周期信号的频谱

合集下载

周期信号及其频谱

周期信号及其频谱

50
2A
2 2A 2A
T O T2 2
2
2
30 0周O 期0三角3波0 50
2A t 2 70
(a)
(b)
2
a0 T
T 2 0
A
2A T
t
dt
A 2
4
an T
T 2 0
A
2A T
tcosn0tFra bibliotekt4A
n2
2
0
其幅频谱(单边谱)如图(a)所示。
n 1,3,5, n 2,4,6,
aanAn
(傅a) 里叶级数
可x知(tA) ,a0=0,an=0,Abnn=
2A n
1
cos
n
T
T
2
2
O
t
A
O 0 30 50 70 90
30 50 70 9 (b)
x(t)
4A
sin 0t
1 3
sin
30t(a)
1 5
sin
50t
1 7
sin
70t
(幅b)频谱
1.4 复数形式的傅里叶级数
傅里叶级数也可以表示成复指数形式的展开式。根据欧拉公式
若用复数形式表示,则根据
Cn
Cn
1 2
an
C0 a0
可求得如图(b)所示的幅频谱(双边谱)。
通过以上例题可以看出,周期信号有以下几个特点: (1)周期信号的频谱是由无限多条离散谱线组成的,每一条谱线 (单边谱)代表一个谐波分量。 (2)各次谐波的频率只能是基波频率的整数倍。 (3)谱线的高度表示了相应谐波分量的幅值大小。对于工程中常见 的周期信号,其谐波幅值的总趋势是随着谐波次数的增高而减小。当谐 波次数无限增高时,其幅值就趋于零。

周期信号的频谱

周期信号的频谱
X

1.三角形式的谱系数
f (t ) E
9 页
T1

f t 是个偶函数
bn 0, 只有a0 , an
O 2 2
T1
t
X

2.指数形式的谱系数
1 Fn T1
10 页

1 = T1
T1 2 T 1 2
f ( t )e jn1t d t

2
E 1 jn 1 t 2 Ee dt e jn1t 2 T1 jn 1
P5 n F 0 F 1 F 2 1 F 3 1 F 4 1
2 2 2 2
2
F 1 F 2 1 F 3 1 F 4 1
2 2 2
2
0.181E 2 1 T1 2 f ( t )dt 0.2 E 2 而总功率 T1 0 P5 n 二者比值 90.5% P
jn 1 jn1 2 e e 2

2
E jn 1T1


2E sin n 1 n 1T1 2 sin n 1 E 2 E Sa n 1 T1 T1 2 n 1
X
3.频谱及其特点

n)
E

f (t )
E 2E 1 f (t ) [sin(1 t ) sin(31 t ) 2 3 1 1 sin(51 t ) sin(n1 t ) ] 5 n

T1

T1 2
0
T1 2
T1
t
n 1,3,5,
E 2E 2E f (t ) cos(1 t ) cos(31 t ) 2 2 3 2 2E 2E cos(51 t ) cos(71 t ) 5 2 7 2

4.2周期信号的频谱

4.2周期信号的频谱

2A ( n 1, 3, 5,) n 90o ( n 1,3,5,) n o ( n 1, 3, 5,) 90 Fn
信号与系统

周期矩形脉冲信号的频谱
对于周期矩形脉冲,在一个周期内为
A t t

4.2-5

f (t )
0

2 2
4A (n 1,3,5,...) nπ
矩形波:
图1
n 90o (n 1,3,5,...)
谱 线
相位值 振幅 图2 角频率
信号与系统
4.2

周期信号的频谱
4.2-3
4.2.1 周期信号频谱的特点
频谱特点:

离散性:每根谱线代表一个谐波分量, 称为离散谱线。 谐波性:基波1的整数倍频率 收敛性:高次谐波幅度渐小,当谐波次 数无限增多时,谐波分量的振幅趋于无 穷小。
4.2 周期信号的频谱

信号与系统
4.2-1
4.2.1 周期信号频谱的特点
将周期信号分解为傅里叶级数(简称傅氏级数),为在频域 中认识信号特征提供了重要的手段。由于在时域内给出的 不同信号,不易简明地比较它们各自的特征,而当周期信 号分解为傅氏级数后,得到的是直流分量和无穷多正弦分 量的和,从而可在频域内方便地予以比较。为了直观地反 映周期信号中各频率分量的分布情形,可将其各频率分量 的振幅和相位随频率变化的关系用图形表示出来,这就是 信号的“频谱图”。频谱图包括振幅频谱和相位频谱。前 者表示谐波分量的振幅An随频率变化的关系;后者表示谐 波分量的相位φn 随频率变化的关系。习惯上常将振幅频谱 简称为频谱。
奇谐函数
偶谐函数
注:指交流分量
信号与系统

周期信号频谱的特点

周期信号频谱的特点

周期信号频谱的特点
1、周期信号频谱的特点
(1)周期信号频谱是指周期信号的函数X(t)的傅里叶变换结果。

它由若干不同的频率的正弦波组成,这些正弦波的频率正是信号的基本频率。

正弦波的幅值与其相应的频率乘积成正比,而每种频度的信号都有一个相应的幅值谱和一个同频率相等的相位谱。

(2)对小波周期信号出现的情况而言,它的频谱具有带状分布特点。

假设一个小波信号X(t)的基本频率为F0,它的频谱X(f)的分布范围接近[F0, 2F0]之间,其中最大的幅值在F0处,幅值谱有一个主峰,而且相位谱空间分布也同样有一个主峰。

(3)小波周期信号具有连续宏观理论谱线的特点,实际谱线与理论谱线相比会有一个谷底,其图形模型会形成一回带状,理论上谷底深度接近0.
(4)周期信号频谱中有定向性,主要表现在除脉冲信号以外的其他周期信号中。

针对某一个方向发射信号,其谱仍然会有以频率以F0作为中心呈现梯度变化和微小平移的特点。

如果从不同方向发射信号,最终得到的谱会有一定的差异,但其趋势仍然相同。

2、周期信号频谱的作用
(1)周期信号频谱是信号分析的基础,它包括了信号的基本指标,包括信号的频率、幅值谱和相位谱,可用于分析信号的特性和特征。

(2)有了周期信号频谱,可以更准确地测量一个周期信号的实际频率,利用其中的相位谱可以判断信号之间是否存在某些相关性。

(3)频谱可以用于检测信号中的杂波,如果周期信号频谱发现不属于原有频率的有害信号,则说明信号中出现了一些杂波,可以使用滤波等方法对这部分信号进行处理,从而提高信号的有效性。

(4)同时,周期信号频谱也可以用来研究信号强度分布情况,可以查看赋予信号的频率和相位,从而进行有效的信号处理。

周期信号的离散频谱

周期信号的离散频谱
周期信号的离散频谱

CONTENCT

• 引言 • 周期信号的离散频谱特性 • 离散频谱的生成方法 • 离散频谱的应用 • 离散频谱与连续频谱的比较 • 总结与展望
01
引言
背景介绍
周期信号在现实世界中广泛存在,如交流电、机械振动等。为了 更好地理解和分析这些信号,需要研究其离散频谱。
离散频谱是周期信号的频率成分的集合,表示信号在不同频率上 的分布情况。
计算过程
傅立叶变换法需要将时间域信 号进行无穷积分,计算过程较 为复杂,需要较高的数学水平 。
应用范围
适用于周期信号和非周期信号 ,是信号处理领域中非常重要 的工具之一。
离散时间傅立叶变换法
定义ቤተ መጻሕፍቲ ባይዱ
离散时间傅立叶变换法是一种将离散时间序列转换为频域 信号的方法,通过将离散时间序列进行傅立叶变换,得到 离散频谱。
干扰抑制
在复杂电磁环境下,雷达系统可能受到各种干扰的影响,离散频谱分 析有助于识别和抑制这些干扰,提高雷达的抗干扰能力。
在图像处理中的应用
01
频域滤波
图像处理中,离散频谱分析用于频域滤波,通过改变图像信号在不同频
率段的权重实现图像的模糊、锐化、边缘检测等效果。
02
去噪与增强
离散频谱分析在图像去噪与增强方面具有广泛应用,通过滤除噪声成分
离散频谱的定义
01
离散频谱是指周期信号的频率成 分以离散的形式分布在频率轴上 。
02
与连续频谱相比,离散频谱的频 率分量是分离的,而不是连续分 布的。
02
周期信号的离散频谱特性
离散频谱的形状
正弦波形状
对于正弦波形状的离散频谱,其峰值出现在中心频 率处,随着频率的增加或减少,幅度逐渐减小。

第四章(2)周期信号的频谱

第四章(2)周期信号的频谱

周期性矩形脉冲信号的频谱还有自己的特点 周期性矩形脉冲信号的频谱还有自己的特点 : 1、各谱线的幅度按包络线 T 、
ωτ
= m π ( m = ±1, ± 2,...)
τ
Sa (
ωτ
2
) 的规律变化。 的规律变化。
各处, 的各处, 在 2 各处,即 的各处, τ 包络为零,其相应的谱线, 包络为零,其相应的谱线,亦即相应的频谱分量也等 于零。 于零。 2、周期矩形脉冲信号包含无限多条谱线,也就是说, 、周期矩形脉冲信号包含无限多条谱线,也就是说, 它可分解为无限多个频率分量。 它可分解为无限多个频率分量。 通常把频率范围 0 ≤ f ≤ τ (0 ≤ ω ≤ τ ) 称为周期矩形脉冲 带宽, 表示, 信号的带宽 信号的带宽,用符号 ∆F 表示,即周期矩形脉冲信 1 号的频带宽度为 ∆F = 。 τ
Fn F ( jω ) = lim = lim FnT T →∞ 1 / T T →∞
为频谱密度函数。 称 F ( jω )为频谱密度函数。
Fn lim = lim FnT 如何求频谱密度函数? 如何求频谱密度函数? F ( jω ) = T →∞ 1 / T T →∞
由式 f ( t ) =
n = −∞
T 2T f (t) T=8τ
0
3T
4T t
0 1/ 8
T f (t) T=16τ
0
2T
t
0 1/16
0
T
t
0
f (t) T→∞ τ/T
0 t 0
图4.3-5 周期与频谱的关系
思考: 思考:
1 1 1 f (t ) = [sin(Ωt ) + sin(3Ωt ) + sin(5Ωt ) + .... + sin(nΩt ) + ...] 3 5 n π 4

典型周期信号的频谱

典型周期信号的频谱
f (t) f (t)(全波对称) f (t) f (t T() 半波对称)
2
T
证:an
T
8 T
4 0
f
(t) cosntdt
22
20
f (t) f (t) f (t) f (t T )
2
an T T f (t) cosntdt T T f (t) cosntdt
2
2
T
由复振幅cn 的表达式可知,频谱谱线顶点的联线所
sin x
构成的包络是 x 的形式----称为抽样函数。
1. 找出谐波次数为零的点(即包络与横轴的交点)
包络线方程为
cn
2E
T
sin 2
2
与横轴的交点由下式决定:
sin
2
0
即: ,2 ,3
2
2
0
2
4
6
2m
2f
f
f0
1, 2, 3
T
2 T
2
f (t)e jn1t dt
b.这样定义能确切的反映信号的频谱分布特性。 各个频率分量振幅之间的相对比例关系是固定不 变的。
2.几点说明
a.F ( j) 代表了信号中各频率分量振幅的相对
大小。
|
b.各频率分量的实际振幅为
F ( )
|
d
是无穷
小量。
C. F ( j )具有单位角频率振幅的量纲。
| f (t) | dt 存在。
六.周期和非周期矩形脉冲信号频谱的对比
1.它们都具有抽样函数 sin x 的形式。
2.
Cn
2E
T1
sin n1
2
n1
x

周期信号频谱的特点

周期信号频谱的特点

周期信号频谱的特点
1.频谱中存在基波和谐波:周期信号的频谱中不仅包含了基波分量,还包括了各个谐波分量。

基波分量对应信号的基本周期,而谐波分量则是基波频率的整数倍。

基波和谐波分量在周期信号频谱中呈现出一定的规律性,即谐波分量的幅值逐渐减小,但频率却逐渐增大。

2.频谱具有离散特性:周期信号频谱中的频率值是离散的,即频谱中只有一系列离散的频率分量。

这是因为周期信号具有固定的周期,其频谱中的各个频率值与基波频率和谐波频率有关。

3.频谱对称性:周期信号频谱在频率轴上具有对称性。

具体而言,当周期信号是实值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。

当周期信号是复值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。

4.频谱幅度递减:周期信号频谱中各个频率分量的幅度递减性质。

基波分量的幅度最大,而谐波分量的幅度逐渐减小。

如果周期信号中存在无穷多个谐波分量且每个谐波分量的幅度适当,则可以近似地表示任意的周期信号。

5.频谱包含整个频率范围:周期信号频谱中包含了整个频率范围,即从直流成分到无限大频率。

直流成分对应于基波分量,而高频成分对应于谐波分量。

因此,周期信号的频谱图是一个连续的、无缺口的频率分布。

总之,周期信号频谱的特点可以概括为:包含基波和谐波分量,具有离散特性,具有对称性,谐波分量幅度递减,频率范围包含整个频域。

通过对周期信号频谱的分析,可以了解信号的频率分布情况,从而更好地理解和处理周期信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文档通过实验方式深入探讨了周期信号的频谱特点。首先,周期信号可以被分解为傅里叶级数,这是一种将复杂信号分解为简单正弦波的方法。通过这种方式,我们可以更清晰地理解和分析周期信号。在频谱分析中,周期信号展现出三个显著特点:离散性、谐波性和收敛性。离散性表现为频谱由不连续的线条组成,每条线代表一个正弦量。谐波性则体现在每条谱线只能出现在基波频率的整数倍上,这揭示了周期信号中频率的倍数关系。最后,收敛性表明各次谐波的振幅随着谐波次数的增高而逐渐减小,这意味着高频成分在信号中的影响逐渐减弱。这三个特点共同构成了周期信号频谱的基本特征,对于我们理解和处理周期信号具有重要意义。此外,文档还通过计算示例展示了如何
相关文档
最新文档