李雅普诺夫稳定性分析方法(精选)
合集下载
第5章李雅普诺夫稳定性分析

3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
李雅普诺夫Lyapunov稳定性理论李雅普诺夫

表示向量 x 到x e的距离 n2 x xe ( x1 x1e ) 2 ( x2 x2e ) 2 c
表示状态空间中,以 x e为圆心,半径为c的圆
n3
x xe ( x1 x1e ) 2 ( x2 x2e ) 2 ( x3 x3e ) 2 c
0
方程的解(运动或状态轨线)为: x(t; x 初始状态向量
, t0 )
初始时刻
x(t0 ; x 0 , t0 ) x 0
f (x, t ) x
平衡状态:各分量相对于时间不再发生变化
e f (x e , t ) 0 x
所有状态的变化速度为零,即是静止状态 线性定常系统:
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
3、大范围渐近稳定 当初始条件扩展到整个状态空间,且平衡状态均具 有渐近稳定性时,称此平衡状态是大范围渐近稳定的。 几何意义:
系统不管在什么样的初始状态下,经过足够长的时间总
能回到平衡状态附近并且向平衡状态靠拢。 大范围渐近稳定的必要条件是状态空间中只能有一个平 衡状态。
1
1
极点位于s左半平面,s=2的极点被对消掉了。系统是有 界输入有界输出稳定的。
(2)求系统的特征方程:
6 det(I A) ( 2)( 3) 0 1 1
求得:1 2,2 3
系统不是渐近稳定的。
例 : 用间接法判断下列系统的稳定性 x1 x2 x1 x1 x2 x1 x1 x2 1 ) , 2) , 3) x2 x1 x2 x1 x2 x2 x1 x2
李雅普诺夫稳定性分析方法

则是根据G(s)的特征值来分析其在小扰动 范围内运动稳定性.
(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现
(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现
稳定性与李雅谱诺夫方法

(3)
成立,则称 为系统的平衡状态。 对于一个任意系统,不一定都存在平衡状态,有时即使存在也未必是唯一的。
1.2
稳定性的几个定义
,有:
若用 那么
表示状态矢量
与平衡状态
的距离,用点集
表示以
为中心 为半径的超球体,
(4)
在n维状态空间中,有:
(5)
当 很小时,则称 为 的邻域。因此,若有 位于球 , 则意味着 域 内,便有: 同 理,若方程式(1)的解
为矩阵微分方程式的初始条件。
当选取正定矩阵
时,可由函
计算出
;再根据
是否具有连续、
对称、正定性来判别线性时变系统的稳定性。
证明
设李雅普诺夫函数取为:
式中,
为连续的正定对称矩阵。取V(x,t)对时间的全导数,得:
即 (5) 式中
由稳定性判据可知,当 一个正定对称矩阵,则 定的。
为正定对称矩阵时,若
也是
判别其稳定性的问题。例如高阶的非线性系统或时变系统。
4
4.1
李雅普诺夫方法在线性系统中的应用
线性定常连续系统渐近稳定判据
设线性定常连续系统为:
则平衡状态 证明书171页
为大范围渐阵A所有特征根均具有负实部等价于存在正定实对称矩阵P,使得ATP+PA<0
定理:线性连续定常系统
其平衡态xe=0大范围渐近稳定的充要条件为:任意给定正定实对称矩阵Q,若存在正定实对称矩阵P, 满足 则可取
Ax x
AT P PA Q
V ( x) xT Px
为系统的李雅谱诺夫函数。
运用时应注意: 1. 先选Q>0,之后代入李雅谱诺夫方程求取P,然后判定P的正定性,进而得出系统稳定与否的结论; 2. 通常选Q=I;
第五章李雅普诺夫稳定性分析

即 x e = f (xe , t) = 0 。
从定义可知,平衡状态的各分量相对于时间不再发生变化。
线性定常系统:x = Ax
A非奇异:Axe = 0 xe = 0 是唯一零解 A奇异:Axe = 0 xe 有无穷多个解
非线性系统:x = f (x,t)
x = f (xe , t) = 0 xe 可能有一个也可能有多个平衡状态
5-2 李雅普诺夫稳定性的基本概念
一、 平衡状态
系统x = f (x,t) ,X为n 维状态向量,且显含时间变量t,x = f (x,t)为线性或
非线性、定常或时变的n
维向量函数,假定方程的解为
x(t;
x
0
,
t 0
)
,式中
x
0
和 t0 分别为初始状态和初始时刻。
定义:系统 x = f (x,t) 的平衡状态是使x = 0的那一类状态,并用 xe 表示,
1 2
Mx22
,
若用标量函数 V (x) 表示系统的能量。则
V
(x)
=
1 2
Kx12
+
1 2
Mx22
V (x) = Kx1x1 + Mx2x2
=
Kx1x2
+ Mx2 (−
K M
x1
−
f M
x2 )
= − fx22 0
结论:坐标原点处的平衡状态是渐近稳定的。
一、标量函数及其定号性
1.标量函数 V (x) 的符号和性质
+ ... +
a1
+
a0
=
0
如何判断系统的渐近稳定性?
5-4 李雅普诺夫第二方法
李雅普诺夫第二方法,建立在用能量观点分析稳定性的基础上: 若系统的某个平衡状态是渐近稳定的,则系统储存的能量将随时
从定义可知,平衡状态的各分量相对于时间不再发生变化。
线性定常系统:x = Ax
A非奇异:Axe = 0 xe = 0 是唯一零解 A奇异:Axe = 0 xe 有无穷多个解
非线性系统:x = f (x,t)
x = f (xe , t) = 0 xe 可能有一个也可能有多个平衡状态
5-2 李雅普诺夫稳定性的基本概念
一、 平衡状态
系统x = f (x,t) ,X为n 维状态向量,且显含时间变量t,x = f (x,t)为线性或
非线性、定常或时变的n
维向量函数,假定方程的解为
x(t;
x
0
,
t 0
)
,式中
x
0
和 t0 分别为初始状态和初始时刻。
定义:系统 x = f (x,t) 的平衡状态是使x = 0的那一类状态,并用 xe 表示,
1 2
Mx22
,
若用标量函数 V (x) 表示系统的能量。则
V
(x)
=
1 2
Kx12
+
1 2
Mx22
V (x) = Kx1x1 + Mx2x2
=
Kx1x2
+ Mx2 (−
K M
x1
−
f M
x2 )
= − fx22 0
结论:坐标原点处的平衡状态是渐近稳定的。
一、标量函数及其定号性
1.标量函数 V (x) 的符号和性质
+ ... +
a1
+
a0
=
0
如何判断系统的渐近稳定性?
5-4 李雅普诺夫第二方法
李雅普诺夫第二方法,建立在用能量观点分析稳定性的基础上: 若系统的某个平衡状态是渐近稳定的,则系统储存的能量将随时
最新精品课件9-4 李雅普诺夫稳定性分析

t
t
则称平衡状态xe是大范围渐近稳定的。 线性系统的稳定性与初始状态无关,对于严 格线性的系统,若它是渐近稳定的,必定是大范 范围渐近稳定的。
(5) 不稳定性
若对某个 0 ,无论 0如何小,从 S ( ) 内 的某x0出发的轨线超出 S ( ), 则称xe是不稳定。
S ( )
即在(9-391)条件下,系统的每一个平衡态均为李 雅普诺夫意义下稳定。 进一步证明(9-391)成立的 充要条件。将系统变换成约当标准形 1 ||eAt ||· ||P ||; A PA P ; ||eAt ||=||P-1||·
得知,|| eAt ||有界等价于|| eAt||有界,而且约当标准 形的每一个元素都具有如下形式 t i 1e ( i j i ) t 式中 i j i i 是矩阵A的特征值, i 是 i的重 数。 0 的元素在[0,∞)上有界, i 0 的元素 i 只有当 i 1 (单根)时,才能在[0,∞)上有界; 至此,得证:当且仅当命题(1)的条件成立时,系 统每一个平衡态均为李雅普诺夫意义下稳定。
(1) 系统的每一个平衡状态是李雅普诺夫稳定
的充要条件为, A 的所有特征值均具有非正( ≤0 ) 实部, 且实部为零的特征值是 A 的最小多项式的 单根。
要条件是, A的所有特征值均具有负实部。
(2) 系统的唯一平衡状态 xe=0 是渐近稳定的充
证明 (1)设 xe 是系统的平衡态,对于t≥0,有 At x e 0; A x e 0; x e e x e ; 对于初始状态 x0≠xe,有 (9-390) x e A t x 0 ;~ x x x e e A t (x 0 x e ),t 0; 对于任意给定的 0 ,当且仅当 At (9-391) e k 时,存在与初始时刻无关的 ( ) / k ,使得由任 意初始状态 x 0 x e ( ) 出发的运动轨线都满足 At ~ x e x 0 x e k , t t 0 , k
t
则称平衡状态xe是大范围渐近稳定的。 线性系统的稳定性与初始状态无关,对于严 格线性的系统,若它是渐近稳定的,必定是大范 范围渐近稳定的。
(5) 不稳定性
若对某个 0 ,无论 0如何小,从 S ( ) 内 的某x0出发的轨线超出 S ( ), 则称xe是不稳定。
S ( )
即在(9-391)条件下,系统的每一个平衡态均为李 雅普诺夫意义下稳定。 进一步证明(9-391)成立的 充要条件。将系统变换成约当标准形 1 ||eAt ||· ||P ||; A PA P ; ||eAt ||=||P-1||·
得知,|| eAt ||有界等价于|| eAt||有界,而且约当标准 形的每一个元素都具有如下形式 t i 1e ( i j i ) t 式中 i j i i 是矩阵A的特征值, i 是 i的重 数。 0 的元素在[0,∞)上有界, i 0 的元素 i 只有当 i 1 (单根)时,才能在[0,∞)上有界; 至此,得证:当且仅当命题(1)的条件成立时,系 统每一个平衡态均为李雅普诺夫意义下稳定。
(1) 系统的每一个平衡状态是李雅普诺夫稳定
的充要条件为, A 的所有特征值均具有非正( ≤0 ) 实部, 且实部为零的特征值是 A 的最小多项式的 单根。
要条件是, A的所有特征值均具有负实部。
(2) 系统的唯一平衡状态 xe=0 是渐近稳定的充
证明 (1)设 xe 是系统的平衡态,对于t≥0,有 At x e 0; A x e 0; x e e x e ; 对于初始状态 x0≠xe,有 (9-390) x e A t x 0 ;~ x x x e e A t (x 0 x e ),t 0; 对于任意给定的 0 ,当且仅当 At (9-391) e k 时,存在与初始时刻无关的 ( ) / k ,使得由任 意初始状态 x 0 x e ( ) 出发的运动轨线都满足 At ~ x e x 0 x e k , t t 0 , k
稳定性与李雅普诺夫

1)V(x) > 0,则称V(x)为正定。例如V(x)=x12 +x22; 2)V(x) ≥ 0,则称V(x)为半正定(或非负定)。例如
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:
第四章李雅普诺夫稳定性理论

即:
(1) p11 0,
(1)2 p11 p21
p12 0, ,(1)n p22
p11 p12 p1n
p21
p22
p2n
0
pn1 pn2 pnn
28
第29页/共73页
例 判断下列二次型函数的正定性。
V (x) 10x12 4x22 x32 2x1x2 2x2 x3 4x1x3
其平衡状态满足
(
),并设在原点邻域存在
V (x,t)
x f (x,t)
,假定状态空间原点作为平衡状态
f (0, t) 0 对 x 的连续的一阶偏导数。 xe 0
30
第31页/共73页
• 定理1:若(1)
V ( 正定; x,t)
V (x, t) (2)
负定;
则原点是渐近稳定的。
(3) 当
时
,
V ( x, t) x 则系统在原点处是大范围渐近稳定的。
时变: 与t0 有关 定常系统: 与t0无关,xe是一致稳定的。
注意: -向量范数(表示空间距离)
欧几里得范数。
1
x0 xe [(x10 x1e )2 (xn0 xne )2 ]2 9 第10页/共73页
2.渐近稳定
1)是李雅普诺夫意义下的稳定
2)lim t
x(t; x0,t0 ) xe
0
与t0无关 一致渐近稳定
3.大范围内渐近稳定性
对 x0 s( )
都有lim t
x(t; x0,t0 ) xe
0
10
第11页/共73页
初始条件扩展到整个空间,且是渐近稳定性。
s( ) , x xe大范围稳定
❖线性系统(严格):如果它是渐近稳定的,必 是有大范围渐近稳定性(线性系统稳定性与初 始条件的大小无关)。