超细氧化铝表面改性及其抛光特性
铝合金表面改性工艺与性能研究

铝合金表面改性工艺与性能研究近年来,随着工业技术的不断进步,铝合金作为一种轻质、高强度、耐腐蚀的材料,被广泛应用于航空航天、汽车制造等领域。
然而,尽管铝合金具有许多优点,但其表面的一些缺陷和局限性也限制了其应用。
因此,研究铝合金的表面改性工艺与性能已经成为一个热门的话题。
一、铝合金表面改性工艺的分类铝合金表面改性工艺可以分为化学改性工艺、物理改性工艺和机械改性工艺三类。
化学改性工艺主要是利用化学物质对铝合金表面进行处理,形成保护膜或改善表面性能。
常见的化学改性工艺包括阳极氧化、化学镀膜和化学抛光等。
阳极氧化是一种通过电解在铝合金表面形成氧化膜的方法,不仅可以增加表面硬度和耐腐蚀性能,还可以改善铝合金的装饰性。
化学镀膜则是通过浸泡铝合金在含有金属离子的溶液中,在表面形成一层金属镀层,以提高其耐磨损性能。
化学抛光主要是利用酸性或碱性溶液对铝合金进行溶解和腐蚀,使表面得到更好的光洁度和平整度。
物理改性工艺主要是通过物理手段改变铝合金表面的结构和形貌。
常见的物理改性工艺包括热处理、喷涂和喷砂等。
热处理是一种利用加热和冷却过程改变铝合金晶体结构和性能的方法,可以显著提高铝合金的强度和硬度。
喷涂主要是利用喷枪将涂料喷涂在铝合金表面,以增加其耐腐蚀性能和装饰性。
喷砂则是利用高速喷射砂粒将铝合金表面的氧化膜和氧化皮除去,以增加其粗糙度和增加附着力。
机械改性工艺主要是利用机械力对铝合金表面进行加工,从而改变其形貌和性能。
常见的机械改性工艺包括切削、冷压和电刷等。
切削是一种通过刀具对铝合金表面进行去材加工的方法,可以改善表面的光洁度和平整度。
冷压则是利用一定的压力对铝合金进行变形加工,以提高其机械性能和表面硬度。
电刷是利用电动机驱动金刷对铝合金表面进行刷磨,使表面得到更好的清洁度和平整度。
二、铝合金表面改性工艺的性能研究铝合金表面改性工艺对材料的性能有着重要的影响。
首先,表面改性可以显著提高铝合金的耐磨损性能。
通过改变表面的硬度和摩擦系数,可以减少表面的磨损和磨料的损伤,延长材料的使用寿命。
【精品文章】氧化铝粉应用及其相应的改性方法

氧化铝粉应用及其相应的改性方法
氧化铝粉体有较高的熔点,出色的机械强度、硬度、高电阻率和导热性能,可广泛应用于如电子设备、结构陶瓷、耐火材料、耐磨材料、抛光材料等行业。
下面简单介绍氧化铝粉几种应用及其相应的改性方法。
按其改性目的可分为:促进烧结类改性;有利于分散和稳定类改性,改善颗粒表面湿润性。
一、促进烧结类的氧化铝改性
纳米氧化铝促进氧化铝陶瓷膜支撑体烧结,氧化铝陶瓷膜支撑体是由α-氧化铝粉制成的陶瓷坯体,再经过高温烧结而成的结构材料。
α-氧化铝基本需要在1700℃烧结,能耗非常大,虽然可以通过添加一些低温原料实现降低烧结温度,但是低温烧结基本是采用液相烧结,液相物质堆积在氧化铝颗粒的颈部,强度不高,使烧结体的整体强度明显下降。
纳米氧化铝促进烧结的原理是通过溶剂热法在氧化铝颗粒表面形成一层纳米级氢氧化铝溶胶,再经低温预烧在氧化铝粉体表面形成一层纳米氧化铝涂层,利用纳米氧化铝涂层的烧结促进氧化铝颗粒间的颈部长大,实现陶瓷膜支撑体烧结而不引入其他杂质。
河南长兴实业生产的陶瓷用氧化铝粉体
二、改善颗粒表面湿润性的改性
1.氧化铝粉颗粒增韧不锈钢基材料
陶瓷颗粒增强金属基复合材料是金属复合材料的研究热点。
在耐腐蚀的不锈钢材料中加入稳定性好,高硬度,耐磨损耐腐蚀的氧化铝颗粒一方面可以弥补不锈钢耐磨性的不足,同时可以解决单一陶瓷体所带来的成型困。
氧化铝颗粒的表面改性及其在C平面(0001)蓝宝石衬底上的化学机械抛光(CMP)性质

氧化铝颗粒的表面改性及其在C平面(0001)蓝宝石衬底上的化学机械抛光(CMP)性质汪为磊;刘卫丽;白林森;宋志棠;霍军朝【摘要】为了提高氧化铝颗粒的CMP性能,本工作探索了一种合适的改性方法.同时,为了改善其化学机械性能,通过与其表面羟基的硅烷化化学反应和与Al和仲胺的络合两种作用,用N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷表面改性氧化铝颗粒.本工作给出了化学反应机理,即N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷接枝到氧化铝表面.通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)表征了改性氧化铝颗粒的组成和结构.结果表明:N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷已被成功地接枝到氧化铝颗粒的表面,导致改性比未改性的氧化铝颗粒具有更好的化学和机械性能.测试了未改性和改性的氧化铝颗粒在蓝宝石基底上的CMP性能.结果显示:改性氧化铝颗粒比未改性氧化铝颗粒有更高的材料去除速率和更好的表面质量.即,改性氧化铝颗粒在pH=10时比未改性氧化铝颗粒在pH=13.00时表现出更高的材料去除率,这将为减少设备腐蚀提供新思路.%To improve the Chemical Mechanical Polishing (CMP) performance of alumina particles in aqueous solu-tion, a suitable modification method was explored. Meanwhile, in order to improve their chemical mechanical per-formance, alumina particles were surface modified with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane through si-lanization chemical reaction with their surface hydroxyl groups and complexation with Al and secondary amine. This work gives a detailed and thorough chemical reaction mechanism that N-(2-aminoethyl)-3-aminopropyltrimethoxysilane grafted onto the surface of alumina. The compositions and structures of themodified alumina particles were character-ized by Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results supported that the N-(2-aminoethyl)-3-aminopropyltrimethoxysilane was perfectly grafted onto the surface of alumina particles, which led to the modified alumina particles with better surface chemical and mechanical properties than un-modified alumina particles. Then, CMP performance of the unmodified and modified alumina particles on the sapphire substrate was tested. The results showed that the modified alumina particles exhibited higher material removal rate (MRR) and better surface quality than unmodified alumina particle. The focus is that the modified alumina particles manifested higher MRR at pH 10.00 than the unmodified alumina particles at PH 13.00, which may open a way to reduce corrosion of equipment.【期刊名称】《无机材料学报》【年(卷),期】2017(032)010【总页数】6页(P1109-1114)【关键词】改性方法;N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷;化学机械抛光;CMP;氧化铝抛光液【作者】汪为磊;刘卫丽;白林森;宋志棠;霍军朝【作者单位】中国科学院上海微系统与信息技术研究所, 信息材料国家重点实验室, 纳米技术实验室, 上海 200050;中国科学院大学, 北京100049;上海新安纳电子科技有限公司, 上海 201506;中国科学院上海微系统与信息技术研究所, 信息材料国家重点实验室, 纳米技术实验室, 上海 200050;上海新安纳电子科技有限公司, 上海201506;上海新安纳电子科技有限公司, 上海 201506;中国科学院上海微系统与信息技术研究所, 信息材料国家重点实验室, 纳米技术实验室, 上海 200050;上海新安纳电子科技有限公司, 上海 201506;中国科学院上海微系统与信息技术研究所, 信息材料国家重点实验室, 纳米技术实验室, 上海 200050;上海新安纳电子科技有限公司, 上海 201506【正文语种】中文【中图分类】TQ174Smart phones, tablet computers and other mobile terminal have entered lato thousands of families. For example, smart phones, with the progressof society and the development of communications, are also developing rapidly. As an integral part of mobile phone, the phone screen is the large size, high definition and high scratch resistance. At present, compared to the glass material which is mainly applied in the mobile phone screen plate, sapphire material MOHS's hardness is up to nine, whose hardness and scratch resistance are three times as much as the IPHONE with corning gorilla glass. Its unique physical and optical properties make it a choice of mobile terminal window material optimization and upgrading. In addition, with the rapid development of light emitting diodes (LED), sapphire substrate material has been given more attention. Single crystal sapphire has vastly applied as a substrate in gallium nitride (GaN) based LED which has good heat stability and chemical and mechanical properties[1-3]. The surface quality of sapphire has a vast important role in the performance ofLED devices, so that the surface of sapphire is required to be smooth and have no defects. In order to reach this goal, chemical mechanical polishing (CMP) is the only accepted global planarization technology for sapphire. Alumina, as an abrasive, has been used in sapphire substrate chemical mechanical polishing (CMP) for many years[4-6]. The alumina powder used for polishing actually has a same material with sapphire, except that the difference between polycrystalline and single crystals. However, so far, α- Al2O3 slurry is not used on a large scale on the polishing of sapphire. In the process of dispersion, Al2O3 particles are easily agglomerated, and these aggregates hard and compact and it is difficult to effectively obtain dispersion in the polishing slurry. As a result, agglomeration of alumina particles in the polishing process can easily produce scratches. These shortcomings seriously hamper the alumina polishing slurry in the application of sapphire precision polishing. In this work, to improve the CMP performance of alumina particles in aqueous solution, a modi- fication method, as a suitable method, was explored.Alumina polishing slurry was divided into alkaline and acidic polishing liquid. Compared with the alkaline pol- ishing slurry, acidic polishing slurry on equipment corro- sion is more serious, so the markets are mainly composed of alkaline polishing slurry. Yet for alkaline alumina pol- ishing slurry, alkalinity for alkaline polishing slurry has played a very important role, so the pH is 12.00 (from market research) above to boost material removal rate, which will seriously damage the equipment. So the prepa- ration of a kind of low alkaline alumina polishing slurry has become a newtopic. Surface modification[7-11] became a preferred choice. Shen, et al[11] employed Υ-aminoprop- yltriethoxysilane (APS) to modify magnetite particles. Zhang, et al[12] used Υ-aminopropyltriethoxysilane to modify ceria particles and investigated its CMP perform- ance. Tang, et al[7] modified zinc oxide (ZnO) particles with polymethacrylic acid (PMAA) in aqueous solution system. The dispersion stability of ZnO particles was cru- cially improved due to the introduction of grafted polymer on the surface of particles. Lei, et al[8–10] modified alumina particles with silica or polymer obtaining a series of modi- fied alumina particles and studied their CMP performance. As a silane coupling agent, N-(2-aminoethyl)-3-amino- propyltrimeth-oxysilane for double amino functional si- lane can change the material surface properties. In the present study, in order to reduce the alkaline of alumina slurry without lowering chemical mechanical polishing performance, we used N-(2-aminoethyl)-3-aminopropyltr- imethoxysilane to modified alumina particles. We studied the reaction mechanism of the specific modification and established a model of rationalization modification reactions, and investigated its CMP performance on c-plane (0001) sapphire substrate.N-(2-aminoethyl)-3-aminopropyltrimethoxysilane and KOH was purchased from Sinopharm Chemical Reagent Co., Ltd.. Alumina particles powder with a Primary parti- cle diameter of about 40 nm was purchased from Nan- jing new materials Co., Ltd.. All the chemicals were AR.In the work, the modified alumina particles were pre- pared in two steps. First, the N-(2-aminoethyl)-3-amino- propyltrimethoxysilane, ethanol andwater were mixed in mass ratio of 5:18: 2 in a beaker, which were stirred for 30 min for hydrolysis at 50℃. Second, the above solution were mixed with the pure alumina particles in a mass ratio of 2:5 together, which were stirred unti l the liquid will evaporate completely at 80℃, using residual heat to com- pletely evaporate the liquid. Then after several times of grinding, washing, centrifugation, we finally obtained the modified alumina particles by grinding.The quality of the sapphire wafer before and after CMP were measured by the analytical balance (METTLER TOLEDO) to calculate the material removal rate accord- ing to Eq.(1):Here, is quality variation in sapphire wafer before and after polishing, T is the material removal time of sap-phire wafer. The content of alumina particles synthe- sized through an ALFOL method. The abrasive concen- tra-tion in the slurries was maintained 5wt%. The pH of the slurries were 10.00 and 13.00 adjusted by dilute KOH (2 mol/L). The polishing experiments were carried out using a CMP tester (BRUKER CP-4), with SUBA 600 stacked pad. To get repeatable results, the initial pad was cleaned for 30 min of breakout time. The polishing process parameters were set as follows: pad rotation speed, 100 r/min; wafer rota-tion speed, 90 r/min; down force, 6 psi; feed rate of the slurry, 125 mL/min; and polishing time, 30 min; each time mass of slurry, 500 g. Polishing rate in the work was an average of two polishing runs. All experi- ments were con-ducted at room temperature.FTIR spectra were obtained on a Thermo Nicolet Nexus 470 FTIRspectrometer.Changes in the surface chemistry of the unmodified alumina and the modified alumina were studied by using an X-ray photoelectron spectroscope system (Axis Ultra, Kratos, Britain).Fourier transform infrared spectroscopy was used to characterize structure of functional groups on the surface of the alumina. In Fig. 1, unmodified alumina surface had a very weak stretching vibration mode of hydroxyl groups at 3472 cm-1 and bending vibration mode of hydroxyl groups at 1338 cm-1. It showed that the presence of hydroxyl groups on the surface of the alumina before modification. By comparing the unmodified alumina, modified alumina had a series of absorption peak at 3371 cm-1 and 3294 cm-1, 2927 cm-1 which belong to primary amine, secondary amine, reveal that alumina particles were modified successfully . After the alumina was modified, there was a special peak at 1116 cm-1 which belongs to alumino silicates that is Al–O–Si[11]. This explained the occurrence of a silanization reaction with hydroxyl groups.Another method used for structure characterization was XPS. First of all, Fig. 2 showed that survey photoelectron spectra of alumina particles before and after modification. Both the unmodified alumina and modified alumina presents peaks of Al, C, and O, while added peak of element N and Si appears for modified alumina. In addition, Table 1 showed binding energy of abrasives containing before and after modified alumina particles. By comparison, after modification of the surface of the alumina Al and O bonding energy could be reduced, which indirectly indicated that N-(2-aminoethyl)-3-aminopropyltrimethoxysilane had been successfully modified alumina surface. Finally, Table 2 gave that the composition of elements on the surface of alumina particles before and after modification. By comparison with that only elements Al, O, and C existed on the surface of unmodified alumina, element Si and N were introduced on the surface of modified alumina. The introduction of Si and N elements, the increasing of the C elements, the reduction of Al and O elements only indicated N-(2-aminoethyl)-3-aminopropyltrimethoxysilane had been successfully modified alumina surface, but did not reveal N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane modified alumina surface.To demonstrate the chemical reaction produced on the surface of alumina, modified alumina was analyzed by XPS. The spectra of the Al2p, O1s, were showed in Fig. 3 and their BE were displayed in Table 3 and Table 4. In Fig. 3, the black line (a) and the red line (b) showed the real total intensity measured by XPS test, and the red line (a) and the blue line (b) showed the total intensity after curve fitting by using the XPSPEAK software. The closer between the real result and the fitting result means more precise measurement results.The peak at the BE of 73.8 eV (Fig. 3(a)) corresponds to Al(2p) in (–Si(OCH3)2O–)xAlyand the peak at the BE of 531.10 eV (Fig. 3(b)) corresponds to O(1s) in (–Si (OCH3)2O–)xAly, which demonstrated that the first step reaction happened in the Fig. 4. The peak at the BE of 73.1 eV (Fig. 3(a)) corresponds to Al(2p) in AlN and the peak at the BE of 530.30 eV (Fig. 3(b)) corresponds to O(1s) in Al2O3 which showed that alumina atomshappened the effect of aluminum ions. It is well known that aluminum ions are complexed with amines, but aluminum atoms cannot. The secondary amine with lone pair electrons was more likely to react with aluminum ions than primary amines of small electron donor groups and tertiary amines with large steric hindrance. Why is there a complex reaction between the aluminum atom and the secondary ammonia? As the first step of the reaction in Fig. 4 occurred, the alumina binding energy on the surface of the alumina was weakened so that the change in the state of the aluminum atom.Although it could be seen in Fig. 3(a) that the area under the forestgreen line ((–Si(OCH3)2O–)xAly) was much larger than the fuchsia line (AlN), indicating that the first step was the primary role, the two-step reaction also played an important role and cannot be ignored. The above results illustrate that these two effects (Fig. 4) make N-(2-aminoethyl)- 3-aminopropyltrimethoxysilane solid alumina surface. Based on the above conclusions, Fig. 4 gave that the chemical reaction occurred in the process of modification.It is understood that abrasive loading has an important role on frictional interactions during CMP[13-14]. The friction force is wise to be seriously dependent on properties of the opposing surfaces, surface conditions, and the abrasive size, which all influence the contact area between the opposing surfaces[15]. A friction force is proportional to constant COF[16]. COF as a function of polishing time for sapphire substrates polished by unmodified alumina particles and modified alumina particles are showedin Fig. 5. In Fig. 5, it is observed that COF of sapphire CMP using modified alumina particles is higher than that of unmodified alumina particles.In order to understand the difference in polishing performance between the unmodified alumina particles and the modified alumina particles at pH 10.00 and 13.00, the MRR and RMS of sapphire substrate were shown in Table 5. It can be found that the MRR of alumina particles slurries at pH 13.00 is two times larger than that of alumina particles slurries at pH 10.00, which suggest that alkaline play a very important role. In addition, it cannot be only seen that the MRR of modified alumina particles is three times larger than that of pure alumina particles at pH 10.00, but also surface quality is better. Above all, it can be displayed that the MRR of modified alumina particles at pH 10.00 exceeded that of pure alumina particles at 13.00, which insinuated that low alkaline slurry can achieve polishing effect of high alkaline slurry, in other words, this can greatly weak the chemical corrosion effect of polishing equipment. In order to further investigate the difference in polishing performance between unmodified alumina particles and modified alumina particles, the topographical micrographs of polished sapphire substrate surfaces were tested by AFM. As shown in Fig. 6, the surface before polishing rough and Rq is about 0.900. After polishing with pure alumina particles, Rq decrease to about 0.500.However, after polishing with modified alumina particles, Rq decrease to about 0.300. In other words, the modified alumina abrasive possesses higher surface planarization than pure alumina abrasive.In this work, to improve the CMP performance of alumina particles in aqueous solution, a modification method, as a suitable method, was explored. Firstly, The alumina particles modified by N-(2-aminoethyl)- 3-aminopropyltrimethoxysilane have a better CMP performance than unmodified alumina. Secondly, FTIR only indirectly proves that N-(2-amino-ethyl)-3-aminopropyltrimethoxysilane have successful grafted on the surface of alumina particle, and XPS experiment directly proved this point. Innovatively, this paper gives a detailed chemical reaction mechanism that N-(2-aminoethyl)-3-aminopropyltrimethoxy-silane grafted onto the surface of alumina, which N-(2-aminoethyl)-3-aminopropyltrimethoxysilane through salanization reaction and complexation with Al and secondary amine firmly grafted onto the surface of alumina, in particular, complexation with Al and secondary amine is not negligiable. The consequence is that the modified alumina friction coefficient is bigger that unmodified alumina, resulting the modified alumina particles exhibit higher material removal rate and better surface quality than unmodified alumina particle. Most important of all, the focus is that the modified alumina particles manifested higher MRR at pH 10.00 than the unmodified alumina particles at pH 13.00, which will provide ideas to reduce corrosion of equipment.[1] SAITO T, HIRAYAMA T, YAMAMOTO T, et al. Lattice strain and dislocations in polished surfaces on sapphire. J. Am. Ceram. Soc., 2005, 88: 2277–2285.[2] NIU X H, LIU Y L, TAN B M, et al. Method of surface treatment onsapphire substrate. Transactions of Nonferrous Metals Society of China, 2006, 16: 732–734.[3] TAKEUCHI T, TAKEUCHI H, SOTA S, et al. Optical properties of strained AlGaN and GaInN on GaN. Jpn. J. Appl. Phys., 1997, 36: L177–L179.[4] LIMA R S, MARPLE B R. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Technol., 2007, 16: 40–63.[5] KIM K T, KOO H Y, LEE G G, et al. Synthesis of alumina nanoparticle-embedded-bismuth telluride matrix thermoelectric composite powders. Mater. Lett. , 2012, 82: 141–144.[6] ZOIS D, LEKATOU A, VARDAVOULIAS M, et al. Nanostructured alumina coatings manufactured by air plasma spraying: correlation of properties with the raw powder microstructure. J. Alloys Compd., 2010, 495: 611–616.[7] TANG E J, CHENG G X, MA X L, et al. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci., 2006, 252: 5227–5232.[8] LEI H, LU H S, LUO J B, et al. Preparation of α-alumina- g-polyacrylamide composite abrasive and chemical mechanical polishing behavior. Thin Solid Films, 2008, 516: 3005–3008.[9] LEI H, ZHANG P Z. Preparation of alumina/silica core-shell abrasives and their CMP behavior. Appl. Surf. Sci., 2007, 253: 8754–8761.[10] ZHANG Z F, LEI H. Preparation of α-alumina/polymethacrylic acidcomposite abrasive and its CMP performance on glass substrate. Microelectron. Eng., 2008, 85: 714–720.[11] SHEN X C, FANG X Z, ZHOU Y H, et al. Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superpar- amagnetic magnetite nanoparticles. Chem. Lett., 2004, 33: 1468–1469.[12] ZHANG Z F, YU L, LIU W L, et al. Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate. Appl. Surf. Sci., 2010, 256: 3856-3861.[13] HOMMA Y. Dynamical mechanism of chemical mechanical polishing analyzed to correct Preston's empirical model. J. Electroanal. Chem., 2006, 153: G587–G590.[14] MATSUDA T, TAKAHASHI H, TSURUGAYA M, et al. Characteristics of abrasive-free micelle slurry for copper CMP. J. Electrochem. Soc., 2003, 150: G532–G536.[15] ABIADE J T, CHOI W, SINGH R K. Effect of pH on ceria–silica interactions during chemical mechanical. J. Mater. Res., 2005, 20: 1139–1145.[16] LIANG H, CRAVEN D R. Tribology in Chemical–Mechanical Planarization. Taylor & Francis, Boca Raton, Fla., 2005.。
200微米 超细氧化铝 催化剂载体

200微米超细氧化铝是一种常用的催化剂载体材料,具有很高的比表面积和孔容量,是许多催化反应中的理想选择。
本文将从以下几个方面介绍200微米超细氧化铝的特性及其在催化剂领域的应用。
一、200微米超细氧化铝的特性1. 比表面积大200微米超细氧化铝具有很高的比表面积,这主要归功于其细小的颗粒大小和丰富的微孔结构。
比表面积大意味着更多的活性位点可以暴露在外表面上,从而提高催化剂的催化性能。
2. 孔容量大200微米超细氧化铝的孔容量也比较大,这使得其可以有效地承载催化剂活性物质,增加催化反应的活性。
孔容量的大小也直接影响着200微米超细氧化铝的吸附性能,使得其在气体吸附和催化反应中表现出色。
3. 热稳定性好200微米超细氧化铝具有良好的热稳定性,能够在高温下保持稳定的物理和化学性质。
这使得其在高温催化反应中表现出色,如汽油裂解和化学气相沉积等。
二、200微米超细氧化铝在催化剂领域的应用1. 环氧烷基化反应环氧烷基化反应是一种重要的有机合成反应,常用于生产农药、医药等产品。
200微米超细氧化铝作为载体材料,能够有效地支撑金属催化剂,提高其分散性和稳定性,从而提高环氧烷基化反应的选择性和收率。
2. 甲醇转化制备烯烃甲醇转化制备烯烃是一种重要的工业化学过程,而200微米超细氧化铝则常用作载体材料,能够承载多种催化剂,如钼、钴等,提高其催化活性和稳定性,从而提高甲醇转化制备烯烃的效率和产率。
3. 低温催化氧化低温催化氧化是一种重要的环境保护反应,能够将废气中的有害物质氧化为无害物质。
200微米超细氧化铝可以作为载体材料,在催化剂的表面提供足够的活性位点,从而加速氧化反应的进行,降低反应温度,提高能源利用率。
三、200微米超细氧化铝的制备方法1. 溶胶-凝胶法溶胶-凝胶法是制备200微米超细氧化铝的常用方法之一。
选择合适的氧化铝前驱体,如铝硝酸盐或铝醇酸盐等,溶解于适当的溶剂中,形成溶胶;然后通过加热或加入催化剂等方法,使溶胶发生凝胶化反应,形成氧化铝凝胶;将氧化铝凝胶经过洗涤、干燥等步骤,得到200微米超细氧化铝粉末。
氧化铝表面处理实验

氧化铝表面处理实验及其效果评定氢氧化铝受热放出三个结晶水,同时吸收大量热,是一咱质优价廉的无机消烟阻燃剂。
在塑料、橡胶中填加氢氧化铝,不仅具有阻燃、降低产品成本、增加产品白度的多重作用,其受热产生的水蒸汽还可稀释可燃气体浓度,使制品具有低发烟性能,和氯化石蜡、碳酸钙等受热产生有毒窒息性气体的阻燃剂相比,具有无可双拟的优势,是生产低烟无卤电缆、装饰材料的首选阻燃材料。
为了充分发挥氢氧化铝的阻燃性能和低发烟性能,许多塑料(橡胶)要求氢氧化铝有较大的填充量,但氢氧化铝填充量的增大会引发填充体系加工性能和机械强度大幅下降,模具麻损加在。
用硅烷、钛酸酯等偶联剂对氢氧化铝进行表面处理,较贺满地解决了这一问题,拓宽了氢氧化铝阻燃剂的应用范围。
表面处理氢氧化铝,在国内已逐步产业化,但各厂家的质量指标,仅有化学民分,白度,粒度几方面,与一般超细氢氧化铝无异,其表面改性的质量优劣,往往是由专业检测单位或使用厂家加入塑料等填充体系中,测试成型制品氧指数、机械性能来判定,所需检测设备复杂、检测周期长、费用昂贵,不能适应连续化生产的需要。
笔者在对表面处理氢氧化铝进行优化试验的过程中,验证了几种简单易行的表面化学评定方法,为制定表面处理氢氧化铝产品质量标准提供了一种途径。
一、表面处理试验1.1 原料:超细氢氧化铝:氢氧化铝含量〉96.5%平均粒度:4.66um白度95偶联剂:硅烷、钛酸酯、G-3、G-4、G-5,1.2 实验步骤:1)将氢铝倒入SHR型高速混合机高速搅拌,利用其自磨擦预热至一定温度2)根据偶然剂性质,分数次缓慢洒入或雾状喷入偶联剂3)继续高速混合一定时间,在较高温度内完成氢铝与偶联剂反应过程。
由此得到五种不同偶联剂表面处理氢氧化铝样品,分别定名为GAH-1,GAH-2,GAH-3,GAH-4,和GAH-5。
二、表面处理效果评定2.1 沉降性能:沉降性能主要是指粒子大溶剂中的沉降时间。
极性粒子易分散于与之能润湿的极性溶剂中,悬浮液较稳定,沉降时间较长,而在非极性液体中易于聚集,反之亦然。
CT136对超细氧化铝粉体的表面改性

采用欧几里德距离公式是一种相对简单而且容易实现 ,计
Al2O3 在 PTFE 基体中能较均匀分散 ,充分发挥了纳米效应 ,增 强转移膜对偶件表面的结合 ,提高了复合材料的承载能力 。
目前国内对于超细氧化铝粉体表面改性的研究很重视 ,超 细氧化铝粉以其热膨胀系数小 ,热导率高 、耐化学腐蚀等特点越 来越广泛应用在聚合物复合材料领域中 。为此 ,作者从实验方 法 、偶联剂用量 、最佳改性时间几方面对偶联剂 CT136 表面改性 超细 Al2O3 粉进行了研究 。根据红外光谱图的分析得出偶联剂 在粉体粒子表面产生化学吸附 ,从而使填料表面有机化 ,改变了 填料的表面性质 。
[ 关键词 ] 超细氧化铝 ;表面改性 ;偶联剂 [ 中图分类号 ]TQ630. 6 [ 文献标识码 ]B [ 文章编号 ]1001 - 3660 (2005) 04 - 0073 - 03
Surface Modification of CT136 to Superfine Alumina Po wder
2000 , (2) :124 [7 ] 山西化工研究所编. 塑料橡胶加工助剂 [ M] . 北京 : 化学工业出版
社. 1983 ,6402641
(上接第 72 页)
其中 , Hq 为待识别试样图像颜色直方图 , Ht 为库中标准图 像颜色直方图 , hq [ ci ]和 ht [ ci ]分别是待识别图像和标准图像 第 i 种颜色像素的频数 。
图 3 偶联剂 CT136 红外光谱图
1. 2. 2 偶联剂用量实验 实验温度为室温 ,实验方法与样品 2 的相同 。将改性后的
样品进行活化指数测定 ,活化指数随偶联剂加入量的变化见图 1。
由图可知 ,随着偶联剂加入量的增加 ,粉体的活化指数逐渐 增大 ,当偶联剂加入量达到粉体质量的 1. 8 %时 ,活化指数值接 近 100 %并趋于稳定 。因此 ,本实验偶联剂的最佳用量为1. 8 %。
铝合金材料的表面改性及性能研究
铝合金材料的表面改性及性能研究铝合金是一种重要的工业材料,使用广泛,但其表面容易受到氧化或腐蚀的影响,因此需要进行表面改性来提高其性能和使用寿命。
一、铝合金表面的氧化和腐蚀性铝合金的表面容易受到氧化和腐蚀的影响,这会导致其性能受损。
首先是氧化,铝合金表面生成的氧化物层会影响其表面特性,减少其表面的活性和附着力,使其易于剥离和脱落。
其次是腐蚀,铝合金表面的腐蚀会使其表面变得不均匀,降低其表面硬度和滑动性,影响其使用寿命。
二、表面改性的方法为了提高铝合金的性能和使用寿命,可以采用各种表面改性方法。
这些改性方法可以分为物理方法和化学方法两类。
1.物理方法物理方法是通过物理手段对铝合金表面进行改性,主要包括机械处理、磨削、抛光、涂层等。
机械处理是利用机械手段对铝合金表面进行切削、研磨等处理,使其表面光滑度和平整度提高,降低其表面粗糙度,从而减少氧化和腐蚀的影响。
磨削和抛光也是常用的表面改性方法。
在磨削过程中,使用相应的磨削工具对铝合金表面进行磨削,以去除表面的氧化物和腐蚀层,使其表面平整度和粗糙度得到提高。
涂层是一种在铝合金表面上形成保护层的方法,常见的涂层包括喷涂、电镀和化学镀等。
涂层可以形成一层保护膜来保护铝合金表面,从而减少氧化和腐蚀的影响。
2.化学方法化学方法是利用化学手段对铝合金表面进行改性,主要包括阳极氧化、电化学抛光、离子注入等。
阳极氧化是利用电化学原理,在铝合金表面形成一层厚度大约为10~50 微米的氧化层,从而提高铝合金表面的硬度和耐腐蚀性。
电化学抛光是通过利用电化学原理,利用铝合金表面的电化学反应进行抛光,使得铝合金表面光滑度和平整度得到提高。
离子注入是一种将离子注入到铝合金表面的方法,可以通过控制离子注入的深度和浓度来改变铝合金表面的化学成分和结构,从而提高其硬度和耐腐蚀性。
三、改性后的铝合金性能经过表面改性后,铝合金的性能得到了明显的提高。
改性后的铝合金表面光滑度和平整度得到了提高,降低了表面粗糙度,从而降低了氧化和腐蚀的影响。
氧化铝复合磨粒的抛光特性研究
Ab ta tI r e o e h n e te d s eso tb l y o l mia a rsv n r v n g lmeain i h mia — sr c :n od rt n a c h ip rin sa ii fau n a ie a d p e e ta go rto n c e c lme t b
雷 红 卢 海参 严 琼林 褚 风灵 丘海能
( . 上 海 大 学 纳 米 中心 1 上海 20 4 ;2 深圳 开 发磁 记 录股 份 有 限 公 司 04 4 . 广 东 深圳 5 8 3 ) 10 5
摘要:为提高氧化铝磨料分散稳定性 ,利用接枝聚合对氧化铝粒子进行 了表面改性 ,并研究 了改性后氧化铝粒子在
hn efr n e fh rprdau n o p st a rsv ndgt o at i C ig p r ma c s epe ae lmiac m oi baieo i a cmp c s o ot e i l d c( D)gassb t t w r n et a ls u sr e eeiv s g — a i
i dc tst a lmi ap rilswi atn d f ain h v etrd s e in sa i t h n t a n d f d. h o i— n ia e h tau n a ce t g f ig mo ii t a e b te ip r o tbl y t a h tu mo ii T e p l t hr c o s i e s
国产氧化铝粉体的改性及其烧结性能研究
国产氧化铝粉体的改性及其烧结性能研究
王利;周国红;徐初阳;陈晨;王士维
【期刊名称】《中国材料进展》
【年(卷),期】2011(030)001
【摘要】通过某国产氧化铝粉体的研磨和分散,得到颗粒粒度分布窄、颗粒大小均匀的氧化铝粉体;添加氧化镁为烧结助剂,分别进行无压烧结和真空烧结,研究了烧结温度对氧化铝陶瓷的相对密度、显微结构、抗弯强度和直线透过率的影响.在1 500℃无压烧结样品晶粒尺寸为2-3 μm,抗弯强度达到545 MPa; 1 850℃真空烧结样品的晶粒尺寸为20-30 μm,直线透过率(600 nm)达到32%.
【总页数】5页(P41-45)
【作者】王利;周国红;徐初阳;陈晨;王士维
【作者单位】安徽理工大学,安徽,淮南,232001;中国科学院上海硅酸盐研究所,上海,200050;安徽理工大学,安徽,淮南,232001;安徽理工大学,安徽,淮南,232001;中国科学院上海硅酸盐研究所,上海,200050
【正文语种】中文
【中图分类】O614.31
【相关文献】
1.表面改性氧化铝粉体在丙酮中的电泳沉积研究 [J], 游常;张兆泉
2.超细氧化铝粉体的表面改性研究 [J], 崔海萍;闫军;叶明惠
3.司班80表面活性剂改性氢氧化铝粉体 [J], 万赈民; 郑宾国; 谢祥兵; 王佳康; 王
晶晶; 罗文凤; 周辉
4.关于行星磨粉碎的氧化铝粉污染及烧结性能研究 [J],
5.共沉淀-超临界流体干燥法合成CaO-ZrO_2复合氧化物超微粉体及其烧结性能研究(Ⅱ)粉体的烧结性能 [J], 梁丽萍;高荫本;章斌;陈诵英
因版权原因,仅展示原文概要,查看原文内容请购买。
超细氧化铝表面改性及其抛光特性
L ih n ' L i n Z a g Zea g ' Xio Ba q u Has e e Ho g h n fn a o i '
( . eerhC n r f a osi c n aot h o g ,hnh i nvr t,h nh i 0 44, h a 1R sac et n ・ e ea dN n— c nl y S aga U i sy S aga 2 04 C i ; eoN cn e o ei n
2 S h o fE vr n n a n h mia n i e r g。 h n h iUn v ri , h n h i 01 0 C i a . c o l n i me tl d C e c lE g n ei S a g a ie st S a g a 8 0, h n ; o o a n y 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Surface M od if ica tion of Ultra2f ine A l2 O3 and its Polish ing Performances
温下反应一定时间后 , 用去离子水反复离心清洗 , 直
至滤液显中性 , 然后在 80 ℃真空干燥箱中烘干 , 得
到了 A l2O3 表面接枝丙烯酸的无机 /有机复合物 。 用 KRA TOS XSAM
800 型电子能谱仪对改性
前后的超细 A l2O3 表面进 行 X 射线光电子能谱
( XPS) 分析 。测试条件 : 激发源为 MgKα, 1 25316
Lu Ha ishe n1, 2 Le i Ho ng1 Zha ng Ze fa ng1, 3 X iao B ao q i1, 2
( 1. Research Center of N ano2science and N ano2technology, Shanghai U niversity, Shanghai 200444, China; 2. Schoo l of Environmental and Chem ical Engineering, Shanghai U niversity, Shanghai 201800, China; 3. School of Science, Shanghai U niversity, Shanghai 200444, China)
由于接 枝 丙 烯 酸 的 覆 盖 作 用 , 接 枝 改 性 后 的 超 细
A l2O3 的 A l2p峰强度明显减弱 , 与之相对应的是 C1s峰 强度有了明显的增强 , 这主要是丙烯酰氯中碳的贡
献。
另外 , 改性前后电子结合能也发生了变化 , 见表
1。参比 A l2p的结合能为 7515 eV , 而改性后的 A l2p有 一个向高能方向的位移 , 其结合能为 7916 eV, 增大
图 3 超细 A l2 O3 的 SEM 照片
112 抛光试验 用 SPEEDFAM 216B 24M 抛光机 (日本 SPEEDFAM
公司制造 ) 进行抛光试验 。A l2O3 抛光液的配置 : 将 如上制得的表面改性 A l2O3 粉体配制成 5%质量分数 的溶液 , 并依次加入稳定剂 、抛光调节剂等功能性助 剂 , 搅拌均匀 , 再经分离除去大颗粒杂质 , 即得表面 改性的 A l2O3 抛光液 。抛光工件为 <180 mm 钠钙玻璃 基片 。抛光垫为 RODEL 公司生产 , 其表面是一层具 有多孔性结构的高分子材料 。抛光后 , 工件在含表面 活性剂的清洗液中用超声波清洗 , 然后在干燥系统中 干燥 。用螺旋测微计测量抛光前后玻璃基片的厚度 , 其差值为去除量 。 2 结果与讨论
为揭示表面改性 A l2O3 抛光液的抛光特性 , 探索 了抛光工艺参数对去除量的影响 , 即抛光压力 、抛光 时间和下盘转速与材料去除量的关系进行了研究 。 211 外加压力对去除量的影响
Abstract: In order to enhance the dispersion stability of alum ina abrasive and p revent agglomeration in chem ical mechanical polishing ( CMP ) . The surface modification of ultra2fine A l2O3 with acryloyl chloride was studied and characterized by means of XPS, laser particle size analyzer and SEM. The results indicate that ultra2fine A l2O3 modified with acryloyl chloride has better dispersion stability than that unmodified. The polishing performances of modified ultra2fine A l2O3 on digital compact disc ( CD ) glass substrate were investigated. The influence of the p ressure, polishing time and rotating speed on material removal amount in chem ical mechanical polishing of digital compact disc glass substrate was discussed, and the CMP mechanism of glass substrate was deduced. The result shows that the material removal amount increases with p ressure or rotating speed to a maximum and then decreases. W ith the increasing of polishing time, the material removal amount increases rap idly within 60 m in and then increases slowly.
图 2 超细 A l2 O3 粒子的粒度分布
图 3为用 JSM 26700F扫描电子显微镜观察的未改 性 A l2O3 粉和改性 A l2O3 粉在水中的分散情况 。比较 图 3 ( a) 和图 3 ( b) 可见 : 未改性的 A l2O3 粉 , 颗 粒团聚严重 , 分散不均匀 ; 而经改性的 A l2O3 粉 , 细 颗粒明显增多 , 而且基本能够分散均匀 。这是因为适 量的丙烯酸接枝在 A l2O3 粉表面 , 阻止了已分开的 A l2O3 粉颗粒之间的再度团聚 , 提高了粒子亲水性 。 可见 , 经改性的 A l2O3 粉达到了分散的目的 。
CM P技术的关 键 之 一 为 研 磨 料 的 制 备 和 抛 光 液 的分散稳定 , 它们直接影响 CMP 的抛光速率 、选择 性以及对基片表面的损伤等各项指标 。氧化铝是目前 广泛采用的磨料 , 氧化铝在配制浆料的过程中 , 存在 分散稳定性不好 、易团聚等缺点 , 往往在几分钟内就 会出现沉淀 , 颗粒变粗 , 所以在抛光中表面划伤严 重 , 损伤层深 。为此 , 本文作者对氧化铝表面进行了 接枝改性 , 提高粒子分散稳定性 , 并配制成抛光液 , 研究了其在数字光盘玻璃基片中的抛光特性 。
摘要 : 在化学机械抛光 (CM P) 中 , 为了提高氧化铝磨料分散稳定性和防止团聚 , 利用丙烯酰氯对超细氧化铝进 行了表面改性 , 并用 XPS、激光粒度仪 、 SEM 对其进行表征 , 结果表明改性后的超细氧化铝分散性明显提高 。研究了改 性后超细氧化铝在数字光盘玻璃基片中的化学机械抛光特性 , 即外加压力 、抛光时间和下盘转速对玻璃基片去除量的影 响 , 并对其 CM P机制进行了推断 。结果表明 , 材料去除量随下盘转速 、压力变化趋势相近 , 即随着压力的增加或下盘 转速的提高 , 材料去除量先增大后减小 ; 随抛光时间延长 , 抛光初期材料去除量增加较快 , 但在后段时间内去除量增加 趋势趋于平缓 。
2007年 2月 第 32卷 第 2期
润滑与密封
LUBR ICATION ENGINEER ING
超细氧化铝表面改性及其抛光特性 3
Feb12007 Vol132 No12
卢海参 1, 2 雷 红 1 张泽芳 1, 3 肖保其 1, 2
(1. 上海大学纳米中心 上海 200444; 2. 上海大学环境与化学工程学院 上海 201800; 3. 上海大学理学院 上海 200444)
了 411 eV。同时改性后 C1s从未改性的 28416 eV (空 气中 CO2 的碳元素电子结合能 ) 增加到 29013 eV , 这是碳原子与氧原子形成的 O —C == O 键中碳元素电
子结合能 [3 ] 。这种化学位移是由于分子中原子因所处
的化学环境改变而产生的 。说明丙烯酸已经成功接枝
到 A l2O3 表面 。 表 1 改性前后超细 A l2 O3 表面元素电子结合能变化
元素
结合能 / eV
未改性
改性后
Al
7515
7916
C
28416
29013
O
53416
53519
本实验中所用 A l2O3 粉较细 , 有较大的表面效应 和表面能 , 因而易产生团聚 。为了研究 A l2O3 粉在改 性前后团聚情况 , 分别对改性前后的 A l2O3 粉粒度进 行分析 。从图 2 中可看出 , 未改性的 A l2O3 粉 d50 = 21234 μm , 而 经 过 丙 烯 酰 氯 改 性 的 A l2O3 粉 d50 = 11575 μm , 比未改性 A l2O3 粉的粒度小 , 说明经过改 性的 A l2O3 粉团聚程度降低 、分散性提高 。
eV , 1215 kV ×18 mA ( X
射线功率 ) ; 真空度优于 2
×10 - 7 Pa ; FRR 分 析 器 图 1 超细 A l2O3 表面改性前
模式为 FRR 以沾污碳 C1s
后的 XPS全扫描测量谱
( 2841Leabharlann eV ) 为能量参考 。图 1为超细 A l2O3 表面改性前后的 XPS全扫描测量 图 。XPS测量厚度主要范围是 3 ~5 nm 的表面元素 ,
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.