且20.05σ=,问在显著性水平为0.05α=下,包的平均重量是否为10kg ?(0.025 1.96u =) 解01:10,:10.H H μμ=≠令, 9.9x =0.025||||| 1.095u 1.96x u ===<= 所以可以认为重量为10kg6. 工厂某电子元件平均使用寿命为3000小时,采用新的生产设备后,从中随机抽取20个,测得这批电子元件的平均寿命X =3100小时,样本标准差为S=170小时,设电子元件的寿命X 服从正态分布N ()2,σμ,试检验用了新生产设备后产品质量是否显著改变?(显著性水平01.0=α,54.2)19(01.0=t )解 0H :μ=3000, 1H :3000>μ0.01(19)t 显著改变 7. 设罐头番茄汁中维生素C 含量服从正态分布。
规定每罐维生素C 的平均含量为21毫克。
《概率论与数理统计》(第3版) 习题详解-(第8章)习题详解

习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25?【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05)【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F <<所以接受H 0,拒绝H 1.9~12. 略。
概率论与数理统计练习题第八章答案

第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 分布函数为
0, x -1, 1 F(x;1) ,1 x 2, 2 1, x 2.
• 2、设随机过程X(t)=e-At,t>0,其中A是在区间(0,a)上 服从均匀分布的随机变量,试求X(t)的均值函数和自相 关函数。 解:由关于随机变量函数的数学期望的定理知道X(t)的均 值函数为
192 190
188 187
A2
A3 A4
201
179 180
187
191 188
196
183 175
200
194 182
• 判断4个林场松毛虫密度有无显著变化,取显著性 水平=0.05。
• 解 记Ai林场的平均松毛虫密度为I,i=1,2,3,4.则 所述问题为在显著性水平=0.05下检验假设
H 0 : 1 2 3 4 , H1 : 1 , 2 , 3 , 4不全相等。 今s 4,n1 n 2 n 3 n 4 5, n 20.T.1 932, T.2 974, T.3 935, T.4 912, T.. 3753 .
2 2 S r xij T..2 / n 705225 3753 / 20 974.55. j 1 i 1 4 4 5
SA
j 1
T. 2 j 5
T..2 n 704653 .8 704250 .45 403.35
S E S r S A 571.2. S r , S A , S E的自由度分别为 n - 1 19, s 1 3, n s 20 4 16, 从而得方差分析表如下 :
S xx
S xy
S xy
1 x ( xi ) 2 n 1 13 32 .81 25 14 1.252 2.70 83 33 , 15 1 xi yi xi yi n 1 98 5.5 14 1.25 10 4.5 1.45 83 33 , 15 1 2 yi ( yi ) 2 n 1 7.29.62 5 10 4.5 2 1.60 83 33 . 15
cost ,出现H, X(t ) - t . 2t ,出现T, 1 假设P( H ) P(T ) , 试确定X(t )的 2 1 一维分布函数 F( x; ), F ( x;1). 2
解 (1) 由X(t)的定义
0,出现H, 1 X( ) 2 ,出现T。 1 这一离散型随机变量的 分布律为
• 3、以x与Y分别表示人的脚长(英寸) 与手长(英寸), 下面列出了15名女子的脚的长度与手的长度Y的 样本值。 x 9.00 8.50 9.25 9.75 9.00 10.00 9.50 9.00
y
x
6.50
9.25
6.25 7.25 7.00 7.00 7.00 7.50
6.75 7.25
7.00
• 不落在拒绝域之内,故在显著性水平 接受原假设
0.05
下
H 0 : Leabharlann 0.618.• 3、按规定,100g罐头番茄汁中的平均维生素C含 量不得少于21mg/g。现从工厂的产品中抽取17个 罐头,其100g番茄汁中,测定维生素C含量(mg/g) 记录如下: • 16 25 21 20 23 21 19 15 13 23 17 20 29 18 22 16 22 • 设维生素含量服从正态分布N(,2), ,2 均 未知,问这批罐头是否符合要求(取显著性水平 =0.05). • 解: 本题 需检验假设(=0.05), •
9.25
10.00 10.00 9.75 9.50 ∑ 141.25
7.00
7.50 7.25 7.25 7.25 104.5
85.5625
100 100 95.0625 90.25 1332.8125
49
56.25 52.5625 52.5625 52.5625 729.625
64.75
75 72.5 70.6875 68.875 985.5
x (t ) E[ X (t )] E (e
At
)
a
0
e
iu
1 du a
1 (1 e at ), t 0. at 自相关函数为 R x (t1 , t 2 ) E[ X (t1 ) X (t 2 )] E (e At1 e At 2 ) E[e
X(̊C) Y(%) 300 40 400 50 500 55 600 60 700 67 800 70
• 画出散点 图并求Y对于x的一元线性回归方程。
解 画散点图:从图上看,取回归函数为x的线性函 数a+bx是合适的。现在n=6,为求线性回归方程, 所需计算列表如下: x 300 400 500 600 700 800 3300 y 40 50 55 60 67 70 342 x2 90000 160000 250000 360000 490000 640000 1990000 xy 12000 20000 27500 36000 46900 56000 198400
t x 0 s n t 0.025 (1 9) 2.0 9 3 .
n 20, x 0.660, s 0.0925 , 0.05, t 2 (n 1) t0.025 (19) 2.093,
今观察值 0.6 6 0 5- 0.6 1 8 t 2.0 5 5 2.0 9 3 , 0.0 9 2 5 20
( t1 t 2 ) A a
]
0
e ( t1 t 2 ) u
1 du a
1 [1 e a ( t1 t 2 ) ], t1 , t 2 0. a (t1 t 2 )
• 3、设随机过程X(t)≡X(随机变量), E(X)=a,D(X)=2(>0) ,试求X(t)的均值函数和 协方差函数。 解 x(t)=E[X(t)]=E(X)=a. Cx(t1,t2)=E{[X(t1)- x(t1)][X(t2)- x(t2)]} =E[(X-a)2]=D(X)=2.
,方差为 ,, 均未知。试检验假 设(取 0.05) H 0 : 0.618, H1 : 0.618.
2 2
解:本题要求在显著性水平 0.05 下 ,检验正 态总体均值的假设
H 0 : 0.618, H1 : 0.618.
因 未知,故采用t检验。因 拒绝域为
• 解 已知齐次马氏链的一步转移概率矩阵为 0 1 •
0 0.75 0.25 P . 1 0.5 0.5
• 应用公式(2.5),现在a=0.25,b=0.5,即有
P ( n) P n 1 0.5 0.75 0.5 n 1,2,... 。 在上式中令n , 得到 0.25 (1 0.25 0.5) n 0.75 0.25 0.25 0.25 , 0. 5 0.5
2 1 0.5 0.25 3 lim P(n) n 0.75 0.5 0.25 2 3 由定义知此齐次马氏链 是 遍历的,其极限分布为 2 1 , . 3 3
x2
81 72.25 85.5625 95.0625 81 100 90.25 81 85.5625 90.25
y2
42.25 39.0625 52.5625 49 45.5625 49 42.25 49 49 49
xy
58.5 53.125 67.0625 68.25 60.75 70 61.75 63 64.75 66.5
第十一章例题讲解
• 1、在一计算系统中,每一循环具有误差的概率取 决于先前一个循环是否有误差。以0表示误差状态, 以1表示无误差状态。设状态的一步转移概率矩阵 0 1 为
0 0.75 0.25 P . 1 0.5 0.5
• 试证明相应齐次马氏链是遍历的,并求其极限分 布(平稳分布)
第八章 例题讲解
• • • •
0.693 0.672 0.668 0.553
0.749 0.615 0.611 0.570
0.654 0.606 0.606 0.844
0.670 0.690 0.609 0.576
0.662 0.628 0.601 0.933
• 设这一工厂生产的矩形的宽度与长度的比值总体服 从正态分布,其均值为
H 0 : 21 ,H1 : 21.
今n 17, x 20, s 3.984, t0.05 (16) 1.7459, 20 21 t 1.035 1.7459. 3.984 17
故接受H0,认为这批罐头是符合规定的。
第九章例题讲解
• 1、某防治站对4个林场的松毛虫密度进行调查, 每个林场调查5块地的资料如下表: 地点 A1 松毛虫密度(头/标准地) 189 176 185 190
2 i
• 从而 (1)
ˆ b
S xy S xx
0.53846 ,
ˆ ˆ 1 b 1 b ˆ yi xi 104.5 141.25 a n n 15 15 1.896. 所求的回归方程为 ˆ 1.896 0.53846x y
第十章例题讲解
• 1、利用抛掷一枚硬币的试验定义一随机过程
方差来源 平方和 因素A 误差E 总和 403.35 571.2 974.55
自由度 3 16 19
均方 134.45 35.7
F比
SA SE 3.766
因F0.05(3,16)=3.24, F比=3.766>3.24,故在显著性 水平0.05下拒绝H0,认为差异是显著的。
• 2、下表数据是退火温度x(°C) 对黄铜延性Y效应的 实验结果,Y是以延长度计算的。