粉末冶金烧结
粉末冶金烧结工艺

粉末冶金中的烧结烧结是粉末冶金过程中最重要的工序。
在烧结过程中,由于温度的变化粉末坯块颗粒之间发生粘结等物理化学变化,从而增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构致密化。
一.定义将粉末或粉末压坯经过加热而得到强化和致密化制品的方法和技术。
二.烧结分类根据致密化机理或烧结工艺条件的不同,烧结可分为液相烧结、固相烧结、活化烧结、反应烧结、瞬时液相烧结、超固相烧结、松装烧结、电阻烧结、电火花烧结、微波烧结和熔浸等。
1.固相烧结:按其组元的多少可分为单元系固相烧结和多元系固相烧结两类。
单元系固相烧结纯金属、固定成分的化合物或均匀固溶体的松装粉末或压坯在熔点以下温度(一般为绝对熔点温度的2/3一4/5)进行的粉末烧结。
单元系固相烧结过程大致分3个阶段:(1)低温阶段(T烧毛0.25T熔)。
主要发生金属的回复、吸附气体和水分的挥发、压坯内成形剂的分解和排除。
由于回复时消除了压制时的弹性应力,粉末颗粒间接触面积反而相对减少,加上挥发物的排除,烧结体收缩不明显,甚至略有膨胀。
此阶段内烧结体密度基本保持不变。
(2)中温阶段(T烧(0.4~。
.55T动。
开始发生再结晶、粉末颗粒表面氧化物被完全还原,颗粒接触界面形成烧结颈,烧结体强度明显提高,而密度增加较慢。
(3)高温阶段(T烧二0.5一。
.85T熔)。
这是单元系固相烧结的主要阶段。
扩散和流动充分进行并接近完成,烧结体内的大量闭孔逐渐缩小,孔隙数量减少,烧结体密度明显增加。
保温一定时间后,所有性能均达到稳定不变。
(2)多元固相烧结:组成多元系固相烧结两种组元以上的粉末体系在其中低熔组元的熔点以下温度进行的粉末烧结。
多元系固相烧结除发生单元系固相烧结所发生的现象外,还由于组元之间的相互影响和作用,发生一些其他现象。
对于组元不相互固溶的多元系,其烧结行为主要由混合粉末中含量较多的粉末所决定。
如铜一石墨混合粉末的烧结主要是铜粉之间的烧结,石墨粉阻碍铜粉间的接触而影响收缩,对烧结体的强度、韧性等都有一定影响。
粉末烧结原理

粉末烧结原理粉末冶金是一种重要的金属材料制备技术,而粉末烧结则是粉末冶金中的一项关键工艺。
粉末烧结是指将金属或非金属粉末在一定的温度、压力和时间条件下进行加热压制,使粉末颗粒之间发生冶金结合,从而形成致密的块状材料的工艺过程。
下面将详细介绍粉末烧结的原理。
首先,粉末烧结原理的第一步是粉末的预处理。
通常情况下,粉末材料需要经过混合、干燥和成型等工艺步骤,以确保粉末颗粒的均匀性和成型性。
在混合过程中,不同种类的粉末可以被混合在一起,以获得特定性能的材料。
然后,干燥工艺可以去除粉末中的水分,有利于后续的成型工艺。
最后,成型工艺将粉末压制成特定形状的坯料,为后续的烧结工艺做好准备。
其次,粉末烧结的第二步是烧结过程。
在烧结过程中,粉末坯料被置于高温环境中,通常伴随着一定的压力。
在高温下,粉末颗粒之间会发生扩散和结合的过程,从而形成致密的晶粒结构。
在烧结过程中,温度、压力和时间是三个重要的参数,它们将直接影响到烧结后材料的密度、晶粒大小和性能。
最后,粉末烧结的第三步是后处理工艺。
烧结后的材料通常需要进行热处理、表面处理和精加工等工艺步骤,以进一步提高材料的性能和精度。
热处理可以消除烧结过程中产生的残余应力和缺陷,提高材料的强度和韧性。
表面处理可以改善材料的耐腐蚀性能和外观质量。
精加工则可以使材料达到特定的尺寸和形状要求。
总之,粉末烧结是一种重要的材料制备工艺,它通过预处理、烧结和后处理三个步骤,将粉末材料转化为致密的块状材料。
粉末烧结工艺可以制备出具有特定性能和形状的材料,广泛应用于汽车、航空航天、电子、医疗器械等领域。
通过对粉末烧结原理的深入了解,可以更好地掌握这一重要工艺,为材料制备和应用提供技术支持。
粉末冶金新技术-烧结

用SPS制取块状纳米晶Fe90Zr7B3软磁的过程是: 先将由非 晶薄带经球磨制成的50~150μm非晶粉末装入WC/Co合金 模具内,并在SPS烧结机上烧结(真空度1×10-2Pa以下、升温 速度0.09~1.7K/s、温度673~873K、压力590MPa), 再把所 得的烧结体在1×10-2Pa真空下、以3 7K/s速度加热到923K、 保温后而制成。材料显示较好的磁性能:最大磁导率29800、 100Hz下的动态磁导率3430, 矫顽力12A/m。
3
双频微波烧结炉 生产用大型微波烧结炉 已烧结成多种材料:如陶瓷和铁氧体等材料。另 外,在日本又开发出相似的毫米波烧结技术,并成功 地在2023K下保温1h烧结成全致密的AlN材料。
4
2.爆炸压制技术 爆炸压制又称冲击波压制是一种有前途的工艺
方法,它在粉末冶金中发挥了很重要的作用, 爆炸压 制时,只是在颗粒的表面产生瞬时的高温,作用时间 短,升温和降温速度极快。适当控制爆炸参数,使得 压制的材料密度可以达到理论密度的90%以上,甚至 达到99%。
3)快速脉冲电流的加入, 无论是粉末内的放电部位还是焦耳 发热部位, 都会快速移动, 使粉末的烧结能够均匀化。
11
与传统的粉末冶金工艺相比,SPS工艺的特点是:
• 粉末原料广泛:各种金属、非金届、合金粉末,特别是 活性大的各种粒度粉末都可以用作SPS 烧结原科。
• 成形压力低:SPS烛结时经充分微放电处理,烧结粉末表 面处于向度活性化状态.为此,其成形压力只需要冷压烧 结的l/10~1/20。
17
SPS制备软磁材料 通常用急冷或喷射方法可得到FeMe(Nb、Zr、Hf)B的非 晶合金,在稍高于晶化温度处理后, 可得到晶粒数10nm,具有 体心立方结构,高Bs 、磁损小的纳米晶材料。但非晶合金目 前只能是带材或粉末, 制作成品还需要将带材重叠和用树脂固 结, 这使得成品的密度和Bs均变低。近年, 日本采用SPS工艺研 究FeMeB块材的成形条件及磁性能。
粉末冶金的烧结技术

粉末冶金烧结技术1.烧结法不同的产品、不同性能的不同烧结方法。
⑴ 按原料组成不同分类。
可以将烧结分为单元系烧结、多组分固相烧结和多组分液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、MoSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag-W等。
在高于系统中低熔点组分熔点的温度下进行多系统液相烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵ 按进料方式不同分类。
可分为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,在烧结过程中,烧结材料是连续的或稳定的、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可以根据炉内烧结材料的性能确定合适的烧结系统,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
根据烧结温度下是否存在液相,可分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
粉末冶金的烧结技术

粉末冶金的烧结技术粉末冶金是一种通过将金属或非金属粉末在一定条件下,加工成具有一定形状和尺寸的零部件的方法。
烧结技术是粉末冶金中的关键步骤之一,它将粉末颗粒通过加热并施加压力使其质点之间结合得更加牢固,形成一体化的零部件。
本文将对粉末冶金的烧结技术进行深入探讨。
一、烧结技术的基本原理和过程烧结技术是将粉末颗粒通过加热至其熔点以下,但高于材料的再结晶温度,同时施加压力,使粉末颗粒发生结合,形成一体化的零部件。
其基本原理是利用了粉末颗粒与粉末颗粒之间的扩散作用和表面张力降低效应。
烧结过程中,颗粒间的间隙先得到迅速消除,然后颗粒之间产生再结晶,通过扩散使粒间结合更为牢固。
整个烧结过程可以分为初期活化期、再结晶期和液相期三个阶段。
初期活化期是指在烧结过程开始的阶段,颗粒发生活化并形成结合,此时烧结坯体变得更为致密。
再结晶期是指烧结坯体中增强再结晶的发生。
液相期是指在达到受结合的颗粒之间的最小距离后,材料产生液相,并通过液相扩散加快了颗粒间的结合。
在这个过程中,烧结坯体结构的致密度和强度会显著提高。
二、烧结技术的主要参数在进行粉末冶金的烧结过程中,有许多参数需要注意和控制,如温度、压力、时间和气氛等。
这些参数会对烧结过程和烧结产品的质量产生重要影响。
1. 温度:温度是烧结过程的关键参数之一。
合适的温度能够使粉末颗粒迅速熔结,并形成均匀的结构。
过高或过低的温度都会影响烧结效果和质量。
2. 压力:在烧结过程中,施加的压力可以使粉末颗粒更加紧密地结合在一起。
增加压力可以提高烧结物品的致密度和强度。
3. 时间:烧结时间是烧结过程中的一个重要参数。
适当的烧结时间可以使粉末颗粒充分结合并形成致密的结构。
时间过长或过短都会影响产品的质量。
4. 气氛:烧结过程中的气氛对烧结质量和产品性能有很大影响。
不同的气氛可以对不同材料产生不同的效果。
常用的烧结气氛有氢气、氮气、氧气和真空等。
三、烧结技术的应用和优点烧结技术在现代工业中有着广泛的应用,尤其是在金属材料和陶瓷材料的制备过程中。
烧结的原理

烧结的原理
烧结是一种粉末冶金工艺,通过在高温和压力下将金属或陶瓷粉末进行热处理,使其形成一种固体材料的过程。
其原理主要包括以下几个步骤:
1. 混合:首先将金属或陶瓷粉末按照一定比例混合在一起,以得到所需的配料。
这些粉末可以是不同种类的金属或陶瓷材料,也可以添加一些其他的添加剂,以改变材料的性能。
2. 压制:将混合好的粉末置于模具中,然后施加一定的压力。
这样可以使粉末颗粒之间发生变形和变稠,在压力作用下相互黏结在一起。
压制过程中,常常采用均匀的压力分布,以确保整个烧结体具有均匀的压力和密度。
3. 烧结:经过压制的粉末坯体被置于高温炉中进行烧结。
在高温下,粉末颗粒会发生扩散和结晶,使得颗粒之间相互溶解或结合。
同时,由于高温下的不同原子或分子的运动,形成了新的结晶相和晶界,使得颗粒逐渐合并,并改变了材料的物理和化学性质。
4. 冷却和处理:烧结后的坯体通过冷却,使得材料固化和成型。
通常还需要进行一些后续处理,如热处理、机械加工或表面涂层等,以进一步改善材料的性能和外观。
总的来说,烧结通过压制和高温处理的方式,使粉末颗粒逐渐结合,形成了一个整体材料。
其优点包括制造成本低、能耗低、
材料利用率高以及可以生产复杂形状的工件等。
因此,烧结在金属、陶瓷、粉末冶金等领域有着广泛的应用。
粉末烧结原理

粉末烧结原理粉末冶金是一种利用粉末作为原料,通过成型和烧结工艺制备金属、陶瓷和复合材料的工艺方法。
其中,粉末烧结是粉末冶金中最为重要的一环,它通过高温烧结使粉末颗粒互相结合,形成致密的块体材料。
本文将介绍粉末烧结的原理及其在工业生产中的应用。
首先,粉末烧结的原理是基于固相烧结的物理化学过程。
在烧结过程中,粉末颗粒之间发生扩散、溶解、再结晶等过程,最终形成致密的块体材料。
这一过程主要受温度、压力、时间等因素的影响。
在高温下,粉末颗粒表面发生扩散,原子间的结合能降低,颗粒之间出现结合,形成颗粒间的颈部,最终形成致密的结构。
其次,粉末烧结的原理还与粉末颗粒的形状、大小和分布有关。
通常情况下,形状不规则、尺寸均匀的粉末颗粒更有利于烧结过程中的颗粒间结合。
此外,粉末颗粒的分布均匀性也对烧结效果有着重要影响。
分布不均匀会导致烧结过程中局部温度过高或过低,影响颗粒间的结合质量。
再者,粉末烧结的原理还与烧结助剂的选择和添加有关。
烧结助剂可以改善粉末颗粒间的结合情况,促进烧结过程中的颗粒间扩散和溶解。
常用的烧结助剂有氧化铝、氧化锆等,它们能够形成液相,填充颗粒间的空隙,促进颗粒间的结合。
最后,粉末烧结在工业生产中有着广泛的应用。
在制备金属材料方面,粉末烧结可以制备具有特殊功能的工程材料,如高温合金、硬质合金等。
在制备陶瓷材料方面,粉末烧结可以制备高性能的陶瓷材料,如氧化铝、氮化硅等。
此外,粉末烧结还可以制备具有复合功能的粉末冶金材料,如金属陶瓷复合材料、金属基复合材料等。
总之,粉末烧结作为粉末冶金中的重要工艺环节,其原理是基于固相烧结的物理化学过程,受到温度、压力、时间等因素的影响。
在工业生产中,粉末烧结已经得到了广泛的应用,为制备高性能的材料提供了重要的技术手段。
粉末冶金烧结方法

粉末冶金烧结方法嘿,朋友们!今天咱就来好好聊聊粉末冶金烧结方法。
你说这粉末冶金啊,就像是一场奇妙的魔法秀。
把那些细细小小的粉末们聚集在一起,通过烧结这个神奇的过程,让它们变成坚固又好用的东西。
烧结呢,其实就好比是让这些粉末小伙伴们开一场盛大的聚会。
它们在高温的环境下,彼此拥抱、融合,慢慢变得亲密无间,最后形成一个整体。
常见的烧结方法有好几种呢。
比如说固相烧结,这就像是一群小伙伴手拉手,紧紧地靠在一起,不需要太多其他的东西来帮忙,它们自己就能变得很牢固。
还有液相烧结,这就有点像在聚会里加了一些特殊的“胶水”,让粉末们能更好地结合在一起,形成更结实的物件。
那烧结过程中温度可重要啦!就像做饭时火候的把握一样,温度太高或者太低可都不行哦。
温度太低,粉末们就没办法好好地融合;温度太高呢,又可能会把它们给“烤坏”了。
而且啊,时间也是个关键因素呢。
太短了,粉末们还没来得及好好交流感情;太长了,又可能会出现一些意想不到的问题。
这粉末冶金烧结方法,可不只是在工业上有大用处哦。
你想想看,我们生活中的好多东西可能都离不开它呢。
说不定你现在手里拿着的某个小物件,就是通过这种神奇的方法制造出来的呢!那这粉末冶金烧结方法难不难呢?其实啊,就和学骑自行车差不多。
一开始可能会觉得有点难,不知道怎么掌握平衡,怎么踩踏板。
但只要你多练习,慢慢就会找到感觉,变得熟练起来。
咱再回过头来想想,这粉末从小小的一粒粒,变成有用的物件,这过程多神奇呀!就好像是丑小鸭变成白天鹅一样。
所以说呀,这粉末冶金烧结方法可真是个了不起的技术呢!它让那些看似不起眼的粉末,发挥出了大大的作用,为我们的生活带来了好多便利。
是不是很厉害呢?大家可别小瞧了它哟!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末冶金烧结1.烧结的方法⑴按原料组成不同分类。
可以将烧结分为单元系烧结、多元系固相烧结及多元系液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、M oSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag -W等。
多元系液相烧结以超过系统中低熔成分熔点的温度进行的烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵按进料方式不同分类。
分为为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,烧结时烧结材料连续地或平稳、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可依据炉内烧结材料的性能确定合适的烧结制度,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
按烧结温度下是否有液相分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
⑴烧结温度和时间烧结温度的高低和时间的长短影响到烧结体的孔隙率、致密度、强度和硬度等。
烧结温度过高和时间过长,将降低产品性能,甚至出现制品过烧缺陷;烧结温度过低或时间过短,制品会因欠烧而引起性能下降。
⑵烧结气氛粉末冶金常用的烧结气氛有还原气氛、真空、氢气氛等。
烧结气氛也直接影响到烧结体的性能。
在还原气氛下烧结防止压坯烧损并可使表面氧化物还原。
如铁基、铜基制品常采用发生炉煤气或分解氨,硬质合金、不锈钢常采用纯氢。
活性金属或难熔金属(如铍、钛、锆、钽)、含TiC的硬质合金及不锈钢等可采用真空烧结。
真空烧结能避免气氛中的有害成分(H2O、O2、H2)等的不利影响,还可降低烧结温度(一般可降低100~150℃)。
粉末冶金基础知识作者:本站整理文章来源:本站搜集点击数:404 更新时间:2008-3-17 16:25:00 (一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
2.等静压制压力直接作用在粉末体或弹性模套上,使粉末体在同一时间内各个方向上均衡受压而获得密度分布均匀和强度较高的压坯的过程。
按其特性分为冷等静压制和热等静压制两大类。
⑴冷等静压制即在室温下等静压制,液体为压力传递媒介。
将粉末体装入弹性模具内,置于钢体密封容器内,用高压泵将液体压入容器,利用液体均匀传递压力的特性,使弹性模具内的粉末体均匀受压。
因此,冷等静压制压坯密度高,较均匀,力学性能较好,尺寸大且形状复杂,已用于棒材、管材和大型制品的生产。
⑵热等静压制把粉末压坯或装入特制容器内的粉末体置入热等静压机高压容器中,施以高温和高压,使这些粉末体被压制和烧结成致密的零件或材料的过程。
在高温下的等静压制,可以激活扩散和蠕变现象的发生,促进粉末的原子扩散和再结晶及以极缓慢的速率进行塑性变形,气体为压力传递媒介。
粉末体在等静压高压容器内同一时间经受高温和高压的联合作用,强化了压制与烧结过程,制品的压制压力和烧结温度均低于冷等静压制,制品的致密度和强度高,且均匀一致,晶粒细小,力学性能高,消除了材料内部颗粒间的缺陷和孔隙,形状和尺寸不受限制。
但热等静压机价格高,投资大。
热等静压制已用于粉末高速钢、难熔金属、高温合金和金属陶瓷等制品的生产。
3.粉末轧制将粉末通过漏斗喂入一对旋转轧辊之间使其压实成连续带坯的方法。
将金属粉末通过一个特制的漏斗喂入转动的轧辊缝中,可轧出具有一定厚度、长度连续、强度适宜的板带坯料。
这些坯体经预烧结、烧结,再轧制加工及热处理等工序,就可制成具有一定孔隙度的、致密的粉末冶金板带材。
粉末轧制制品的密度比较高,制品的长度原则上不受限制,轧制制品的厚度和宽度会受到轧辊的限制;成材率高为80%~90%,熔铸轧制的仅为60%或更低。
粉末轧制适用于生产多孔材料、摩擦材料、复合材料和硬质合金等的板材及带材。
4.粉浆浇注是金属粉末在不施加外力的情况下成形的,即将粉末加水或其它液体及悬浮剂调制成粉浆,再注入石膏模内,利用石膏模吸取水分使之干燥后成形。
常用的悬浮剂有聚乙烯醇、甘油、藻肮酸钠等,作用是防止成形颗粒聚集,改善润湿条件。
为保证形成稳定的胶态悬浮液,颗粒尺寸不大于5μm~10μm,粉末在悬浮液中的质量含量为40%~70%。
粉浆成形工艺参见本书6.2.2。
5.挤压成形将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(4 0℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
挤压成形能挤压出壁很薄直经很小的微形小管,如厚度仅0.01mm,直径1mm的粉末冶金制品;可挤压形状复杂、物理力学性能优良的致密粉末材料,如烧结铝合金及高温合金。
挤压制品的横向密度均匀,生产连续性高,因此,多用于截面较简单的条、棒和螺旋形条、棒(如麻花钻等)。
6.松装烧结成形粉末未经压制而直接进行烧结,如将粉末装入模具中振实,再连同模具一起入炉烧结成形,用于多孔材料的生产;或将粉末均匀松装于芯板上,再连同芯板一起入炉烧结成形,再经复压或轧制达到所需密度,用于制动摩擦片及双金属材料的生产。
将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(4 0℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
7.爆炸成形借助于爆炸波的高能量使粉末固结的成形方法。
爆炸成形的特点是爆炸时产生压力很高,施于粉末体上的压力速度极快。
如炸药爆炸后,在几微秒时间内产生的冲击压力可达106MPa(相当于107个大气压),比压力机上压制粉末的单位压力要高几百倍至几千倍。
爆炸成形压制压坯的相对密度极高,强度极佳。
如用炸药爆炸压制电解铁粉,压坯的密度接近纯铁体的理论密度值。
爆炸成形可加工普通压制和烧结工艺难以成形的材料,如难熔金属、高合金材料等,还可压制普通压力无法压制的大型压坯。
除上述方法外,还有注射成形及热等静压制新技术等新的成形方法。
粉末冶金的后处理作者:本站整理文章来源:本站搜集点击数:345 更新时间:2008-3-17 15:53:51指压坯烧结后的进一步处理,根据产品具体要求决定是否需要后处理。
常用的后处理方法有复压、浸渍、热处理、表面处理和切削加工等。
1.复压为提高烧结体物理和力学性能而进行的施加压力处理,包括精整和整形等。
精整是为达到所需尺寸而进行的复压,通过精整模对烧结体施压以提高精度。
整形是为达到特定的表面形状而进行的复压,通过整形模对制品施压以校正变形且降低表面粗糙度值。
复压适用于要求较高且塑性较好的制品,如铁基、铜基制品。
2.浸渍用非金属物质(如油、石蜡和树脂等)填充烧结体孔隙的方法。
常用的浸渍方法有浸油、浸塑料、浸熔融金属等。
浸油即在烧结体内浸入润滑油,改善其自润滑性能并防锈,常用于铁、铜基含油轴承。
浸塑料是采用聚四氟乙烯分散液,经固化后,实现无油润滑,常用于金属塑料减摩零件。
浸熔融金属可提高强度及耐磨性,铁基材料常采用浸铜或铅。
3.热处理对烧结体加热到一定温度,再通过控制冷却方法等处理,以改善制品性能的方法。
常用的热处理方法有淬火、化学热处理、热机械处理等,工艺方法一般与致密材料相似。
对于不受冲击而要求耐磨的铁基制件可采用整体淬火,由于孔隙的存在能减少内应力,一般可以不回火。
而要求外硬内韧的铁基制件可采用淬火或渗碳淬火。
热锻是获得致密制件常用的方法,热锻造的制品晶粒细小,且强度和韧性高。