流体力学讲义 第三章 流体动力学基础.

合集下载

流体力学第三章流体动力学ppt课件

流体力学第三章流体动力学ppt课件
p p(x, y, z,t) (x, y, z,t)
以固定空 间、固定 断面或固 定点为对 象,应采 用欧拉法
x xt, y yt, z zt
3
a.流体质点的加速度
a

dv
dt
ax

dvx dt
vx t
vx x
dx dt
vx y
dy dt
m/ s2
ax 4m / s2
7
(2)
v

vx
i

v
y
j


(4y 6x)i (6y 9x) j 0
t t t
是非恒定流
(3)v v
vx
vx x
vy
vx y
i vx
vy x
vy
vy y
a bt

dx a
dt

0xd
x

t
0
adt

x

a
t
dy bt

dt

y
0
dy

t
0
btdt

y

b
t2 2
y

b 2a2
x2
——迹线方程(抛物线)
y
注意:流线与迹线不重合
o
x
13
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
解:(1)流线: dx dy
(2)迹线方程及t =0时过(0,0)点的迹线。
解:(1)流线: dx dy
a bt
积分: y bt x c a

流体力学课件_第3章_一元流体动力学基础(下)

流体力学课件_第3章_一元流体动力学基础(下)

A
2. 急变流
动压强特性:在断面上有
3.控制断面的选取: 控制断面一般取在渐变流过水断面或其 极限情况均匀流断面上。
想一想
为什么在总流分析法中需引入断面平均 流速? 即目的所在?
因为总流过水断面上各点的流速是不相等的。为了 简化总流的计算,所以引入了断面平均流速来代替 各点的实际流速。
第五节 恒定总流连续性方程
取距基准面的铅直距离来分别表示相应断面的总水头与测 压管水头。 • 测压管水头线是根据总水头线减去流速水头绘出的。
第十一节 恒定气流能量方程式

虽然恒定总流伯努利方程是在不可压缩这样 的流动模型基础上提出的,但在流速不高(小于 68m / s ) ,压强变化不大的情况下,同样可以应 用于气体。
p1 α v p2 α v z1 + + = z2 + + + hw γ 2g γ 2g
二、控制断面的选取
1、渐变流的性质 渐变流过水断面近似为平面,即 渐变流是流线接近于平行直线的流动。均匀流是渐变 流的极限。 2、动压强特性:在渐变流同一过水断面上, 各点动 压强按静压强的规律(2-11)式分布,如图的c-c断面, 即
想一想
图中,过水断面上的动压强分布符合静 压强分布规律的为: A 直管处 B 弯管处
第3章 一元流体动力学基础(下)
重点内容: 1、总流分析方法; 2、恒定总流能量方程 1)恒定总流能量方程 2)能量方程的扩展 3)能量方程的应用 掌握内容: 1、连续性方程 2、实际流体元流能量方程
第五节 补充内容 (伯努利方程基础概念)
一、概念 1.控制体:即在流场中划定的一个固定的 空间区域,该区域完全被流动流体所充满。 2.控制断面:即控制体(流管)有流体流 进流出的两个断面,如图中的1-1,2-2断面。

流体力学基础-第三章-一维流体动力学基础

流体力学基础-第三章-一维流体动力学基础

1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。

第三章 流体动力学基础

第三章 流体动力学基础

v
qV q
udA
A
u 体积流量
断面平均速度 v(均速):v qv
udA
A
AA
qv vA
过流断 面面积
注:断面平均流速 v 为假想流速,用于求解其它量时会 产生误差,应进行修正。
均匀流与非均匀流
均匀流
均匀流:流场中各流体质点流速大小、方向沿程不变,流线 为相互平行的直线。
非均匀流:流速大小或方向沿程变化,流线不平行。 均匀流一定是恒定流,恒定流不一定是均匀流
方程的意义:恒定流时流体总是从能量高的断面流向能量低 的断面。
2020/3/22
29
元流能量方程的特例 : z1+
p1

u12 2g
z2+
p2

u
2 2
2g
hw12
1) 理想流体:没有粘性力,没有能耗,h′w 1-2=0,
z1+
p1
+ u12 2g
z2+
p2
+ u22 =const
2g
——称不可压缩理想流体元流恒定流单重流体能量方程
mt2 mt3
二 迹线与流线
迹线(Path Line)——是指质点在某一时段内的运动轨迹线。
迹线是拉格朗日法对流体运动的描述。
为了形象描述流场中的流动情况引入的流线的概念
某时刻,在流场中任取一 流体质点A1,绘出该时刻流体
质点的流速矢量u1,在u1矢量
线上再画出距A1 点很近的A2点, 绘出在同一时刻通过A2点的流 体质点的流速矢量……
欧拉法描写流场时运动要素是时、空(x,y,z,t)的连续函数:
uuxy
ux (x, y, z,t) uy (x, y, z,t)

《流体力学》教学课件 第三章流体动力学基础

《流体力学》教学课件 第三章流体动力学基础

实际中广泛采用场方法研究流体的运动特性,因为:
➢ 实际中,通常无需知道每个流体质点在运动过程中的详细历 史,即不需要了解个体行为;
➢ 多数关注的是群体流体质点作为一个整体,在运动过程中的 状况及对外界的影响,即群体行为。
第二节 流场的若干概念
一、定常流动和非定常流动
依据流动参量是否随时间变化,将流体的流动分为: 定常流动和非定常流动
即跟踪观察某个物质体的运动轨迹,用它的空间位置随时间 的变化来描述其运动规律—又称为拉格朗日方法。
物理量的数学表示 — 跟踪指定的流体质点
位置坐标
r r t
质点的速度
V dr(t) lim r( t + t ) - r( t )
dt t0
t
质点的加速度 a dV (t) lim V(t + t) -V(t)
② 集合性 流线的形状是由若干流体质点在同一时刻的速度共 同决定的。
③ 光滑性 一般地讲,流线是光滑的曲线,不能转折,也不 会相交,这是由流线的定义决定的。只有在速度为零(驻 点)或为无穷大的点(奇点),流线可以相交。
④ 有向性 流线用速度的方向来定义,应该标明流向。
⑤ 可重合性 在定常流动中,流线与迹线重动的着眼点不同,有两种不同的
方法 —— 物质体方法和场方法。
本章内容安排及研究思路
➢介绍描述流体运动的基本方法和基本概念; ➢运用质量、动量和能量守恒定律导出流体动力学基本方程; ➢简要介绍研究湍流流动的时均方法,导出湍流时均运动的基本
方程。
第一节 描述流体运动的方法
因流体具有极易变形及个体不容易辨识的特点,所以,在 研究流体运动规律之前,首先讨论描述流体运动的方法。
物理量的数学表示—跟踪群体运动在不同空间点的行为

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解

05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源

《流体力学第三章》PPT课件

第三章 流体动力学基础
本章是流体力学在工程上应用的基础。它主要利 用欧拉法的基本概念,引入了总流分析方法及 总流运动的三个基本方程式:连续性方程、能 量方程和动量方程,并且阐明了三个基本方程 在工程应用上的分析计算方法。
第一节 描述流体运动的两种方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以流场 中每一流体质点作为描述流体运动的方法,它 以流体个别质点随时间的运动为基础,通过综 合足够多的质点(即质点系)运动求得整个流 动。——质点系法
ux=x+t; uy= -y+t;uz=0,试求t =
dx xt dt
dy y t dt
求解
0 时过 M(-1,-1) 点的迹线。
解:
由迹线的微分方程:
dx dy dz dt ux uy uz
ux=x+t;uy=-y+t;uz=0 t = 0 时过
M(-1,-1):
x C1 e t t 1 y C2 e t t 1
运动的轨迹,是与 拉格朗日观点相对 应的概念。
r r(a, b, c, t )
即为迹线的参数方程。
t 是变数,a,b,c 是参
数。
18
(2)迹线的微分方程
式中,ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。 注意:恒定流时流线和迹线重合; 非恒定流时流线和迹线不重合;
举例
已知直角坐标系中的速度场
(3)流线的方程
根据流线的定义,可以求得流线的微分方程, 设ds为流线上A处的一微元弧长:
u为流体质点在A点的流速:
因为
所以
——流线方程
【例】
有一流场,其流速分布规律为:ux= -ky, uy = kx, uz=0, 试求其流线方程。 解: uz =0,所以是二维流动,二维流动的流线方程微分为

流体力学第三章流体动力学(1)PPT课件

的分布情况。
其它各运动参量也可用类似的方法来表示。如: pp(x,y,z,t)
欧拉加速度
ad uuud xud yudz dtt xdtydtzdt
a x
ux t
ux
ux x
uy
ux y
uz
ux z
a y
u y t
ux
u y x
uy
uy y
uz
uy z
az
uz t
ux
uz x
uy
uz y
§3.1 描述液体运动的两种方法
液体和固体不同,液体运动是由无数质点构成的连续介质的流动,液体运 动的各物理量在空间和时间上都是连续分布和连续变化的。怎样用数学物 理的方法来描述液体的运动?这是从理论上研究液体运动规律首先要解决 的问题。
液体质点:物理点。是构成连续介质的液体的基本单位,宏观上无 穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含 许许多多的液体分子,体现了许多液体分子的统计学特性)。
(3)流线的性质
(1)流线是一条条光滑连续的曲线(含直线);
(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
第七讲
第三章 流体运动学
§3.1描述液体运动的两种方法 一、拉格朗日法(质点法) 二、欧拉法(流场法)
§3.2液体运动的一些基本概念 一、描述流体运动的基本概念 二、流体运动的类型 三、系统、控制体

《流体力学》第三章一元流体动力学基础


02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。

第三章流体动力学基础(1)


A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

图3-5注意:流线和迹线微分方程的异同点。

——流线方程3.色线(colouring line)又称脉线,是源于一点的很多流体质点在同一瞬时的连线。

例如:为显示流动在同一点投放示踪染色体的线,以及香烟线都是色线。

图3-6考考你:在恒定流中,流线、迹线与色线重合。

流线、迹线、色线的比较:概念名流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。

流线方程为:式中时间t为参变量。

迹线迹线是指某一质点在某一时刻内的运动轨迹,它描述流场中同一质点在不同时刻的运动情况。

迹线方程为:式中时间t为自变量。

脉线脉线(色线)是指源于一点的很多流体质点在同一瞬时的连线。

例1如图3-7,已知流速场为,其中C为常数,求流线方程。

解:由式得积分得:则:此外,由得:图3-7 因此,流线为Oxy平面上的一簇通过原点的直线,这种流动称为平面点源流动(C>0时)或平面点汇流动(C<0时)例2已知平面流动试求:(1)t=0时,过点M(-1,-1)的流线。

(2)求在t=0时刻位于x=-1,y=-1点处流体质点的迹线。

解:(1)由式(2)由式得得得:由t=0时,x=-1,y=-1得C1=0, C2=0,则有:将:t=0,x=-1,y=-1 代入得瞬时流线xy=1 最后可得迹线为:即流线是双曲线。

例3已知流动速度场为试求:(1)在t= t0瞬间,过A(x0,y0,z0)点的流线方程;(2)在t= t0瞬间,位于A(x0,y0,z0)点的迹线方程。

解:(1)流线方程的一般表达式为将本题已知条件代入,则有:积分得:(1+t)ln x = ln y + ln C'当t= t0时,x=x0,y=y0,则有故过A(x0,y0,z0)点的流线方程为(2)求迹线方程迹线一般表达式为代入本题已知条件有:由(1)式得:当t= t0时,x=x0代入上式得由(2)式得:当t= t0时,y= y0代入上式得故迹线方程为t是自变量,消t后得到的轨迹方程为迹线方程:二、流体流动的分类1.层流与紊流(1)层流的定义层流(laminar flow)(图3-8)图3-8亦称片流,是指流体质点不互相混杂,流体质点作有条不紊的有序的直线运动。

特点:(1)有序性。

(2)水头损失与流速的一次方成正比。

(3)在流速较小且雷诺数Re较小时发生。

图3-9层流遵循牛顿内摩擦定律,粘性抑制或约束质点作横向运动。

紊流紊流(turbulent flow)(图3-10)亦称湍流,是指随流速增大,流层逐渐不稳定,质点相互混掺,流体质点沿很不规则的路径运动。

特点:(1)无序性、随机性、有旋性、混合性。

(2)水头损失与流速的1.75~2次方成正比。

(3)在流速较大且雷诺数较大时发生。

图3-10紊流是工程实践中最常见的一种流动,如图3-9,紊流微团不仅有横向脉动,而且有相对于流体总运动的反向运动,紊流中质点运动要素具有随机性,流速的大小方向随机变化,没有两个流体质点可以沿着同样的、甚至相似的路径运动。

紊流就是压力表指针不断摆动的原因。

想一想:城市污水管网中的出水口(淹没出流)附近的流体流动属于(层流,紊流)。

2.恒定流与非恒定流(1)恒定流定义恒定流(steady flow):又称定常流,是指流场中的流体流动,空间点上各水力运动要素均不随时间而变化。

(图3-11)即:图3-11三者都等于0。

(2)注意严格的恒定流只可能发生在层流,在紊流中,由于流动的无序,其流速或压强总有脉动,但若取时间平均流速(时均流速),若其不随时间变化,则认为该紊流为恒定流。

非恒定流(1)定义非恒定流(unsteady flow):又称非定常流,是指流场中的流体流动空间点上各水力运动要素中,只要有任何一个随时间的变化而变化的流动。

(图3-12)即:三者中至少一个不等于0。

图3-12 (2)注意在非恒定流情况下,流线的位置随时间而变;流线与迹线不重合。

在恒定流情况下,流线的位置不随时间而变,且与迹线重合。

问题:恒定流是:A、流动随时间按一定规律变化;B、流场中任意空间点的运动要素不随时间变化;C、各过流断面的速度分布相同;D、各过流断面的压强相同。

问题:非恒定流是:A、;B、;C、;D、。

3.均匀流与非均匀流按质点运动要素是否随流程变化分为:均匀流——流线是平行直线的流动,。

(图3-13)均匀流中各过水断面上的流速分布图沿程不变,过水断面是平面,沿程各过水断面的形状和大小都保持一样。

例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流都是均匀流。

图3-13非均匀流——流线不是平行直线的流动,。

非均匀流中流场中相应点的流速大小或方向或同时二者沿程改变,即沿流程方向速度分布不均。

例:流体在收缩管、扩散管或弯管中的流动。

(非均匀流又可分为急变流和渐变流)想一想:何谓均匀流及非均匀流?以上分类与过流断面上流速分布是否均匀有无关系?答案:均匀流是指流线是平行直线的流动,。

非均匀流是流线不是平行直线的流动,。

这个分类与过流断面上流速分布是否均匀没有关系。

4.渐变流与急变流非均匀流中如流动变化缓慢,流线的曲率很小接近平行,过流断面上的压力基本上是静压分布者为渐变流(gradually varied flow),否则为急变流。

渐变流——沿程逐渐改变的流动。

(图3-14)图3-14特征:流线之间的夹角很小即流线几乎是平行的,同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流,过水断面可看作是平面。

渐变流的加速度很小,惯性力也很小,可以忽略不计。

急变流——沿程急剧改变的流动。

特征:流线间夹角很大或曲率半径较小或二者兼而有之,流线是曲线,过水断面不是一个平面。

急变流的加速度较大,因而惯性力不可忽略。

想一想:何谓渐变流,渐变流有哪些重要性质?答案:渐变流是指沿程逐渐改变的流动。

渐变流的性质:流线之间的夹角很小即流线几乎是平行的,同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流,过水断面可看作是平面。

渐变流的加速度很小,惯性力也很小,可以忽略不计。

按液流运动要素所含空间坐标变量的个数分:一元流一元流(one-dimensional flow):流体在一个方向流动最为显著,其余两个方向的流动可忽略不计,即流动流体的运动要素是一个空间坐标的函数。

若考虑流道(管道或渠道)中实际液体运动要素的断面平均值,则运动要素只是曲线坐标s的函数,这种流动属于一元流动。

(图3-15)图3-15二元流二元流(two-dimensional flow):流体主要表现在两个方向的流动,而第三个方向的流动可忽略不计,即流动流体的运动要素是二个空间坐标(不限于直角坐标)函数。

(图3-16)图3-16 图3-17 如实际液体在圆截面(轴对称)管道中的流动,如图3-17,运动要素只是柱坐标中r, x的函数而与 角无关,这是二元流动。

又如在x方向很长的滚水坝的溢流流动,可以认为沿x轴方向没有流动,仅在O yz一系列平行的平面上流动,而且这些平面上各点的流动状态相同,其运动要素只与两个位置坐标(y,z) 有关,因而只需研究平行平面中任一个平面上的流动情况。

问题:一元流动是:A、均匀流;B、速度分布按直线变化;C、运动参数是一个空间坐标和时间变量的函数;D、限于直线流动。

拉格朗日法拉格朗日方法(lagrangian method)是以流场中每一流体质点作为描述对象的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点(即质点系)运动求得整个流动。

——质点系法空间坐标(a,b,c)为t=t0起始时刻质点所在的空间位置坐标,称为拉格朗日数。

所以,任何质点在空间的位置(x,y,z)都可看作是(a,b,c)和时间t的函数(1)(a,b,c)=const , t为变数,可以得出某个指定质点在任意时刻所处的位置。

(2)(a,b,c)为变数,t=const,可以得出某一瞬间不同质点在空间的分布情况。

由于位置又是时间t的函数,对流速求导可得加速度:速度加速度;由于流体质点的运动轨迹非常复杂,而实用上也无须知道个别质点的运动情况,所以除了少数情况(如波浪运动)外,在工程流体力学中很少采用。

欧拉法欧拉法(euler method)是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。

——流场法它不直接追究质点的运动过程,而是以充满运动液体质点的空间——流场为对象。

研究各时刻质点在流场中的变化规律。

将个别流体质点运动过程置之不理,而固守于流场各空间点。

通过观察在流动空间中的每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的整个流体的运动情况。

流场运动要素是时空(x,y,z,t)的连续函数:速度(x,y,z,t)——欧拉变量因欧拉法较简便,是常用的方法。

相关文档
最新文档