傅里叶级数 讲解资料教程

合集下载

傅立叶(Fourier)级数的展开方法

傅立叶(Fourier)级数的展开方法

快速傅立叶变换(FFT)法
定义
FFT法是一种基于数学和计算机技术的快速计算傅立叶级数展开式的 方法。
步骤
首先,将函数进行离散化处理,然后利用分治策略将问题分解为多个 子问题,最后通过递归和数学公式计算出傅立叶级数的系数。
优点
FFT法计算速度快,适用于大规模数据的傅立叶变换计算。
缺点
对于非周期函数,FFT法可能存在误差和稳定性问题。
图像处理
在图像处理中,傅立叶变换是常用的工具,通过将图像分解为不同 频率的成分,可以实现图像的滤波、去噪、压缩等操作。
控制系统
在控制工程中,傅立叶级数可以用于分析系统的频域响应,从而优 化控制系统的设计和性能。
在金融问题中的应用
要点一
周期性分析
在金融领域,傅立叶级数可以用于分析具有周期性的金融 数据,如股票价格、汇率等,从而预测未来的走势。
唯一性证明
唯一性定理的证明涉及到数学分析中的一些高级技巧,如反证法、数学归纳法 等。
三角函数的正交性
正交性定义
在一定条件下,三角函数系中的函数都互相垂直,即它们的内积为0。这就是三角函数 的正交性。
正交性的应用
正交性是傅立叶级数展开的基础,因为只有当三角函数系是正交的时,我们才能将一个 周期函数表示为一个傅立叶级数。同时,正交性在解决物理问题、信号处理等领域也有
傅立叶级数的复数形式
傅立叶级数的复数形式是将函数表示 为复指数函数的线性组合,通过复数 运算,可以简化计算过程并方便地处 理函数的频域性质。
VS
复数形式的傅立叶级数在信号处理、 通信等领域中具有重要应用,可以用 于信号的频谱分析和滤波等操作。
02 傅立叶级数的性质
收敛性
傅立叶级数在$L^2$空间中收敛

十五章傅里叶级数

十五章傅里叶级数

2
2
2
当只给出一种周期旳体现式时,傅里叶级数在两端点旳值
可用 上述公式求之.
例1:设
x, f (x) 0,
0 x x 0
求f
旳傅里叶级数展开式.
解: 函数f 及其周期延拓后的图象如图所示,
y
3 2 O 2 3 4
x
显然 f 是按段光滑旳,故由收敛定理,它能够展开成傅里叶级数。
因为
第十五章 傅里叶级数
§15.1 傅里叶级数
一、 三角级数 • 正交函数系
二、以 2 为周期旳函数旳傅里叶级数
三、收敛定理
§15.1 傅里叶级数
一、三角函数 正交函数系
在科学试验与工程技术旳某些现象中,常会遇到一种周期运动,最简
单旳周期运动,可用正弦函数 A sin(x ) 来描写。
所体现旳周期运动也称为简谐运动,其中 A 为振幅, 为初相角,
f (x) cos kxdx
a0 cos kxdx 2
(an cos nx cos kx bn sin nx cos kx)dx n1
cos2 kxdx
f (x) cos kxdx ak
ak
1
f (x) cos kxdx
(k 1, 2, )
同理可得:
bk
1
f (x) sin kxdx
f 的傅里叶级数收敛于f 在点x的左,右极限的算术平均值,即
f
(x
0) 2
f
(x 0)
a0 2
(an
n1
cos nx bn
sin nx)
其中an ,bn为f的傅里叶系数。
推论:
若f 是以2为周期的连续函数,且在[, ]上按段光滑,则 f 的

高等数学-第七版-课件-12-7 傅里叶级数

高等数学-第七版-课件-12-7 傅里叶级数

在 例3 将函数
上的傅里叶展开式
u
展开成傅里叶级数, 其中E 是正的常数 . O t
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
周期为2 的奇、偶函数的傅里叶级数 对周期为 2 的奇函数 f (x) , 其傅里叶系数为
a0 f ( x) an cos nx bn sin nx 2 n 1

② 定义 由公式 ② 确定的 称为函数f(x)
的傅里叶系数 ; 以f (x)的傅里叶系数为系数的三角级数 a0 an cos nx bn sin nx 称为f(x)的傅里叶级数 . 2 n 1
x
分别展开成正弦级数和余弦级数.
将定义在[0,]上的函数展开成正弦级数与余弦级数 展开思路 在
奇延拓 (偶延拓) 傅里叶展开 在
上有定义 上, 上为奇函数(偶函数)
定义在 在
(0, π] 上 F ( x ) f ( x ) 的正弦级数 (余弦函数) 展开式
y
例6 将函数
O 分别展开成正弦级数和余弦级数.
2) 在一个周期内至多只有有限个极值点, 则 f (x) 的傅里叶级数收敛 , 并且 当x 为f (x)的连续点时,级数收敛于 f ( x );
当x 为f (x)的间断点时,级数收敛于
1 [ f ( x ) f ( x )]. 2
例1 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为
引言
简单的周期运动 ( A:振幅 :角频率

复杂的周期运动
:初相 )

傅里叶级数课件分解

傅里叶级数课件分解
若两个函数


上可积, 且
则称

在பைடு நூலகம்
上是正交的, 或在
上具有正
交性. 由此三角函数系(4)在
上具有正交性.
或者说(5)是正交函数系.
现应用三角函数系(5)的正交性来讨论三角级数(4)
的和函数 f 与级数(4)的系数
之间的关系.
定理12.2 若在[-π,π]上
且等式右边级数一致收敛, 则有如下关系式:
光滑弧段所组成,它至
收敛定理指出, f 的傅里叶级数在点 x 处收敛于 在
该点的左、右极限的算术平均值
而当 f 在点 x 连续时,则有
即此时f的傅里叶级数收敛于
. 这样便有
上按段光滑, 则 f 的傅里叶级数在
上收敛
于 f .
推论 若 f 是以 为周期的连续函数, 且在
上每一点都存在
, 如果在不连续
点补充定义
, 或
, 则
还有
(iii) 在补充定义

上那些至多有限个不存在
导数的点上的值后 ( 仍记为
),
在[a, b]上可积.
从几何图形上讲, 在
区间[a, b]上按段光滑
光滑函数,是由有限个
多有有限个第一类间
断点 (图15-1).
时,
于是当
当 时, 级数收敛到 0( 实际上级数每一项都为 0 ).
为进一步研究三角级数(4)的收敛性, 先讨论三角函
数系 (5) 的特性. 首先容易看出三角级数系(5)中所
定理 12.1 若级数
其次, 在三角函数系(5)中, 任何两个不相同的函数

数学分析课件 傅里叶级数

数学分析课件  傅里叶级数

03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。

《傅里叶级数》课件

《傅里叶级数》课件
FFT基于分治策略,将大问题分解为小问题,从而显著提高了计算效率。
FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。

§4.2 傅里叶级数

§4.2  傅里叶级数
bn =0,展开为余弦级数。
2.f(t)为奇函数——对称于原点
f (t ) f (t )
an =0,展开为正弦级数。
▲ ■ 第 10 页
3.f(t)为奇谐函数——f(t) = –f(t±T/2) 其傅里叶级数中只含 奇次谐波分量,不含 偶次谐波分量;即 a0=a2=…=b2=b4=…=0
2 an T
T 2 T 2
2 f (t ) cos( nt ) d t bn T
T 2 T 2
f (t ) sin( nt ) d t
an是n的偶函数,bn是n的奇函数。
▲ ■ 第 3页
将上式同频率项合并
A0 f (t ) An cos( nt n ) 2 n 1 bn 2 2 n arctan 式中,A0 = a0 An a n bn an An是n的偶函数, n是n的奇函数。

T , cosnt cosmt dt 2 0, T T , 2 T2 sin nt sin mt dt 2 0,

T 2 T 2 T 2 T 2
cosnt sin mt dt 0
mn mn
f (t )
n
Fn e j nt
T 2 T 2

系数Fn 称复傅里叶系数
1 Fn T

f (t )e j nt d t
用cosx =(ejx + e–jx)/2从三角形式推出: 推导
▲ ■ 第 12 页
指数形式付氏级数推导
A0 f (t ) An cos( nt n ) 2 n 1
§4.2
傅里叶级数
• 傅里叶级数的三角形式 • 波形的对称性与谐波特性 • 傅里叶级数的指数形式 • 周期信号的功率——Parseval等式

9.7.傅里叶级数ppt

9.7.傅里叶级数ppt


f (x)dx
1 2
a0dx
[
(ak cos kx bk sin kx)]dx
k 1
1 2
a0dx
ak cos kxdx k 1
bk sin kxdx k 1
a0
1 2
2
,
a0
1
f (x)dx
(2) 求an .
f
( x)cos nxdx
a0 2
cos nxdx
an n , bn n .
练习题
一、设周期为2 的周期函数f ( x) 在[ , ) 上的表达式

f
(
x
)
bx ax
, ,
0
x
x
0
(常数a b 0)试将
其展开成傅里叶级数 .
二、将下列函数 f ( x) 展开成傅里叶级数:
1、
f
(x)
e x ,
x
0;
1,0 x
2、 f ( x) sin(arcsin x).
1) 在一个周期内连续或只有有限个第一类间断点; 2) 在一个周期内只有有限个极值点, 则 f (x) 的傅里叶级数收敛 , 且有
f (x) ,
f (x) f (x) , 2
x 为连续点 x 为间断点
其中 an , bn 为 f (x) 的傅里叶系数 .
特别地,当 x为端点 x 时, 收敛于 f ( 0) f ( 0). 2
n1

an An sinn , bn An cosn ,
得函数项级数
a0 2
(an
n1
cos nx
bn
sin nx)
称上述形式的级数为三角级数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期信号一般是功率信号,其平均功率为
T 10 Tf2(t)d t(A 2 0)2 n 11 2A n 2 n | F n|2
直流和n次谐波分量在1电阻上消耗的平均功率之和。
n≥0时, |Fn| = An/2。
证明
这是Parseval定理在傅里叶级数情况下的具体体现。


第8 页
§2.2 傅里叶级数
• 傅里叶级数的三角形式 • 波形的对称性与谐波特性 • 傅里叶级数的指数形式 • 周期信号的功率——Parseval等式

第1 页
一、傅里叶级数的三角形式
1.三角函数集
{1,cos(nΩt),sin(nΩt),n=1,2,…}
在一个周期内是一个完备的正交函数集。
由积分可知
T
2Tconstsinmtdt0
推导


第6 页
傅里叶系数之间关系
F nF nen1 2A nejn1 2(a njb n)
Fn
1 2
an2bn2 1 2An
anAncosn
n arctanabnn
bnAnsinn
n的偶函数:an , An , |Fn |
n的奇函数: bn ,n


第7 页
四、周期信号的功率——Parseval等式
第5 页
三、傅里叶级数的指数形式

三角形式的傅里叶级数,含义比较明确,但运算常感 不便,因而经常采用指数形式的傅里叶级数。
虚指数函数集{ejnΩt,n=0,±1,±2,…}
f (t) Fn ejnt
n
系数Fn
称为复傅里叶系数
1
Fn
T
T 2 T
f (t)ejnt
dt
2
利用 cosx=(ejx + e–jx)/2可从三角形式推出:
f(t)a 2 0n 1anco n s t) (n 1b nsin n t)(
系数an , bn称为傅里叶系数
an
2 T
T
2 T
2
f(t)cons (t)dt
bn
2 T
T
2 T
2
f(t)sinn (t)dt
可见, an 是n的偶函数, bn是n的奇函数。


第3 页


第4 页
2
T
2Tcon stc 2
om s td t T 2,
0,
mn mn
T 2T 2sin tsin m td t T 2 0,,
mn mn


第2 页
2.级数形式
设周期信号f(t),其周期为T,角频率=2/T,当满足 狄里赫利(Dirichlet)条件时,它可分解为如下三角级 数—— 称为f(t)的傅里叶级数
二、波形的对称性与谐波特性
an
2 T
T
2 T
2
f(t)cons (t)dt
bn
2 T
T
2 T
2
f(t)sinn (t)dt
1 .f(t)为偶函数——对称纵坐标
f (t) f (t)
bn =0,展开为余弦级数。
2 .f(t)为奇函数——对称于原点
f(t)f(t)
an =0,展开为正弦级数。



相关文档
最新文档