八年级下册数学第四章因式分解教案

合集下载

初中数学因式分解教案5篇

初中数学因式分解教案5篇

初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。

2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。

3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重、难点与关键1、重点:利用平方差公式分解因式。

(完整版)北师大版八年级数学下册4.1因式分解教案

(完整版)北师大版八年级数学下册4.1因式分解教案

《因式分解》教学设计因式分解是义务教育课程标准实验教科书(北师版)《数学》八年级下册第四章第一节内容,本章主要是研究代数式的因式分解的方法和应用;本节要求使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.。

所以本节的重点是理解因式分解的意义.识别分解因式与整式乘法的关系。

【知识与能力目标】使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.【过程与方法目标】通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力. 【情感态度价值观目标】通过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系.【教学重点】1.理解因式分解的意义.2.识别分解因式与整式乘法的关系.【教学难点】通过观察,归纳分解因式与整式乘法的关系.教师准备课件、多媒体;学生准备;练习本;Ⅰ.创设问题情境,引入新课[师]大家会计算(a+b)(a-b)吗?[生]会.(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.Ⅱ.讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.[生]993-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除.[师]993-99还能被哪些正整数整除?[生]还能被99,98,980,990,9702等整除.[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.[生]a3-a=a(a2-1)=a(a-1)(a+1)3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.[生]解:①(m+4)(m-4)=m2-16;②(y-3)2=y2-6y+9;③3x(x-1)=3x2-3x;④m(a+b+c)=ma+mb+mc;⑤a(a+1)(a-1)=a(a2-1)=a3-a.(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y2-6y+9=()2.⑤a3-a=()().[生]把等号左右两边的式子调换一下即可.即:①3x2-3x=3x(x-1);②m2-16=(m+4)(m-4);③ma+mb+mc=m(a+b+c);④y2-6y+9=(y-3)2;⑤a3-a=a(a2-1)=a(a+1)(a-1).[师]能分析一下两个题中的形式变换吗?[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式(factorization).4.想一想由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a -1)的变形是分解因式,这两种过程正好相反.[生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.[师]非常棒.下面我们一起来总结一下.如:m(a+b+c)=ma+mb+mc (1)ma+mb+mc=m(a+b+c)(2)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.即ma+mb+mc m(a+b+c).所以,因式分解与整式乘法是相反方向的变形.5.例题投影片(§4.1 A)下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.而不是因式分解;(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;(3)和(2)相同,是因式分解;(4)是因式分解.[师]大家认可吗?[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.Ⅲ.课堂练习连一连解:Ⅳ.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形.Ⅴ.课后作业习题4.11.连一连解:2.解:(2)、(3)是分解因式.3.因19992+1999=1999(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除.(2)因为16.9×81+15.1×81=81×(16.9+15.1) =81×32=4 所以16.9×81 +15.1×81能被4整除.4.解:当R 1=19.2,R 2=32.4,R 3=35.4,I=2.5时, IR 1+IR 2+IR 3 =I (R 1+R 2+R 3) =2.5×(19.2+32.4+35.4) =2.5×87 =217.5 Ⅵ.活动与探究 已知a=2,b=3,c=5.求代数式a (a+b -c )+b (a+b -c )+c (c -a -b )的值. 解:当a=2,b=3,c=5时,a (a+b -c )+b (a+b -c )+c (c -a -b ) =a (a+b -c )+b (a+b -c )-c (a+b -c ) =(a+b -c )(a+b -c ) =(2+3-5)2=0 ●板书设计§4.1 分解因式一、1.讨论993-99能被100整除吗? 2.议一议 3.做一做4.想一想(讨论整式乘法与分解因式的联系与区别)5.例题讲解二、课堂练习三、课时小结四、课后作业◆教学反思略。

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。

因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

因式分解教案(优秀4篇)

因式分解教案(优秀4篇)

因式分解教案(优秀4篇)初二数学因式分解教案篇一1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。

I found he was lying on the ground.我发现他躺在地上。

【拓展】(1)lie有“位于”的意思。

A temple lies on the top of the mountain.一座寺庙位于山顶之上。

(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。

lie也可用作名词,意为“谎言”。

Don’t lie to me.不要向我撒谎。

The boy told a lie to me.这个男孩向我撒了谎。

(3)英语中,部分以-ie结尾的动词的-ing形式必须改ie为y再加-ing。

die → dying tie → tying lie → lying2、hopehope意为“希望”,用于表示有可能实现的愿望,其后可接不定式或宾语从句,但表达“希望别人做某事”时,则需用hope that从句。

I hope you can pass the exam.我希望你能通过考试。

【拓展】hope与wish的辨析:so hope+ to do sth.注意:没有hope sb. to do sth.的用法that从句表示很有可能实现的主观愿望for sth.sb. to do sth.能接sb.的复合结构wish+ sb. sth.能接双宾语to do sth.可与hope互换that从句用虚拟语气表示不太可能实现的愿望My mother wishes/hopes to find her lost watch swh..我妈妈希望在什么地方找到她丢失的手表。

I wish you to finish the work in time.我希望你及时完成这项工作。

3、adviceadvice是不可数名词,意为“意见、建议、劝告、忠告”,不能与不定冠词a连用。

初中数学-八年级下册《因式分解》教案、教学设计

初中数学-八年级下册《因式分解》教案、教学设计

《因式分解》教案、教学设计北师大版初中数学八年级下册一、说教材《因式分解》选自北师大版初中数学八年级下册第四章第一节。

在此之前,已经学习了有理数的乘法分配率、整式乘法等知识,以后学习因式分解法解方程、分式。

因此,本节课具有承上启下的过渡作用。

【教学目标】1.掌握因式分解的概念、原理及其与与整式乘法的关系2.在探索因式分解概念的过程,渗透“特殊到一般”的数学思想,提升推理能力。

3.在丰富的教学活动中,培养严谨的数学思维【教学重点】掌握因式分解的概念、原理及其与与整式乘法的关系【教学难点】因式分解与整式乘法的关系二、说学情学生的思维从经验型逐步向理论型成长,注意力易分散、爱发表见解。

以上都是我在教学过程中会需要注意的地方。

三、说教法学法我主要采用的教学方法为讲授法、提问法、讨论法和练习法。

学法为小组合作交流、自主探究。

这样的方法来发挥学生的主体作用,教师的主导作用。

四、说教学过程(一)导入新课引导学生回顾有理数的乘法分配律,并通过多媒体展示题目:,提出问题:这个式子能被100整除吗?学生利用乘法分配率将导入中的式子进行变形,容易发现上述的式子能被100整除,追问:解决问题的关键是什么?进而引出本节课的课题。

(二)探究新知活动一初步感知因式分解提出问题:把99换成a,你能尝试把化成几个整式乘积的形式吗?引导学生一同桌为单位讨论交流,利用乘法分配律和平方差公式得。

活动二探索因式分解的概念多媒体展示课本中做一做,提出问题:你能写出相应的关系式吗?引导学生以前后四人为一小组进行讨论交流,预留5分钟时间,讨论结束后,请小组代表分享答案:生1:图1大长方形的面积,得关系式:ma+mb+mc=m(a+b+c);生2:图2用同样的方法得到:归纳给出因式分解的概念。

活动三探索因式分解与整式乘法的关系多媒体呈现做一做题目,请学生独立完成,并继续组内讨论交流运算过程的特点,明确区分因式分解与整式的乘法。

(三)巩固练习请学生完成课本中随堂练习第一题,集体订正答案。

北师大版八年级数学下册第四章因式分解《因式分解》回顾与思考教学设计

北师大版八年级数学下册第四章因式分解《因式分解》回顾与思考教学设计
-完成课本第94页至第96页的练习题,重点关注提公因式法、平方差公式、完全平方公式的应用。
-从练习题中选取3道题目进行详细解答,要求步骤清晰、符号准确。
2.提高作业:
-设计一道综合性的因式分解题目,要求学生运用所学知识解决问题。
-分析并解答一道实际应用题,让学生体会因式分解在生活中的应用。
3.拓展作业:
作业要求:
1.学生需独立完成作业,认真思考,确保作业质量。
2.家长督促孩子按时完成作业,关注学习进度。
3.教师将对作业进行认真批改,及时反馈,帮助学生发现并解决问题。
4.结合实际应用,展示因式分解在解决问题中的价值,提高学生的数学应用意识。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,针对以下问题进行讨论:
1.因式分解的常用方法及其适用条件。
2.如何灵活运用因式分解解决实际问题。
3.在因式分解过程中,如何避免常见的错误和困惑。
4.分享各自在因式分解学习中的心得体会和成功经验。
-自我评价:鼓励学生进行自我反思,总结学习过程中的收获和不足,不断调整学习方法。
4.教学策略:
-对于学习困难的学生,提供个别辅导,加强基础知识的学习,提高他们的自信心。
-对于学习优秀的学生,设计具有挑战性的题目,鼓励他们深入探究,培养创新思维。
-创设开放性的学习环境,让学生在轻松的氛围中学习,减少学习压力。
北师大版八年级数学下册第四章因式分解《因式分解》回顾与思考教学设计
一、教学目标
(一)知识与技能
1.理解因式分解的概念,掌握因式分解的基本方法,如提公因式法、平方差公式、完全平方公式等;
2.能够运用因式分解解决实际问题,如求解多项式方程、简化代数表达式等;

8年级数学北师大版下册教案第4章《因 式 分 解》

教学设计因式分解1 课标分析一、内容标准:课标对本章的要求是能用提公因式法、公式法进行因式分解。

整个学段要求体会数学知识之间的联系,掌握必要的运算技能,经历借助图形思考问题的过程,初步建立几何直观。

对于本节,在内容标准上没有具体的要求。

二、数学思想方法,核心概念:教材从因数分解的例子入手,让学生体会因数分解的必要性,继而用字母表示数体现一般化,发展从特殊到一般的思考问题的方法;通过类比数的分解体会因式分解的意义,体会数学知识之间的相互联系,发展学生的类比思想;经历借助拼图解释整式变形的过程,帮助学生从几何的角度理解代数,渗透数形结合思想,体会几何直观的作用;给出因式分解的概念后,再由一般回归特殊,设计一组特例,通过对整式乘法运算与因式分解的对比,充分感受两者之间互为逆过程的关系,发展学生的逆向思维,进一步体会数学知识间的联系;为体会因式分解的意义,在应用环节,借助因式分解将问题转化,简便运算,渗透转化、最优化思想。

十大核心概念在本节课中突出培养的是学生的运算能力、几何直观、应用意识。

2 教材分析一、教材地位:本节是北师版八年级下册第四章因式分解第一节内容。

属于“数与代数”领域中(一)数与式中的“整式与分式”。

因式分解是代数式的一种重要恒等变形。

它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用,.就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是因式分解与整式乘法的相互关系。

它是在继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。

这一思想实质贯穿后继学习的各种因式分解方法。

通过本节课的学习,不仅使学生了解因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。

因此,它起到了承上启下的作用。

二、重点、难点分析:了解因式分解的意义及其本质属性是学习整章因式分解的关键,由乘法到因式分解的变形是一个逆向思维。

在七年级整式乘法的较长时间的学习,学生容易造成思维定势,产生“倒摄抑制”作用,阻碍学生新概念的形成。

初二数学因式分解教案优秀10篇

初二数学因式分解教案优秀10篇因式分解教案篇一教学目标:1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。

2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。

3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。

教学重、难点:用提公因式法和公式法分解因式。

教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。

什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

【说明】(1)因式分解与整式乘法是相反方向的变形。

例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。

怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。

ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。

例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。

探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。

(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式。

北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。

2021春北师大版八年级数学下册教案:第四章 因式分解

第四章因式分解1因式分解【知识与技能】使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.【过程与方法】认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能利用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.【情感态度】培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度.【教学重点】因式分解的概念.【教学难点】难点是理解因式分解与整式乘法的相互关系,并利用它们之间的相互关系寻求因式分解的方法.一.情景导入,初步认知下题简便运算怎样进行?问题1:736×95+736×5问题2:-2.67×132+25×2.67+7×2.67【教学说明】对乘法公式进行分析,为因式分解作铺垫.二.思考探究,获取新知问题:(1)993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

993-99 = 99×992-99 = 99(992-1)∴993-99能被99整除.(2)993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99-1)= 99×98×100所以993-99能被100整除.想一想:(1)在回答993-99能否被100整除时,小明是怎么做的?(2)请你说明小明每一步的依据.(3)993-99还能被哪些正整数整除?为了回答这个问题,你该怎做?【教学说明】老师点拨:回答这个问题的关键是把993-99化成了怎样的形式?【归纳结论】以上三个问题解决的关键是把一个数式化成了几个数的积的形式.可以了解:993-99可以被98、99、100三个连续整数整除.将99换成其他任意一个大于1的整数,上述结论仍然成立吗?学生探究发现:用a表示任意一个大于1的整数,则:a3-a=a×a2-a=a×(a2-1)=a ×(a+1)(a-1)=(a-1)×a×(a+1)①能理解吗?你能与同伴交流每一步怎么变形的吗?②这样变形是为了达到什么样的目的?【教学说明】经历从分解因数到分解因式的类比过程,探究概念本质属性.【归纳结论】把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.三.运用新知,深化理解1.下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.答案:(2)(3)是因式分解.2.试将下列各式化成几个整式的积的形式(1)3x2-2x=______- (2)m2-4n2 =____答案:(1)x(3x-2) (2)(m+2n)(m-2n)3.分解因式.4m2-4m=______ 2a3+2a=______ y2+4y+4=______答案:4m(m-1) 2a(a2+1) (y+2)24.如果a+b=10,ab=21,则a2b+ab2的值为.答案:210.5.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.8答案:D.6.9993-999能被998整除吗?能被1000整除吗?解:9993-999=999(9992-1)=999(999+1)(999-1)=999×1000×998所以9993-999能被998整除,能被1000整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学第四章因式分解§1、因式分解一、因式分解的概念1、 下列有左边到右边的变形中,哪些是因式分解?哪些不是因式分解?为什么?(1)ab+ac+d=a(b+c)+d (2)a 2-1=(a-1)(a+1) (3)(a+1)(a-1)=a 2-1(4)(x+2y )(x-2y )=x 2-4y 2 (5) x 2y-xy 2-1=xy (x-y )-1 (6) a 2-4ab+4b 2=(a-2b )2 (7)ax+ay+a=a (x+y )(8)(9)(10) (11)(12)a (x +y )=ax +ay (13) X 2-4x +4=x (x -4)+4 (14)10x 2-5x =5x (2x -1) (15)X 2-16+3x =(x +4)(x -4)+3x(16)、mx+nx+k=(m+n )x +k ; (17)14x 2y 3=2x 2•7y 3; (18)(a+b )(a-b )=a 2-b 2; (19)4x 2-12xy+9y 2=(2x-3y )2 二、因式分解与整式乘法的关系1、根据乘法运算的算式,把下列多项式因式分解(1) 36–25x 2; (2) 16a 2–9b 2; 1.36-x 2 (3)a 2- b 2 (4)x 2-16y 2 (5)x 2y 2-z 2(6) 9(a+b)2–4(a –b)2. (7)(x -2)2-9 (8)(x +a )2-(y -b )2(10)814-a ;(9)-25(a +b )2+4(a -b ) (11)xy xy 09.0413+-;(12)()()a y a x -+-1122; (13)22212y x -. 2、根据乘法运算的算式,把下列多项式分解因式.分解因式:(1)15a 2-25a b 2=________; (2)4x 6-1=________;(3)2x 2+x y -y 2=________; (4)9m 2+6m n +n 2=________. 三、因式分解与整式乘法关系的应用1、若ax+A 能分解为a (x-2y+3),则A=2、若x^2+ax+a -3因式分解结果为(x+b)(x -1),分别求a 、b 的值3、如果x m -1因式分解的结果是(x 2+1)(x+1)(x -1),则m 的值为4、如果多项式x 的平方+ax+b(a,b 都是常数)因式分解的结果是(x -1)(x+3) 那么ab=5、若x 2+5x+c 因式分解的结果为(x+b )(x+3),则b= ,c=6、把x 2+5x+c 分解因式,得(x+2)(x+3),则c 的值=______.7.如果把多项式x 2—8x+m 分解因式得(x —10)(x+n ),那么m=_________,n=_________. 8.若4a 2+kab+9b 2可以因式分解为(2a —3b )2,则k 的值为_________. 9.若x —1是x 2—5x+c 的一个因式,则c=_________.10.将关于x 的二次式2x 2+4x+k 分解因式,若有一因式为(x+3),则实数k=________. 11.9x 3y 2+12x 2y 2—6xy 3中各项的公因式是_________.12因式分解:(x+y )2—3(x+y )=_________.13将x+x 3—x 2分解因式的结果是_________. 四、利用因式分解解决整除问题 1、试探究817-279-913能否被45整除 6、利用因式分解说明:36^7-6^12能被140整除2、993-99能被100整除吗?能被99整除吗?3、当n 为整数时,证明:两个连续奇数的平方差(2n+1)2-(2n-1)2是8的倍数;4、证明:若a 为整数,(2a+1)2-1能被8整除。

5、257-612能否被120整除 5、利用因式分解说明能被7整除7、试说明257+513是30的倍数因式分解练习题精选一、填空:2、22)(n x m x x -=++则m =____n =____4、若nmy x -=))()((4222y x y x y x +-+,则m=_______,n=_________。

5、(1)9-y 2=( )2-( )2= ( )( ) (2)1-a 2 =( )2-( )2= ( )( ) 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x 则.________2006=x10、()22)3(__6+=++x x x , ()22)3(9___-=++x x12、若442-+x x 的值为0,则51232-+x x 的值是________。

13、若)15)(1(152-+=--x x ax x 则a =_____。

14、若6,422=+=+y x y x 则=xy ___。

15、分解因式:(1)29a -= ;(2)3x x -= (3)2249a b -= ;(4)2422516a y b -+= (5)3375a a -= ;(6)39a b ab -= 16、分解因式:(1)44x y -= ;(2)2224m m n -= 二、选择题:(10分)2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( )A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=12、5、下列运算中,正确的是( )A.x 2·x 3=x 6B.(a b)3=a 3b 3C.3a +2a =5a 2D.(a -1)2=a 2-16、===+b a b a2310953,,( ) A 、50 B 、-5 C 、15 D 、b a +27 7、下列各式从左向右的变形中,是因式分解的是( )A.(x-3)(x+3)=x 2-9 B .x 2+1=x(x+) C. D. 8、下列分解因式正确的是( )A.x 3-x =x(x 2-1) B.m 2+m -6=(m +3)(m -2) C.(a +4)(a -4)=a 2-16 D.x 2+y 2=(x -y)(x +y) 1x23313(1)1x x x x -+=-+2222()a ab b a b -+=-9、把2(a-3)+a(3-a)提取公因式(a-3)后,另一个因式为( ) A.a-2 B. a+2 C.2-a D. -2-a 三.运用简便方法计算(1)4920072- (2)433.1922.122⨯-⨯ (3) 0.7566.24366.3⨯-⨯ (4)200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-(5)2244222568562⨯+⨯⨯+⨯ (6)已知x =1175,y =2522,求(x +y )2-(x -y )2的值.三、分解因式:(30分)1 、234352x x x -- 2 、 2633x x - 3 、 22)2(4)2(25x y y x --- 4、22414y xy x +-- 5、x x -5 6、13-x 7、2ax a b ax bx bx -++--2 8、811824+-x x 四、 代数式求值(15分) 1、 已知312=-y x ,2=xy ,求 43342y x y x -的值。

2、若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值 . 3、已知2=+b a ,求)(8)(22222b a b a +--的值 4、若1004,2a b a b +=-=,则代数式22a b -的值是 5、已知x 2-y 2=-1 , x+y=21,则x -y= . 10.已知x 2-y 2=-1 , x+y=21,求x -y 的值。

11.在边长为16.4cm 的正方形纸片的四角各剪去一边长为1.8cm 的正方形,求余下的纸片的面积。

12.如图,求圆环形绿化区的面积。

§2提公因式法一、公因式的定义及确定公因式的方法1、下列说法正确的是( )A 、多项式ax 2-ax+1中各项的公因式是a B 、1/a 2+a 2中各项的公因式是a 2C 、多项式7x 2-21y 没有公因式 D 、4a 2b 3-8ab 2c+12a 3b 4的公因式是4ab22、找出下列各多项式的公因式:(1)4x+8y (2)am+an (3)48mn –24m 2n 3 (4)a 2b –2ab 2+ab3、232y x 与y x 612的公因式是_4、多项式))(())((x b x a ab b x x a a --+---的公因式是二、提公因式法 1、把下列各因式分解(1)9m 2n-3m 2n 2 (2)4x 2-4xy+8xz (3)-7ab-14abx+56aby (4)6x 4-4x 3+2x 2 (5)6m 2n-15mn 2+30m 2n 2 (6)-4m 4n+16m 3n-28m 2 (7)x n+1-2x n-1 (8)-2x 2n +6x n (9)a n -a n+2+a 3n三、利用提公因式法进行简便计算 1、(1 )57 ×99+44 ×99-99 (2)32004-32003 (3)2.854×4.362-4.362×1.8-0.054×4.362(4)121×0.13+12.1×0.9-12×1.21 (5)2.34×13.2+0.66×13.2-26.4 (6)(-2)101+(-2)100. (7)2005×20042004- 2004×20052005 四、利用提公因式法因式分解,求代数式的值(1)若21x x =-,求200720062005x x x -+的值. (2)若a 2+a =0,求2a 2+2a +2007的值 3.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( ) 4.若(2x)n -81=(4x 2+9)(2x+3)(2x-3),则n 的值是( )5. 已知x +y =1,那么221122x xy y ++的值为 ; 6.已知x-y=1,xy=2,求x 3y-2x 2y 2+xy 3的值.7、已知:a =10000,b =9999,求a 2+b 2-2ab -6a +6b +9的值。

8、当R 1=20,R 2=16,R 3=12,π=3.14时,求πR 12+πR 22+πR 32的值五、运用提公因式法解决实际问题1、已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4,则它的形状为( )2、如果多项式x 2+px+12可以分解成两个一次因式的积,那么整数p 的值可取多少个( )3、某地区根据地理位置和气候特点,在种植的大棚上采用了如下结构:占地呈矩形,四周为砖墙,上为玻璃屋顶.设矩形的长、宽分别为a 、b ,且前墙高为c ,后墙高为d .(1)求这座大棚四周砖墙的面积S 的公式;(2)如果a =6.6m ,b =3.4m ,c =0.5m ,d =1.5m .计算砖墙的面积.六、创新探究题1、因式分解1+x+x(1+x)+x(1+x)2+x(1+x)3.你发现了什么规律?试用你发现的规律直接写出多项式1+x+x(1+x)+x(1+x)2+...+x(1+x)2012因式分解的结果.2、12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,……你发现了什么规律?请用含有n (n 为正整数)的等式表示出来,并说明其中的道理。

相关文档
最新文档