2012年高考数学试题分类汇编--概率

合集下载

2012年概率真题集锦

2012年概率真题集锦

1概率一、选择题错误!未指定书签。

1.(辽宁)在长为12cm 的线段AB 上任取一点C . 现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm 2的概率为( ) A .16B .13C .23D .45错误!未指定书签。

2.(北京)设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 ( ) A .4π B .22π- C .6π D .44π- 错误!未指定书签。

3.(安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于 ( ) A .15B .25C .35D .45二、填空题错误!未指定书签。

4.(浙江)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为2的概率是___________. 错误!未指定书签。

5.(上海)三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是______(结果用最简分数表示).三、解答题错误!未指定书签。

6.(重庆)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直每人都已投球3次时投篮结束,设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率.错误!未指定书签。

7.(天津)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对 学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, (1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率. 8.(四川)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生 故障的概率分别为110和p . (Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.错误!未指定书签。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。

安徽省各地市2012年高考数学最新联考试题分类大汇编(12)概率

安徽省各地市2012年高考数学最新联考试题分类大汇编(12)概率

第12部分:概率一、选择题:(4) (安徽省“江南十校”2012年3月高三联考理科)现有甲、乙、丙、丁四名义工到三个不同的社区参加公益活动.若每个社区至少一名义工,则甲、乙两人被分到不同社区的概率为()(A) (B) (C) (D)(4) B【解析】232323435 16C AC A⋅-=⋅.三、解答题:(18) (安徽省“江南十校”2012年3月高三联考理科) (本小题满分12分)“低碳经济”是促进社会可持续发展的推进器.某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和n (其中a + b =1 )如果把100万元投资“传统型”经济项目,用表示投资收益(投资收益=回收资金一投资资金),求的概率分布及均值(数学期望);(II)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.(18) 解: (Ⅰ)依题意,ξ的可能取值为20,0,—10 ,…………………………1分ξ的分布列为……………………………………………………………………………..………4分1051)10(5105320=⨯-+⨯+⨯=ξE(万元)…………………………….…6分(Ⅱ)设η表示100万元投资投资“低碳型”经济项目的收益,则η的分布列为20502030-=-=a b a E η……………………………………………….……10分依题意要求102050≥-a , ∴153≤≤a ……………………………………….…12分 注:只写出53≥a ,扣1分. (Ⅱ)设通晓中文和英语的人为12345,,,,A A A A A ,甲为1A ,通晓中文和韩语的人为12,B B ,乙为1B ,则从这组志愿者中选出通晓英语和韩语的志愿者各1名的所有情况为:()()()()()()()()()()11122122313241425152,,,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B A B共10个,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分同时选中甲、乙只有()11,A B1个.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 11分所以甲和乙不全被选中的概率为1911010-=.┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分17、(安徽省安庆市2012年3月高三第二次模拟文科)(本题满分12分)第11届全国人大五次会议于2012年3月5日至3月14日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语。

2012年高考真题汇编——理科数学(解析版)13:概率

2012年高考真题汇编——理科数学(解析版)13:概率

实用文档2012高考真题分类汇编:概率1.【2012高考真题辽宁理10】在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为(A)16 (B) 13 (C) 23 (D) 45【答案】C【解析】设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)32x x -<,解得48x x <>或。

又012x <<,所以该矩形面积小于32cm 2的概率为23,故选C 【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。

2.【2012高考真题湖北理8】如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是A .21π- B .112π-实用文档C .2πD .1π【答案】A【解析】令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。

2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS 。

在扇形OAD 中21S 为扇形面积减去三角形OAC 面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,选A.3.【2012高考真题广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A.49 B.13 C.29 D.19【答案】D【解析】法一:对于符合条件“个位数与十位数之和为奇数的两位数”分成两种类型:一是十位数是奇数,个位数是偶数,共有2555=⨯个,其中个位数为0的有10,30,50,70,90共5个;二是十位数是偶数,个位数是奇数,共有2054=⨯,所以9120255=+=P .故选D .法二:设个位数与十位数分别为y x ,,则12-=+k y x ,=k 1,2,3,4,5,6,7,8,9,所以y x ,第8题图实用文档分别为一奇一偶,第一类x 为奇数,y 为偶数共有251515=⨯C C 个数;第二类x 为偶数,y 为奇数共有201514=⨯C C 个数。

北京市2012年高考数学最新联考试题分类大汇编_概率试题解析[1]

北京市2012年高考数学最新联考试题分类大汇编_概率试题解析[1]

北京市2012年高考数学最新联考试题分类大汇编一、填空题:14. (2012年3月北京市朝阳区高三一模文科)已知集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.若O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,则MON ∆的面积S 与m 的关系式为 .241mm +二、解答题:16. (北京市西城区2012年1月高三期末考试理科)(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.【命题分析】本题考查随机事件的概率和独立事件的概率问题。

利用等可能事件的定义求概率,不要忘记等可能事件的两大特征:基本事件总数有限及基本事件的发生等可能.求概率的题目,找准“基本事件”很重要,因此一定要明确以什么“事件”作为基本事件,某事件A 所包含的基本事件必须与此相对应.求解等可能性事件A 的概率一般遵循如下步骤:多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.本题的第二问采用组合的知识,确定m 、n 的值。

(Ⅰ)解:记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A ,则2()7P A =. ………………2分 所以3次抽取中恰有1次抽到使用过的零件的概率12325150C ()()77343P ==. ……5分(Ⅱ)解:随机变量X 的所有取值为2,3,4. ………………7分2227C 1(2)C 21P X ===; 115227C C 10(3)C 21P X ===;2527C 10(4)C 21P X ===. ………………10分X :……………11分11010242342121217EX =⨯+⨯+⨯=. ………………13分率)(17)(本小题满分13分) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分(Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为 1. ………………………………………13分(16)(本小题满分13分)解:(Ⅰ)由题设可知,0.085500200a =⨯⨯=,0.02550050b =⨯⨯=. ……………2分(Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=,第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=,16. (北京市西城区2012年4月高三第一次模拟文)(本小题满分13分)某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.11(,)a a ,),(21a a ,),(11b a ,),(21b a ,),(31b a , ),(12a a ,22(,)a a ,),(12b a ,),(22b a ,),(32b a , ),(11a b ,),(21a b ,11(,)b b ,),(21b b ,),(31b b , ),(12a b ,),(22a b ,21(,)b b ,22(,)b b ,),(32b b ,),(13a b ,),(23a b ,31(,)b b ,),(23b b ,33(,)b b ,共25种. …9分2次发言的学生恰好来自不同班级的基本事件为:),(11b a ,),(21b a ,),(31b a ,),(12b a ,),(22b a ,),(32b a ,),(11a b ,),(21a b ,),(12a b ,),(22a b ,),(13a b ,),(23a b ,共12种. ………12分所以2次发言的学生恰好来自不同班级的概率为1225P =. ……13分(16)(共13分)解:(Ⅰ)由题设知,X的可能取值为10,5,2,3-. …………2分(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=,(3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =. ……10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分(16) (北京市东城区2012年4月高考一模文科)(本小题共13分)(16)(共13分)解:(Ⅰ)设三个“非低碳小区”为C B A ,,,两个“低碳小区”为,,m n …………2分用),(y x 表示选定的两个小区,{},,,,,x y A B C m n ∈,则从5个小区中任选两个小区,所有可能的结果有10个,它们是(,)A B ,(,)A C ,(,)A m ,(,)A n ,(,)B C ,(,)B m ,(,)B n ,(,)C m ,(,)C n ,(,)m n . …………5分用D 表示:“选出的两个小区恰有一个为非低碳小区”这一事件,则D 中的结果有6个,它们是:(,)A m ,(,)A n ,(,)B m ,(,)B n ,(,)C m ,(,)C n . ………7分故所求概率为63()105P D ==. …………8分 (II )由图1可知月碳排放量不超过300千克的成为“低碳族”. …………10分由图2可知,三个月后的低碳族的比例为0.070.230.460.760.75++=>,…………12分 所以三个月后小区A 达到了“低碳小区”标准. …………13分16. (2012年3月北京市丰台区高三一模文科)(本小题共13分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统(Ⅰ)求该校教师在教学中不.经常使用信息技术实施教学的概率;(Ⅱ)设经常使用信息技术实施教学,教龄在5年以下的教师为i a (i =1,2),教龄在5至10年的教师为i b (j =1,2,3,4),那么任选2人的基本事件为12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b ,12(,)b b ,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个. ……………………9分设“任选2人中恰有一人的教龄在5年以下”为事件B , ……………………10分包括的基本事件为11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b 共8个, ……………………11分 则8()15P B. ……………………13分所以恰有一人教龄在5年以下的概率是815. 16. (2012年4月北京市房山区高三一模理科(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分随机变量ξ的分布列为:………………………12分随机变量ξ的分布列为:所以334=⨯==np E ξ …………………13分。

2012年高考试题分类汇编(统计与概率)

2012年高考试题分类汇编(统计与概率)

2012年高考试题分类汇编(统计与概率分别)考点1统计考法1抽样1.(2012·四川卷·文科)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为A.101 B.808 C.1212 D.2021 2.(2012·浙江卷·文科)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为 . 3.(2012·江苏卷)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.4.(2012·福建卷·文科)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是 .5.(2012·天津卷·理科)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取所学校,中学中抽取所学校.6.(2012·山东卷·理科)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为A.7 B.9 C.10 D.15考法2统计图表1.(2012·江西卷·文科)小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为A .30%B .10%C .3%D .不能确定2.(2012·安徽卷·理科)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差3.(2012·陕西卷·理科)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙考法3数据的数字特征1.(2012·陕西卷·文科)对某商店一个月内每天的顾客人数进行了统计,得到3 4 5 6 7 8环数频数1 2 3o 3 4 5 6 7 8 环数频数 12 3 o9 乙8 6 5 08 8 4 0 0 7 5 2 8 0 0 3 1 1 2 3 4 0 2 80 2 3 3 7 1 2 4 4 8 2 3 8甲乙食品开支30%储蓄30%通讯开支5% 娱乐开支10% 日常开支20%鸡蛋 牛奶肉类 蔬菜 其他3040 1008050样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是A .46,45,56B .46,45,53C .47,45,56D .45,47,532.(2012·广东卷·文科)由正整数组成的一组数据1x ,2x ,3x ,4x ,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列) 3.(2012·山东卷·文科)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是A .众数B .平均数C .中位数D .标准差 考法4样本估计总体则样本数据落在区间[10,40)的频率为A .0.35B .0.45C .0.55D .0.65 2.(2012·广东卷·理科)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.x12 3 4 5 62 5 0 23 3 1 24 4 8 95 5 5 7 7 8 8 9 0 0 1 1 4 7 9 1 7 83.(2012·山东卷·文科)右图是根据部分城市某年6月份的平均气温(单位:C)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5C的城市个数为11,则样本中平均气温不低于25.5C的城市个数为 .4.(2012·广东卷·文科)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (Ⅰ)求图中a的值;(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;(Ⅲ)若这100名学生语文成绩某项分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90) :x y1:12:13:44:5考点2概率分布1.(2012·重庆卷·文科)甲、乙两人轮流投篮,每人每次投一球.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.90600.02o0.030.04组距/频率70 80 10050成绩(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率.2.(2012·重庆卷·理科)甲、乙两人轮流投篮,每人每次投一球.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.3.(2012·大纲全国卷·理科)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。

2012年高考数学 高考试题+模拟新题分类汇编专题K 概率 文

2012年高考数学 高考试题+模拟新题分类汇编专题K 概率 文

K 概率K1 随事件的概率12.K1[2012·某某卷] 从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是________. 12.25[解析] 从边长为1的正方形的中心和顶点这五点中,随机选取两点,共有10种取法,该两点间的距离为22的有4种,所求事件的概率为 P =410=25.K2 古典概型15.K2[2012·某某卷] 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).15.15[解析] 6节课共有A 66=720种排法,相邻两节文化课间至少间隔1节艺术课排法有A 33A 34=144种排法,所以相邻两节文化课间至少间隔1节艺术课的概率为144720=15. 18.K2[2012·某某卷] 如图1-6,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O 共面的概率.18.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种;y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种;z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种;所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这个6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P =220=110. (2)选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P =1220=35. 10.K2[2012·某某卷] 袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.4510.B [解析] 用列举法可得:从袋中任取两球有15种取法,其中一白一黑共有6种取法,由等可能事件的概率公式可得p =615=25. 15.I1、K2[2012·某某卷] 某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.15.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以P (B )=315=15. 18.K2、B10、I2[2012·课标全国卷] 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.18.解:(1)当日需求量n ≥17时,利润y =85.当日需求量n <17时,利润y =10n -85.所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧ 10n -85,n <17,85,n ≥17(n ∈N ).(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4. ②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.17.I2、K2[2012·某某卷] 某校100名学生期中考试语文成绩的频率分布直方图如图1-4所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.17.解:(1)由频率分布直方图可知(0.04+0.03+0.02+2a )×10=1.所以a =0.005.(2)该100名学生的语文成绩的平均分约为x =0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.(3)由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:100-(5+20+40+25)=10.17.D2、D3、K2[2012·某某卷] 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2).故所求的概率P =29. 6.K2[2012·某某卷] 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.6.35[解析] 本题考查等比数列的通项公式的运用以及古典概型的求解.解题突破口为等比数列通项公式的运用. 由通项公式a n =1×(-3)n -1得,满足条件的数有1,-3,-33,-35,-37,-39,共6个,从而所求概率为P =35. 19.I4、K2[2012·某某卷] 电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:图1-6将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷 体育迷 合计男女合计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2, P (χ2≥k )0.05 0.01 k 3.841 6.63519.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”为25人,从而完成2×2列联表如下:非体育迷 体育迷 合计男 30 15 45女 45 10 55合计 75 25 100将2×2列联表中的数据代入公式计算,得χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=100×30×10-45×15275×25×45×55=10033≈3.030. 因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5个,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}.其中a i 表示男性,i =1,2,3,b j 表示女性,j =1,2.Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A 表示“任选2人中,至少有1人是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},事件A 由7个基本事件组成,因而P (A )=710.18.K2[2012·某某卷] 袋中有五X 卡片,其中红色卡片三X ,标号分别为1,2,3;蓝色卡片两X ,标号分别为1,2.(1)从以上五X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一X 标号为0的绿色卡片,从这六X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率.18.解:(1)标号为1,2,3的三X 红色卡片分别记为A ,B ,C ,标号为1,2的两X 蓝色卡片分别记为D ,E .从五X 卡片中任取两X 的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ).共10种.由于每一X 卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五X 卡片中任取两X ,这两X 卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两X 卡片颜色不同且它们的标号之和小于4的概率为310. (2)记F 为标号为0的绿色卡片,从六X 卡片中任取两X 的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一X 卡片被取到的机会均等,因此这此基本事件的出现是等可能的.从六X 卡片中任取两X ,这两X 卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两X 卡片颜色不同且它们的标号之和小于4的概率为815. 19.I2、K2[2012·某某卷] 假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.19.解:(1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为14. (2)根据抽样结果,寿命大于200小时的产品有75+70=145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529. K3 几何概型11.K3[2012·某某卷] 在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( )A.16B.13C.23D.4511.C [解析] 本小题主要考查几何概型.解题的突破口为弄清是长度之比、面积之比还是体积之比.令AC =x ,CB =12-x ,这时的面积为S =x (12-x ),根据条件S =x (12-x )>20⇒x 2-12x+20<0⇒2<x <10,矩形面积大于20 cm 2的概率P =10-212=23,故而答案为C. 10.K3[2012·某某卷] 如图1-3,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.12-1πB.1πC .1-2π D.2π10.C [解析] 如下图所示,不妨设扇形的半径为2a ,S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =14π(2a )2=πa 2①, 而S 1+S 3与S 2+S 3的和恰好为一个半径为a 的圆的面积,即S 1+S 3+S 2+S 3=πa 2②.由①-②得S 3=S 4;又由图可知S 3=S 扇形EOD +S 扇形COD -S 正方形OEDC =12πa 2-a 2, 所以S 阴影=πa 2-2a 2.故由几何概型概率公式可得,所求概率P =S 阴影S 扇形OAB =πa 2-2a 2πa 2=1-2π.故选C. 3.E5、K3[2012·卷] 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22C.π6D.4-π43.D [解析] 础知识.如图所示,P =S 2S =S -S 1S =4-π4. K4 互斥事件有一个发生的概率17.K4[2012·某某卷] 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14. 因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710. 故一位顾客一次购物的结算时间不超过2分钟的概率为710. 18.K4、K5[2012·某某卷] 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响. (1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.18.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫123 =1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3)=P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)·P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427. K5 相互对立事件同时发生的概率20.K5[2012·全国卷] 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)求开始第5次发球时,甲得分领先的概率.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2;A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48,P (B )=P (A 0·A +A 1·A )=P (A 0·A )+P (A 1·A )=P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4)=0.352.(2)P (B 0)=0.62=0.36,P (B 1)=2×0.4×0.6=0.48,P (B 2)=0.42=0.16,P (A 2)=0.62=0.36.C =A 1·B 2+A 2·B 1+A 2·B 2P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2)=P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2)=P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.18.K4、K5[2012·某某卷] 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响. (1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.18.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3). (1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫123 =1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3)=P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)·P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427. K6 离散型随机变量及其分布列22.K6[2012·某某卷] 设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).22.解:(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=8×366=411. (2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P (ξ=2)=6C 212=111, 于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611, 所以随机变量ξ的分布列是因此E (x )=1×611+2×111=6+211. K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布17.K8、I1、I2[2012·卷] 近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.注:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数17.解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23. (2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601000=0.7, 所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x = 13(a +b +c )=200, 所以s 2=13[(600-200)2+(0-200)2+(0-200)2]=80 000. K9 单元综合17.K9[2012·某某卷] 某居民小区有两个相互独立的安全防X 系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p . (1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.17.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950. 解得p =15. (2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么P (D )=C 23110·⎝ ⎛⎭⎪⎫1-1102+⎝ ⎛⎭⎪⎫1-1103=9721000=243250. 答:系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250. 2012模拟题1.[2012·某某重点中学联考] 两个袋中各装有编号为1,2,3,4,5的5个小球,分别从每个袋中摸出一个小球,所得两球编号数之和小于5的概率为________.1.625[解析] 总的取球结果有n =5×5=25个,满足两球编号之和小于5的试验结果有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个,故所求概率为P =625.2.[2012·某某一中月考] 已知向量a =(m ,n ),b =(1,-1),其中m ,n ∈{1,2,3,4,5},则a 与b 的夹角能成为直角三角形内角的概率是________.2.35 [解析] 因为a 与b 夹角为直角三角形的内角,因此有0≤a ·b |a||b|=m -n 2×m 2+n 2<1,∴⎩⎪⎨⎪⎧ m ≥n ,m 2+n 2>-2mn ,∴m ≥n .而所有的情况共有25种,而m ≥n ,有5+4+3+2+1=15,故概率为35.3.[2012·某某质检] 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为________.3.34[解析] 因为符合条件的有“甲第一局就赢”和“乙赢一局后甲再赢一局”,由于两队获胜概率相同,即为12,则第一种的概率为12,第二种情况的概率为12×12=14,由加法计数原理得结果为34.4.[2012·某某质量评估] 由不等式组⎩⎪⎨⎪⎧ 0≤x ≤2,y ≥t ,x -y +5≥0其中(5≤t <7)围成的三角形区域内有一个内切圆,向该三角形区域内随机投一个点,该点落在圆内的概率是________.4.(3-22)π [解析] 由不等式组可知,所围成的三角形如图,则A (t -5,t ),B (2,t ),C (2,7),则AB =7-t ,BC =7-t ,AC =2(7-t ),所以内切球半径为2r =2(7-t )-2(7-t ),即r =2-22(7-t ),所以圆的面积为S =π×6-424(7-t )2,又三角形面积为S △=12(7-t )2,由几何概型概率计算公式可得P =3-222π7-t 2127-t 2=(3-22)π.5.[2012·某某调研] 为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球 不喜爱打篮球 合计男生 5女生 10合计 50已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35. (1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:P (K 2≥k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K 2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d )5.解:(1)列联表补充如下:喜爱打篮球 不喜爱打篮球 合计男生 20 5 25女生 10 15 25合计 30 20 50(2)∵K 2=50×20×15-10×5230×20×25×25≈8.333>7.879. ∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.。

北京市2012年高考数学最新联考试题分类大汇编 概率试题解析

北京市2012年高考数学最新联考试题分类大汇编 概率试题解析

北京市2012年高考数学最新联考试题分类大汇编一、填空题:14. (2012年3月北京市朝阳区高三一模文科)已知集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.若O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,则MON ∆的面积S 与m 的关系式为 .241mm +二、解答题:16. (北京市西城区2012年1月高三期末考试理科)(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.【命题分析】本题考查随机事件的概率和独立事件的概率问题。

利用等可能事件的定义求概率,不要忘记等可能事件的两大特征:基本事件总数有限及基本事件的发生等可能.求概率的题目,找准“基本事件”很重要,因此一定要明确以什么“事件”作为基本事件,某事件A 所包含的基本事件必须与此相对应.求解等可能性事件A 的概率一般遵循如下步骤:多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.本题的第二问采用组合的知识,确定m 、n 的值。

(Ⅰ)解:记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A ,则2()7P A =. ………………2分 所以3次抽取中恰有1次抽到使用过的零件的概率12325150C ()()77343P ==. ……5分(Ⅱ)解:随机变量X 的所有取值为2,3,4. ………………7分2227C 1(2)C 21P X ===; 115227C C 10(3)C 21P X ===;2527C 10(4)C 21P X ===. ………………10分X :……………11分11010242342121217EX =⨯+⨯+⨯=. ………………13分率)(17)(本小题满分13分) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分(Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为 1. ………………………………………13分(16)(本小题满分13分)解:(Ⅰ)由题设可知,0.085500200a =⨯⨯=,0.02550050b =⨯⨯=. ……………2分(Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=,第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=,16. (北京市西城区2012年4月高三第一次模拟文)(本小题满分13分)某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.11(,)a a ,),(21a a ,),(11b a ,),(21b a ,),(31b a , ),(12a a ,22(,)a a ,),(12b a ,),(22b a ,),(32b a , ),(11a b ,),(21a b ,11(,)b b ,),(21b b ,),(31b b , ),(12a b ,),(22a b ,21(,)b b ,22(,)b b ,),(32b b ,),(13a b ,),(23a b ,31(,)b b ,),(23b b ,33(,)b b ,共25种. …9分2次发言的学生恰好来自不同班级的基本事件为:),(11b a ,),(21b a ,),(31b a ,),(12b a ,),(22b a ,),(32b a ,),(11a b ,),(21a b ,),(12a b ,),(22a b ,),(13a b ,),(23a b ,共12种. ………12分所以2次发言的学生恰好来自不同班级的概率为1225P =. ……13分(16)(共13分)解:(Ⅰ)由题设知,X的可能取值为10,5,2,3-. …………2分(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=,(3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =. ……10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分(16) (北京市东城区2012年4月高考一模文科)(本小题共13分)(16)(共13分)解:(Ⅰ)设三个“非低碳小区”为C B A ,,,两个“低碳小区”为,,m n …………2分用),(y x 表示选定的两个小区,{},,,,,x y A B C m n ∈,则从5个小区中任选两个小区,所有可能的结果有10个,它们是(,)A B ,(,)A C ,(,)A m ,(,)A n ,(,)B C ,(,)B m ,(,)B n ,(,)C m ,(,)C n ,(,)m n . …………5分用D 表示:“选出的两个小区恰有一个为非低碳小区”这一事件,则D 中的结果有6个,它们是:(,)A m ,(,)A n ,(,)B m ,(,)B n ,(,)C m ,(,)C n . ………7分故所求概率为63()105P D ==. …………8分 (II )由图1可知月碳排放量不超过300千克的成为“低碳族”. …………10分由图2可知,三个月后的低碳族的比例为0.070.230.460.760.75++=>,…………12分 所以三个月后小区A 达到了“低碳小区”标准. …………13分16. (2012年3月北京市丰台区高三一模文科)(本小题共13分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统(Ⅰ)求该校教师在教学中不.经常使用信息技术实施教学的概率;(Ⅱ)设经常使用信息技术实施教学,教龄在5年以下的教师为i a (i =1,2),教龄在5至10年的教师为i b (j =1,2,3,4),那么任选2人的基本事件为12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b ,12(,)b b ,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个. ……………………9分设“任选2人中恰有一人的教龄在5年以下”为事件B , ……………………10分包括的基本事件为11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b 共8个, ……………………11分 则8()15P B. ……………………13分所以恰有一人教龄在5年以下的概率是815. 16. (2012年4月北京市房山区高三一模理科(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分随机变量ξ的分布列为:………………………12分随机变量ξ的分布列为:所以334=⨯==np E ξ …………………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考真题理科数学解析汇编:概率一、选择题1 .(2012年高考(辽宁理))在长为12cm 的线段AB 上任取一点 C .现作一矩形,领边长分别等于线段AC,CB 的长,则该矩形面积小于32cm 2的概率为 ( ) A .16B .13C .23D .452 .(2012年高考(湖北理))如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 ( ) A .21π- B .112π-C .2πD .1π3 .(2012年高考(广东理))(概率)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 ( )A .49B .13C .29D .194 .(2012年高考(北京理))设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 ( )A .4π B .22π- C .6πD .44π-5 .(2012年高考(上海理))设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则 ( )A .1ξD >2ξD .B .1ξD =2ξD .C .1ξD <2ξD .D .1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.二、填空题6 .(2012年高考(上海理))三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是______(结果用最简分数表示).7 .(2012年高考(上海春))某校要从2名男生和4名女生中选出4人担任某游泳赛事的志愿者工作,则在选出的志愿者中,男、女都有的概率为______(结果用数值表示).8 .(2012年高考(江苏))现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是____.9 .(2012年高考(新课标理))某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从 正态分布2(1000,50)N ,且各个元件能否正常相互独立,那么该部件的使用寿命 超过1000小时的概率为_________三、解答题10.(2012年高考(天津理))现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率:(Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.11.(2012年高考(新课标理))某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列, 数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝? 请说明理由.元件1元件2元件312.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).13.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望14.(2012年高考(四川理))某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为110和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.15.(2012年高考(陕西理))某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.16.(2012年高考(山东理))先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为3 4 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望E X.17.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望()E X和方差()D X.附:2 2112212211212(), n n n n nn n n nχ++++-=18.(2012年高考(江西理))如图,从A 1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;(2)求V的分布列及数学期望.19.(2012年高考(江苏))设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=.(1)求概率(0)Pξ=;(2)求ξ的分布列,并求其数学期望()Eξ.20.(2012年高考(湖南理))某超市为了解顾客的购物量及结算时间等信息,安排一名员.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2 钟的概率. (注:将频率视为概率)21.(2012年高考(湖北理))根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求:(Ⅰ)工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.22.(2012年高考(广东理))(概率统计)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100. (Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.23.(2012年高考(福建理))受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:品牌甲乙首次出现故障时间x年0x<≤1x<≤2x>0x<≤2x>轿车数量(辆)2 3 45 5 45每辆利润(万元) 1 2 31.82.9将频率视为概率,解答下列问题:(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X,生产一辆乙品牌轿车的利润为2X ,分别求12,X X 的分布列;(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.24.(2012年高考(大纲理))(注意:在试题卷上作答无效.........) 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立,.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)ξ表示开始第4次发球时乙的得分,求ξ的期望.25.(2012年高考(北京理))近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾 202060(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2S 的值. (注:方差2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为12,,n x x x 的平均数)26.(2012年高考(安徽理))某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m+道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.(Ⅰ)求2=+的概率;X n(Ⅱ)设m n=,求X的分布列和均值(数学期望).2012年高考真题理科数学解析汇编:概率参考答案一、选择题 1. 【答案】C【解析】设线段AC 的长为x cm,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)32x x -<,解得48x x <>或.又012x <<,所以该矩形面积小于32cm 2的概率为23,故选C【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题.2. 考点分析:本题考察几何概型及平面图形面积求法.解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫⎝⎛=ππS .在扇形OAD 中21S 为扇形面积减去三角形OAC 面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,选A.3. 解析:D.两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为51459=.4. 【答案】D【解析】题目中0202x y ≤≤⎧⎪⎨≤≤⎪⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122244224p ππ⨯-⨯-==⨯,故选D【考点定位】 本小题是一道综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式、概率.5.[解析])(2.0543211x x x x x E ++++=ξ=t ,2221(2.0x x E +=ξ+232x x ++243x x ++254x x ++215x x +)=t ,211)[(2.0t x D -=ξ+22)(t x -+23)(t x -+24)(t x -+25)(t x -] ]5)(2)[(2.02543212524232221t t x x x x x x x x x x +++++-++++=;第8题图记1221x x x '=+,2232x x x '=+,,5215x x x '=+,同理得 2ξD ]5)(2)[(2.02543212524232221t t x x x x x x x x x x +'+'+'+'+'-'+'+'+'+'=, 只要比较2524232221x x x x x '+'+'+'+'与2524232221x x x x x ++++有大小,])()()[(221232221412524232221x x x x x x x x x x x ++++++='+'+'+'+')]22222()(2[155********52423222141x x x x x x x x x x x x x x x +++++++++=)]()()()()()(2[21252524242323222221252423222141x x x x x x x x x x x x x x x ++++++++++++++< 2524232221x x x x x ++++=,所以12ξξD D <,选A.[评注] 本题的数据范围够阴的,似乎为了与选项D 匹配,若为此范围面困惑,那就中了阴招!稍加计算,考生会发现1ξE 和2ξE 相等,其中的智者,更会发现第二组数据是第一组数据的两两平均值,故比第一组更“集中”、更“稳定”,根据方差的涵义,立得1ξD >2ξD 而迅即攻下此题.二、填空题6. [解析] 设概率p=n k,则27232323=⋅⋅=C C C n ,求k ,分三步:①选二人,让他们选择的项目相同,有23C 种;②确定上述二人所选择的相同的项目,有13C 种;③确定另一人所选的项目,有12C 种. 所以18121323=⋅⋅=C C C k ,故p=322718=.7.14158. 【答案】35.【考点】等比数列,概率.【解析】∵以1为首项,3-为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,∴从这10个数中随机抽取一个数,它小于8的概率是63=105.9. 【解析】使用寿命超过1000小时的概率为38三个电子元件的使用寿命均服从正态分布2(1000,50)N 得:三个电子元件的使用寿命超过1000小时的概率为12p =超过1000小时时元件1或元件2正常工作的概率2131(1)4P p =--=那么该部件的使用寿命超过1000小时的概率为2138p p p =⨯=三、解答题10. 【命题意图】本小题主要考查古典概型及其计算公式,互斥事件、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识.考查运用概率知识解决简单实际问题的能力.依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件(0,1,2,3i A i =,则4412()()()33i i ii P A C -=.(1)这4个人中恰有2人去参加甲游戏的概率为22224128()()()3327P A C ==.(2)设“这4人中去参加甲游戏的人数大于去参加乙游戏的人数”不事件B ,则34B A A =⋃,由于3A 与4A 互斥,故334434441211()()()()()()3339P B P A P A C C =+=+=所以这4人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能的取值为0,2,4,由于1A 与3A 互斥,0A 与4A 互斥,故2130484017(0)(),(2)()(),(4)()()278181P P A P P A P A P P A P A ξξξ=====+===+=所以ξ的分布列为ξ24p82740811781随机变量ξ的数学期望8401714802427818181E ξ=⨯+⨯+⨯=.【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键..11. 【解析】(1)当16n ≥时,16(105)80y =⨯-=当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i)X 可取60,70,80(60)0.1,(70)0.2,(80)0.7P X P X P X ====== X600.1700.2800.776EX =⨯+⨯+⨯=222160.160.240.744DX =⨯+⨯+⨯=(ii)购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯= 76.476> 得:应购进17枝12. 【解析】本题主要考察分布列,数学期望等知识点.(Ⅰ) X 的可能取值有:3,4,5,6.35395(3)42C P X C ===; 21543920(4)42C C P XC ===; 12543915(5)42C C P X C ===; 34392(6)42C P XC ===.故,所求X 的分布列为X 3456P54220104221= 1554214= 214221=(Ⅱ) 所求X 的数学期望E (X )为:E (X )=6413()3i i P Xi =⋅==∑.【答案】(Ⅰ)见解析;(Ⅱ) 133.13. 【考点定位】本题考查离散随机变量的分布列和期望与相互独立事件的概率,考查运用概率知识解决实际问题的能力,相互独立事件是指两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式.解:设,k k A B 分别表示甲、乙在第k 次投篮投中,则()13k P A =,()12k P B =, ()1,2,3k ∈(1)记“甲获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知,()()()()111211223P C P A P A B A P A B A B A =++()()()()()()()()()111211223P A P A P B P A P A P B P A P B P A =++2212112113323323⎛⎫⎛⎫=+⨯⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 11113392727=++=(2)ξ的所有可能为:1,2,3由独立性知:()()()111121213323P P A P A B ξ==+=+⨯=()()()2211211222112122323329P P A B A P A B A B ξ⎛⎫⎛⎫==+=⨯⨯+= ⎪ ⎪⎝⎭⎝⎭ ()()2211222113329P P A B A B ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭综上知,ξ有分布列从而,221131233999E ξ=⨯+⨯+⨯=(次)14. [解析](1)设:“至少有一个系统不发生故障”为事件C,那么1-P(C)=1-101P=5049 ,解得P=514 分(2)由题意,P(ξ=0)=1000110133=)(CP(ξ=1)=1000271011101213=-)()(C P(ξ=2)=10002431011101223=-)()(C P(ξ=3)=10007291011101333=-)()(C所以,随机变量ξ的概率分布列为:故随机变量X 的数学期望为:E ξ=0102710007293100024321000271100010=⨯+⨯+⨯+⨯.[点评]本小题主要考查相互独立事件,独立重复试验、互斥事件、随机变量的分布列、数学期望等概念及相关计算,考查运用概率知识与方法解决实际问题的能力. 15.解析:设Y 表示顾客办理业务所需的时间,用频率估计概率,得Y 的分布列如下:Y 1 2 3 4 5 P0.10.40.30.10.1(1)A 表示事件“第三个顾客恰好等待4分钟开始办理业务”,则事件A 对应三种情形: ①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以()(1)(3)(3)(1)(2)(2)P A P Y P Y P Y P Y P Y P Y ===+==+==0.10.30.30.10.40.40.22=⨯+⨯+⨯=(2)解法一 X 所有可能的取值为0,1,20X =对应第一个顾客办理业务所需的时间超过2分钟,所以(0)(2)0.5P X P Y ==>=1X =对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟. 所以(1)(1)(1)(2)P X P Y P Y P Y ===>+=0.10.90.40.49=⨯+=2X =对应两个顾客办理业务所需时间均为1分钟,所以(2)(1)(1)0.10.10.01P X P Y P Y =====⨯= 所以X 的分布列为X 0 1 2 P0.50.490.0100.510.4920.010.51EX =⨯+⨯+⨯=解法二 X 所有可能的取值为0,1,20X =对应第一个顾客办理业务所需的时间超过2分钟,所以(0)(2)0.5P X P Y ==>=2X =对应两个顾客办理业务所需时间均为1分钟,所以(2)(1)(1)0.10.10.01P X P Y P Y =====⨯=(1)1(0)(2)0.49P X P X P X ==-=-==所以X 的分布列为X0 1 2P 0.5 0.49 0.0100.510.4920.010.51EX =⨯+⨯+⨯= 16.解析:(Ⅰ)367323141)31(43122=⋅⋅⋅+⋅=C P ; (Ⅱ)5,4,3,2,1,0=X91323141)2(,121)31(43)1(.361)31(41)0(1222=⋅===⋅===⋅==C X P X P X P , 1)2(3)5(,1)2(1)4(,1213)3(2212=⋅===⋅===⋅==X P X P C X PEX=0×361+1×121+2×91+3×31+4×91+5×31=12531241=.17. 【答案及解析】(I)由频率颁布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:由2×2列联表中数据代入公式计算,得:因为3.030<3.841,所以,没有理由认为“体育迷”与性别有关.(II)由频率颁布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14,由题意,,从而X 的分布列为:【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望()E X和方差()D X,考查分析解决问题的能力、运算求解能力,难度适中.准确读取频率分布直方图中的数据是解题的关键.18. . 【解析】解:(1)从6个点中随机地选取3个点共有3620C=种选法,选取的3个点与原点O在同一个平面上的选法有133412C C=种,因此V=0的概率123 (0)205 P V===(2)V的所有可能值为11240,,,,6333,因此V的分布列为V 0 16132343P 35120320320120由V的分布列可得:EV=3111323419 0562032032032040⨯+⨯+⨯+⨯+⨯=【点评】本题考查组合数,随机变量的概率,离散型随机变量的分布列、期望等. 高考中,概率解答题一般有两大方向的考查.一、以频率分布直方图为载体,考查统计学中常见的数据特征:如平均数,中位数,频数,频率等或古典概型;二、以应用题为载体,考查条件概率,独立事件的概率,随机变量的期望与方差等.来年需要注意第一种方向的考查. 19. 【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有238C对相交棱.∴232128834 (0)=6611CPCξ⨯===.(2)若两条棱平行,则它们的距离为1,的共有6对,∴212661(6611PCξ===,416(1)=1(0)(=111111P P Pξξξ=-=-=--.∴随机变量ξ的分布列是:ξ01()Pξ411611111∴其数学期望61()=1=111111Eξ⨯+.【考点】概率分布、数学期望等基础知识.【解析】(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率(0)Pξ=.(2)的共有6对,即可求出(Pξ=,从而求出(1)Pξ=(两条棱平行且距离为1和两条棱异面),因此得到随机变量ξ的分布列,求出其数学期望. 20. 【解析】(1)由已知,得251055,35,y x y++=+=所以15,20.x y==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X=========201101( 2.5),(3).100510010p X p X======XX的数学期望为33111()1 1.52 2.53 1.920104510E X=⨯+⨯+⨯+⨯+⨯=.(Ⅱ)记A为事件“该顾客结算前的等候时间不超过2 钟”,(1,2)iX i=为该顾客前面第i位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X===+==+==且且且.由于顾客的结算相互独立,且12,X X的分布列都与X的分布列相同,所以121212 ()(1)1)(1)( 1.5)( 1.5)(1) P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=.故该顾客结算前的等候时间不超过2 钟的概率为980.【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知251010055%,35,y x y++=⨯+=从而解得,x y,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得 该顾客结算前的等候时间不超过...2 钟的概率. 21.考点分析:本题考察条件概率、离散型条件概率分布列的期望与方差.解析:(Ⅰ)由已知条件和概率的加法公式有:(300)0.3,P X <=(300700)(700)(300)0.70.30.4P X P X P X ≤<=<-<=-=, (700900)(900)(700)0.90.70.2P X P X P X ≤<=<-<=-=. (900)1(900)10.90.1P X P X ≥=-<=-=.所以Y 的分布列为:于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=;2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=.故工期延误天数Y 的均值为3,方差为9.8. (Ⅱ)由概率的加法公式,(300)1(300)0.7P X P X ≥=-<=,又(300900)(900)(300)0.90.30.6P X P X P X ≤<=<-<=-=. 由条件概率,得(6300)(900300)P Y X P X X ≤≥=<≥(300900)0.66(300)0.77P X P X ≤<===≥.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.22.解析:(Ⅰ)由()0.00630.010.054101x ⨯+++⨯=,解得0.018x =.(Ⅱ)分数在[)80,90、[]90,100的人数分别是500.018109⨯⨯=人、500.006103⨯⨯=人.所以ξ的取值为0、1、2.()023921236606611C C P C ξ====,()113921227916622C C P C ξ====,()20392123126622C C P C ξ====,所以ξ的数学期望是691111012112222222E ξ=⨯+⨯+⨯==.23. 【考点定位】本题主要考查古典概型、互斥事件的概率、离散型随机变量的分布列、数学期望等基础知识,考查数据处理能力、应用意识、考查必然与或然思想. 解:(1)设“品牌轿车甲首次出现故障在保修期内”为事件A ,则231()5010P A +==.(2)依题意12,X X 的分布列分别如下:ABC D PEF图 ①G5341X12 3p125350910(3)由(2)得1139()123 2.86255010E X =⨯+⨯+⨯=219() 1.8 2.9 2.791010E X =⨯+⨯=12()()E X E X >,所以应生产甲品牌的轿车.24. 【命题意图】本试题主要是考查了独立事件的概率的求解,以及分布列和期望值的问题.首先要理解发球的具体情况,然后对于事件的情况分析、讨论,并结合独立事件的概率求解结论. 解:记iA 为事件“第i 次发球,甲胜”,i=1,2,3,则123()0.6,()0.6,()0.4P A P A P A ===.(Ⅰ)事件“开始第4次发球时,甲、乙的比分为1比2”为123123123A A A A A A A A A ++,由互斥事件有一个发生的概率加法公式得123123123()P A A A A A A A A A ++0.60.40.60.40.60.60.40.40.4=⨯⨯+⨯⨯+⨯⨯0.352=.即开始第4次发球时,甲、乙的比分为1比2的概率为0.352 (Ⅱ)由题意0,1,2,3ξ=.123(0)()0.60.60.40.144P P A A A ξ===⨯⨯=;123123123(1)()P P A A A A A A A A A ξ==++0.40.60.40.60.40.40.60.60.6=⨯⨯+⨯⨯+⨯⨯=0.408;(2)0.352P ξ==;123(3)()0.40.40.60.096P P A A A ξ===⨯⨯=所以0.40820.35230.096 1.4E ξ=+⨯+⨯=2X1.82.9p110910【点评】首先从试题的选材上来源于生活,同学们比较熟悉的背景,同时建立在该基础上求解进行分类讨论的思想的运用,以及能结合独立事件的概率公式求解分布列的问题.情景比较亲切,容易入手,但是在讨论情况的时候,容易丢情况.25. 【考点定位】此题的难度集中在第三问,其他两问难度不大,第三问是对能力的考查,不要求证明,即不要求说明理由,但是要求学生对方差意义的理解非常深刻.(1)由题意可知:4002=6003(2)由题意可知:200+60+403=100010(3)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =.26. 【解析】(I)2X n =+表示两次调题均为A 类型试题,概率为12n n m nm n +⨯+++(Ⅱ)m n =时,每次调用的是A 类型试题的概率为12p =随机变量X 可取,1,2n n n ++21()(1)P X n p ==-=,1(1)2(1)P X n p p =+=-=,21(2)4P X n p =+==111(1)(2)1424E X n n n n =⨯++⨯++⨯=+ 答:(Ⅰ)2X n =+的概率为12n n m nm n +⨯+++(Ⅱ)求X 的均值为1n +。

相关文档
最新文档