2-2 离散型随机变量及其分布律
合集下载
2.2 离散型随机变量及其分布

∞ k k =1
}
满足下列性质 性质: 满足下列性质:
pk ≥ 0 (k = 1,2,⋯);
概率论与数理统计 数学科学学院 徐 鑫
∑p
k =1
∞
k
常用来确定分布律中的待定参数] 常用来确定分布律中的待定参数 = 1 [常用来确定分布律中的待定参数
这两条也是非负 数列能为某随机 变量分布律的充 要条件
离散型随机变量分布列的求法 求法: 离散型随机变量分布列的求法: 利用古典概率、 利用古典概率、条件概率等计算方法及运算 性质求事件{X=x 概率; 性质求事件{X=xk}概率; 利用已知的重要分布的分布列; 利用已知的重要分布的分布列; 利用分布函数. 利用分布函数. 离散型随机变量分布列的应用 应用: 离散型随机变量分布列的应用: 确定分布列中的待定参数; 确定分布列中的待定参数; 求分布函数; 求分布函数; 求随机事件的概率. 求随机事件的概率.
概率论与数理统计 数学科学学院 徐 鑫
四、几种重要的离散型随机变量 1、(0-1)分布[两点分布] (0-1)分布 两点分布] 分布[ 定义2 定义2 设随机变量X只取0,1两值, 设随机变量X只取0,1两值,且其分布律为 0,1两值
P{X = k} = p (1 − p) (k = 0,1;0 < p < 1)
(−∞, x1 ), [ x1 , x2 ), [ x2 , x3 ) ⋯, [ xk ,+∞)
分别求出F(x)的值,即就x 分别求出F(x)的值,即就x落在上述各区间内计算 F(x)的值 {X≤x}所含可能值概率的累积和; {X≤x}所含可能值概率的累积和; 所含可能值概率的累积和 离散型随机变量X的分布函数是一个右连续的阶梯 离散型随机变量X 函数. 函数.
}
满足下列性质 性质: 满足下列性质:
pk ≥ 0 (k = 1,2,⋯);
概率论与数理统计 数学科学学院 徐 鑫
∑p
k =1
∞
k
常用来确定分布律中的待定参数] 常用来确定分布律中的待定参数 = 1 [常用来确定分布律中的待定参数
这两条也是非负 数列能为某随机 变量分布律的充 要条件
离散型随机变量分布列的求法 求法: 离散型随机变量分布列的求法: 利用古典概率、 利用古典概率、条件概率等计算方法及运算 性质求事件{X=x 概率; 性质求事件{X=xk}概率; 利用已知的重要分布的分布列; 利用已知的重要分布的分布列; 利用分布函数. 利用分布函数. 离散型随机变量分布列的应用 应用: 离散型随机变量分布列的应用: 确定分布列中的待定参数; 确定分布列中的待定参数; 求分布函数; 求分布函数; 求随机事件的概率. 求随机事件的概率.
概率论与数理统计 数学科学学院 徐 鑫
四、几种重要的离散型随机变量 1、(0-1)分布[两点分布] (0-1)分布 两点分布] 分布[ 定义2 定义2 设随机变量X只取0,1两值, 设随机变量X只取0,1两值,且其分布律为 0,1两值
P{X = k} = p (1 − p) (k = 0,1;0 < p < 1)
(−∞, x1 ), [ x1 , x2 ), [ x2 , x3 ) ⋯, [ xk ,+∞)
分别求出F(x)的值,即就x 分别求出F(x)的值,即就x落在上述各区间内计算 F(x)的值 {X≤x}所含可能值概率的累积和; {X≤x}所含可能值概率的累积和; 所含可能值概率的累积和 离散型随机变量X的分布函数是一个右连续的阶梯 离散型随机变量X 函数. 函数.
离散型随机变量的概率分布

则称之为离散型随机变量X的概率分布或分布列(律) 亦可用下面的概率分布表来表示
X
pk
x1
p1
x2
p2
…
…
xn
pn
…
…
第2章
§2.2 离散型随机变量及其概率分布
第3页
分布列具有如下性质: (1)非负性: pi ≥ 0 (2)规范性: (i=1,2,…)
i
p
i 1
1
例2 已知随机变量X的概率分布为:
(3) 汽车司机刹车时,轮胎接触地面的点的位置是在[0, 2r]上取值的随机变量,其中r 是轮胎的半径.
第2章
§2.2 离散型随机变量及其概率分布
第2页
定义4 设离散型随机变量X所有可能的取值为 x1 , x2 , … , xn , … X取各个值的概率,即事件{X=xi}的概率为
P { X = xi } = pi (i = 1, 2, …)
k 3 k C4 C6 可表示为 P{ X k} (k 0,1,2,3) 3 C10
C 4 C6 C4 3 1 P{X 2} , P{X 3} 3 3 10 C10 C10 30
4红
X
pk
0
1 6
1
1 2
2
3 10
3
1 30
第2章
§2.2 离散型随机变量及其概率分布
X P
0 1 2
1 1 1 2 2
2 1 1 1 2 2 2
3 11 1 22 2
第2章
§2.2 离散型随机变量及其概率分布
第13页
2.1.2 常见的离散型随机变量 1. 0-1分布 若随机变量 X 只可能取 0 和 1 两个值,概率分布为
X
pk
x1
p1
x2
p2
…
…
xn
pn
…
…
第2章
§2.2 离散型随机变量及其概率分布
第3页
分布列具有如下性质: (1)非负性: pi ≥ 0 (2)规范性: (i=1,2,…)
i
p
i 1
1
例2 已知随机变量X的概率分布为:
(3) 汽车司机刹车时,轮胎接触地面的点的位置是在[0, 2r]上取值的随机变量,其中r 是轮胎的半径.
第2章
§2.2 离散型随机变量及其概率分布
第2页
定义4 设离散型随机变量X所有可能的取值为 x1 , x2 , … , xn , … X取各个值的概率,即事件{X=xi}的概率为
P { X = xi } = pi (i = 1, 2, …)
k 3 k C4 C6 可表示为 P{ X k} (k 0,1,2,3) 3 C10
C 4 C6 C4 3 1 P{X 2} , P{X 3} 3 3 10 C10 C10 30
4红
X
pk
0
1 6
1
1 2
2
3 10
3
1 30
第2章
§2.2 离散型随机变量及其概率分布
X P
0 1 2
1 1 1 2 2
2 1 1 1 2 2 2
3 11 1 22 2
第2章
§2.2 离散型随机变量及其概率分布
第13页
2.1.2 常见的离散型随机变量 1. 0-1分布 若随机变量 X 只可能取 0 和 1 两个值,概率分布为
离散型随机变量及其分布律

解 由 0 p 1 ( k 0 , 1 , 2 , ), p 1 k k k 0 1 k ( ) a 得 k 1 即 a 3 1 ! k! k 03 k k0 1k 1 1 ( ) ae 3 3 e3 ! k 0 k
2. 离散型随机变量分布律与分布函数及 事件概率的关系 (1) 若已知 X 的分布律:
X
pk
0 1 2
1 2
1
实例2 200件产品中,有190件合格品,10件不合格 品,现从中随机抽取一件,那末,若规定
1 , 取得不合格品, X 0 , 取得合格品.
X
0
190 200
1
10 200
pk
则随机变量 X 服从(0-1)分布.
说明 两点分布是最简单的一种分布,任何一个只有 两种可能结果的随机现象, 比如新生婴儿是男还是 女、明天是否下雨、种籽是否发芽等, 都属于两点 分布.
p P { X x } k k
或
F ( x ) F ( x 0 ) k k k 1 , 2 , ) F ( x ) F ( x ) ( k k 1
( P { X x } P { x X x } ) k k 1 k 注 1º 离散型随机变量X的分布函数F(x)是阶
梯函数,x1, x2,· · · ,是F(x)的第一类间断 点, 而X在xk(k=1,2, · · ·)处的概率就是
F(x)在这些间断点处的跃度.
2º P { a X b }
P { a X b } P { X a } P { X b }
[ F ( b ) F ( a )] [ F ( b ) F ( b 0 )] [ F ( a ) F ( a 0 )]
2-2离散型随机变量及其分布律

松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
2-2离散型随机变量的概率分布

实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就是 n重伯努利试验.
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
§2.2离散型随机变量及其分布列

1, x a F ( x) 0, x a
1
例2.2.9 若
.
服从两点分布
0
P
q
求
的分布函数
解: P( x) 0 当 x 0时,F(x) F(x) P( x) P( 0) q 当 0 x 1 时, F ( x) P( x) P( 0) P( 1) 1 当 x 1 时, 例2.2.10 设 的分布列为
0 1 2 3 4 5
k 5 k 5k
k=0,1,2,3,4,5.
q 5 5 pq 4 10 p 2 q 3 10 p 3 q 2 5 p 4 q p 5
3.分布列的性质
由概率的性质可知,任一离散型随机变量 的分布列 p i 都具有下述性质:
非负性:1)pi 0, i 1, 2, 规范性:2) pi 1
k 6 k 6
5000
5000
其中b(k;5000,1/1000)= C
k 5000
1 k 1 5000 k ( ) (1 ) 1000 1000
这时如果直接计算P 5 ,计算量较大。由于n很大 ,p较小,而np=5不很大 ,
可以利用 Poisson定理
5 P( 5) 1 P 5 1 e k 0 k !
i
例2.2.11 设随机变量
的分布函数为 的分布列。
解: 依题意可得
0, x 1 0.4, 1 x 1 F ( x) ,求 0.8,1 x 3 1, x 3
的可能取值为-1,1,3
P 1 F 1 0 F 1 0.4,
P 3 F 3 0 F 3 0.2
所以 的分布列为
2.2离散型随机变量及其分布
k k PX k C n p (1 p ) n k
k 0,1, , n,
其中0<p<1, 称X服从参数为n,p的二项分布,记为 X~b(n,p)。
上一页 下一页 返回
在n重贝努里试验中,假设A在每次试验中出现 的概率为p,若以X表示n次试验中A出现的次数。那 么由二项概率公式得X的分布律为:
第二节
离散型随机变量及其分布
一、离散型随机变量和概率分布 定义3:如果随机变量所有的可能取值为有限个或 可列无限多个,则称这种随机变量为离散型随机变量。 定义4:设离散型随机变量X的可能取值为xk (k=1,2, …),事件 { X x k } 发生的概率为pk ,即
P { X x k } pk
k k PX k C n p (1 p ) n k
k 0,1, , n
即X服从二项分布。 当n=1时,二项分布化为:P{X=k}=pk(1-p)1-k 即为(0-1)分布 (0-1)分布可用b(1,p)表示。
上一页 下一页 返回
k=0,1
k nk n p ( 1 p ) P{X = k}= C k 恰好是 [ P +(1 - P )] n 二项展开式中出现pk的那一项,这就是二项分布 名称的由来。
e 5 5 k 0.95 k! k 0
a
e5 5k 即 0.05 k a 1 k !
上一页 下一页 返回
查表可得
e 10 ≈0.031828<005 k! k 10
即 a 1 10, a 9
于是,这家商店只要在月底进货这种商品9件 (假定上个月没有存货),就可以95%以上的把握 保证这种商品在下个月不会脱销.
上一页 下一页 返回
k 0,1, , n,
其中0<p<1, 称X服从参数为n,p的二项分布,记为 X~b(n,p)。
上一页 下一页 返回
在n重贝努里试验中,假设A在每次试验中出现 的概率为p,若以X表示n次试验中A出现的次数。那 么由二项概率公式得X的分布律为:
第二节
离散型随机变量及其分布
一、离散型随机变量和概率分布 定义3:如果随机变量所有的可能取值为有限个或 可列无限多个,则称这种随机变量为离散型随机变量。 定义4:设离散型随机变量X的可能取值为xk (k=1,2, …),事件 { X x k } 发生的概率为pk ,即
P { X x k } pk
k k PX k C n p (1 p ) n k
k 0,1, , n
即X服从二项分布。 当n=1时,二项分布化为:P{X=k}=pk(1-p)1-k 即为(0-1)分布 (0-1)分布可用b(1,p)表示。
上一页 下一页 返回
k=0,1
k nk n p ( 1 p ) P{X = k}= C k 恰好是 [ P +(1 - P )] n 二项展开式中出现pk的那一项,这就是二项分布 名称的由来。
e 5 5 k 0.95 k! k 0
a
e5 5k 即 0.05 k a 1 k !
上一页 下一页 返回
查表可得
e 10 ≈0.031828<005 k! k 10
即 a 1 10, a 9
于是,这家商店只要在月底进货这种商品9件 (假定上个月没有存货),就可以95%以上的把握 保证这种商品在下个月不会脱销.
上一页 下一页 返回
2-2离散型随机变量及其分布律
4、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
P ( X 5 )
5 k 0
Ck 5000
(
1 1000
)k
(
999 1000
)5000k
离散型随机变量X b(n, p). 又设np ( 0), 则有
Cnk
pk (1
p )nk
n
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
P(X=0)=P(A1)=1/2,
P(X 1) P(A1A2 ) P(A1)P(A2 ) 1 4 P(X 2) P(A1 A2A3 ) P(A1)P(A2)P(A3) 1 8 P(X 3) P(A1 A2 A3A4 ) P(A1)P(A2 )P(A3 )P(A4 ) 1 16 P(X 4) P(A1A2 A3 A4 ) P(A1)P(A2)P(A3)P(A4) 1 16
例3 (P30,例2) 设射手每次击中目标的概率p=0.75, 且各次射击 相互独立。现共射击4次,以X表示击中目标的次数。(1)写出X的 分布律;(2)求恰击中3次的概率;(3)求至少击中2次的概率。
解 : 定义 A {击中目标}, 伯努利试验.
X的可能取值有:0,1,2,3,4. 显然, X b(2,0.75)
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200* 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
Ck 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
离散型随机变量及其分布
(0-1)分布的分布律用表格表示为:
X0 1
P 1-p p
0
易求得其分布函数为: F (x) 1 p
1
x0 0 x 1
x 1
2.二项分布(binomial distribution): 定义:若离散型随机变量X的分布律为
PX k Cnk pkqnk k 0,1,L , n
其中0<p<1,q=1-p,则称X服从参数为n,p的二项
下面我们看一个应用的例子.
例7 为保证设备正常工作,需要配备适量的 维修人员 . 设共有300台设备,每台独立工作, 且发生故障的概率都是0.01。若在通常的情况 下,一台设备的故障可由一人来处理 , 问至 少应配备多少维修人员,才能保证当设备发生 故障时不能及时维修的概率小于0.01?
我们先对题目进行分析:
§2.2 离散型随机变量及其分布
一、离散型随机变量及其分布律
1.离散型随机变量的定义 设X为一随机变量,如X的全部可能取到的值
是有限个或可列无限多个,则称随机变量X为离 散型随机变量(discrete random variable)。
设X是一个离散型随机变量,它可能取的值 是 x1, x2 , … .为了描述随机变量 X ,我们不仅 需要知道随机变量X的取值,而且还应知道X取 每个值的概率.
定义1 :设xk(k=1,2, …)是离散型随机变 量X所取的一切可能值,称等式
P(X xk) pk, k=1,2,… …
为离散型随机变量X的概率函数或分布律, 也称概率分布.
其中 pk (k=1,2, …) 满足:
(1) pk 0,
(2) pk1
k
k=1,2, …
用这两条性质判断 一个函数是否是
X0 1
P 1-p p
0
易求得其分布函数为: F (x) 1 p
1
x0 0 x 1
x 1
2.二项分布(binomial distribution): 定义:若离散型随机变量X的分布律为
PX k Cnk pkqnk k 0,1,L , n
其中0<p<1,q=1-p,则称X服从参数为n,p的二项
下面我们看一个应用的例子.
例7 为保证设备正常工作,需要配备适量的 维修人员 . 设共有300台设备,每台独立工作, 且发生故障的概率都是0.01。若在通常的情况 下,一台设备的故障可由一人来处理 , 问至 少应配备多少维修人员,才能保证当设备发生 故障时不能及时维修的概率小于0.01?
我们先对题目进行分析:
§2.2 离散型随机变量及其分布
一、离散型随机变量及其分布律
1.离散型随机变量的定义 设X为一随机变量,如X的全部可能取到的值
是有限个或可列无限多个,则称随机变量X为离 散型随机变量(discrete random variable)。
设X是一个离散型随机变量,它可能取的值 是 x1, x2 , … .为了描述随机变量 X ,我们不仅 需要知道随机变量X的取值,而且还应知道X取 每个值的概率.
定义1 :设xk(k=1,2, …)是离散型随机变 量X所取的一切可能值,称等式
P(X xk) pk, k=1,2,… …
为离散型随机变量X的概率函数或分布律, 也称概率分布.
其中 pk (k=1,2, …) 满足:
(1) pk 0,
(2) pk1
k
k=1,2, …
用这两条性质判断 一个函数是否是
2-2离散型随机变量及其分布律
P(X=2)=C (0.05) (0.95) = 0.007125
思考:本例中的“有放回”改为”无放回” 思考: 本例中的“有放回”改为”无放回”? 不是伯努利试验。 各次试验条件不同,此试验就不是伯努利试验 此时, 各次试验条件不同,此试验就不是伯努利试验。此时, 1 2 只能用古典概型求解. 古典概型求解 只能用古典概型求解. C C
3. 泊松分布
定义 若一个随机变量 X 的概率分布为 λke−λ P{ X = k} = , k = 0,1,2,⋯, k! 则称 X 服从参数为 λ 的泊松分布, 泊松分布, 记为 X ~ P (λ ) 或 X ~ π (λ ). 易见, 易见,1) P { X = k } ≥ 0; ( k −λ ∞ ∞ ∞ λk λe −λ (2)∑P{X = k} = ∑ =e ∑ k! k=0 k ! k=0 k=0
泊松分布是常见的一种分布: 泊松分布是常见的一种分布: 地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
4. 二项分布的泊松近似
很大时, 对二项分布 b( n, p ), 当试验次数 n 很大时, 计 算其概率很麻烦. 例如, 算其概率很麻烦 例如,b(5000, 0.001), 要计算
.
二、几种常见分布
1. 两点分布 只可能取x 设随机变量 X 只可能取 1与x2两个值 , 它的 分布律为 x x
X pi
p 1− p
1
2
0< p<1
则称 X 服从x1 , x2处参数为 的两点分布。 处参数为p的两点分布。
说明: 只可能取0与 两个值 说明:若随机变量 X 只可能取 与1两个值 , 它的 分布律为 0 1
则随机变量 X的分布律为 X 的分布律为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此 P { X 2 } 1 P { X 0 } P { X 1 }
1 ( 0 . 98 )
400
400 ( 0 . 02 )( 0 . 98 )
399
0 . 9972 .
例3 按规定 , 某种型号电子元件的使
1500 小时的为一级品 品率为 0 . 2 , 现在从中随机地抽查
k次
n k 次
A A A A A A A A
k 1 次
n k 1 次
得 A 在 n 次试验中发生
k 次的方式共有
n 种, k
且两两互不相容.
因此 A 在 n 次试验中发生
k 次的概率为
n k 记 q 1 p nk p (1 p ) k
2.2 离散型随机变量及其分布律
1. 离散型随机变量的分布律 2. 三种重要的离散型随机变量的概率分布 3. 小结
1. 离散型随机变量的分布律
定义
1. 2.
pk 0, k 1,2,...,
p
k 1
k
1,
则称 P{ X xk } pk , k 1,2,... 为随机变量X的 概率分布律,简称分布律. X的分布律也可用如下的表格形式来表示: X
伯努利 ( Bernoulli ) 试验 . 设 P ( A ) p ( 0 p 1 ), 此时 P ( A ) 1 p .
将 E 独立地重复地进行 n 次 , 则称这一串重 .
复的独立试验为
n 重伯努利试验
实例1 抛一枚硬币观察得到正面或反面. 若将硬 币抛 n 次,就是n重伯努利试验. 实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就
该定理于1837年由法国数学家泊松引入!
二项分布
np ( n )
ESC键退出
泊松分布
单击图形播放/暂停
可见,当n充分大,p又很小时,可用泊松 分布来近似二项分布!
我们把在每次试验中出现概率很小的事 件称作稀有事件. 如地震、火山爆发、特大 洪水、意外事故等等
由泊松定理,n重贝努里试验中稀有事件 出现的次数近似地服从泊松分布.
1
利用泊松定理,
200 1 k 1 k
3
k 200 - k ( 0 . 01 ) ( 0 . 8 )
3
2 e k!
k
2
1 0 . 8571 0 . 1429 .
查泊松分布表(附表3)
k0
合理配备维修工人问题 例6 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
k! 其中 0 是常数 .则称 X 服从参数为 布 , 记为 X ~ π ( ).
泊松资料
的泊松分
泊松分布的背景及应用 二十世纪初卢瑟福和盖克两位科学家在观 察与分析放射性物质放出的 粒子个数的情况 时,他们做了2608次观察(每次时间为7.5秒)发现 放射性物质在规定的一段时间内, 其放射的粒 子数X服从泊松分布.
N
N
3 e
k
3
k0
k!
3
k 3
即
. k!
k0
查表可求得满足此式最
小的 N 是 8 . 故至少需配备8
个工人,才能保证设备发生故障但不能及时维修的 概率小于0.01.
1
2
3
4
例2 某人进行射击
独立射击
, 设每次射击的命中率为 率.
0 . 02 ,
400 次 , 试求至少击中两次的概
X,
解 设击中的次数为
则
X ~ B ( 400 , 0 . 02 ).
X 的分布律为
400 k 400 k P{X k} , k 0 ,1 , , 400 . ( 0 . 02 ) ( 0 . 98 ) k
是 n重伯努利试验. 3) 二项概率公式
若 X 表示 n 重伯努利试验中事件 则 X 所有可能取的值为 A 发生的次数 ,
0,
1,
2,
,
n.
当 X k (0 k n ) 时 , 即 A 在 n 次试验中发生了 k 次.
A A A A A A ,
10 9 P { X 9 } ( 0 . 3 ) ( 0 . 7 ) 0 . 000138 . 9
(3)泊松分布
设随机变量所有可能取 值的概率为 P{X k} 的值为 0 , 1 , 2 , , 而取各个
e
k
,
k 0 ,1 , 2 , ,
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的.
例如地震、火山爆发、特大洪水、交换台的电
话呼唤次数等, 都服从泊松分布.
地震 火山爆发 特大洪水
电话呼唤次数
商场接待的顾客数
交通事故次数
二项分布与泊松分布有以下的关系.
(4 )泊松定理 设随机变量X服从二项分布,其分布 律为012
X
线条图
概率直方图
2.三种重要的离散型随机变量的概率分布
(1) 两点分布
设随机变量 X 只可能取a与b两个值 , 它的分 布律为
X pk
a
b
1 p
p
(其中 0<p<1)
则称 X 服从 两点分布
当a=0,b=1时两点分布称为 (0—1) 分布
即: 设随机变量 X 只可能取0与1两个值 , 它的 分布律为
P { X 4 } 0 . 218 P { X 5 } 0 . 175 P { X 6 } 0 . 109 P { X 8 } 0 . 022 P { X 9 } 0 . 007
P { X 10 } 0 . 002
P { X 2 } 0 . 137
1 2
2
实例2 200件产品中,有190件合格品,10件不合格 品,现从中随机抽取一件,那末,若规定
1, X 0,
X
取得不合格品, 取得合格品.
0
1
10 200
pk
190 200
则随机变量 X 服从(0 —1)分布.
说明 两点分布是最简单的一种分布,任何一个只有 两种可能结果的随机现象, 比如新生婴儿是男还是 女、明天是否下雨、种籽是否发芽等, 都属于两点 分布.
X pk
0 1 p
1 p
(其中 0<p<1)
则称 X 服从 (0—1) 分布或伯努利分布.
实例1 “抛硬币”试验,观察正、反两面情 况.
0 , 当 e 正面 , X X (e ) 1 , 当 e 反面 .
随机变量 X 服从 (0—1) 分布. 其分布律为
X
pk
0 1
1
得 X 的分布律为
n k nk p q k
X pk
0 q
n
1 n pq 1
n1
k n k nk p q k
n p
n
称这样的分布为二项分布.记为 X ~ B(n, p). 二项分布
n 1
两点分布
注意: 贝努里概型对试验结果没有等可 能的要求,但有下述要求: (1)每次试验条件相同; (2)每次试验只考虑两个互逆结果A或 A , P 且P(A)=p , ( A ) 1 p; (3)各次试验相互独立. 二项分布描述的是n重贝努里试验中出现 “成功”次数X的概率分布.
n k n k P { X k } p (1 p ) k
,k=0,1,2,„,n.
又设np= ,( 0 是常数),则有
n k n k lim P { X k } lim p ( 1 p ) n n k k e , k 0 ,1 , 2 ,..., n . k!
例如 在相同条件下相互独立地进行 5 次射击,每 次射击时击中目标的概率为 0.6 ,则击中目标的次 数 X 服从 B (5,0.6) 的二项分布.
X
0
1
2
3
4
5
p k ( 0 . 4 ) 5 5 0 .6 0 .4 4 5 0 .6 2 0 .4 3 5 0 .6 3 0 .4 2 5 0 .6 4 0 .4 0 . 6 5
P { X 3 } 0 . 205
P { X 7 } 0 . 055
P { X k } 0 . 001 ,
当 k 11 时
图示概率分布
例4 经验表明人们患了某种疾病,有30%的人 不治自愈.医药公司推出一种新药,随机选10 个 患此病的病人服用新药,已知其中9人很快就痊 愈了.设各人自行痊愈与否相互独立.试推断这些 病人是自愈的,还是新药起了作用. 解 假设新药毫无作用,则一个病人痊愈的概 率为p=0.3. 以X记10个病人中自愈的病人数,则X~B(10,0.3)
pk
x1
p1
x2
p2
xk pk
例1
解 X 所有可能取的值为0,1,2. 以A记事件第一次罚球时罚中, 以B记事件第二 次罚球时罚中,则有
P ( A ) 0 . 75 , P ( B | A ) 0 . 80 , P ( B | A ) 0 . 70 .