第十一章-微弱信号检测技术
《微弱信号检测》课件

实验结果的评估与验证
评估指标
根据实验目的确定评估指标,如信噪比 、检测限等。
VS
验证方法
采用对比实验、重复实验等方法对实验结 果进行验证,确保结果的可靠性和准确性 。
CHAPTER 05
微弱信号检测的未来发展
新技术的应用与探索
人工智能与机器学习
01
利用人工智能和机器学习技术,对微弱信号进行自动识别、分
微弱信号的特点包括幅度小、信噪比 低、不易被察觉等。由于其容易被噪 声淹没,因此需要采用特殊的检测技 术才能提取出有用的信息。
微弱信号检测的重要性
总结词
微弱信号检测在科学研究、工程应用和日常生活中具有重要意义。
详细描述
在科学研究领域,微弱信号检测是研究物质性质、揭示自然规律的重要手段。在工程应用中,微弱信号检测可用 于故障诊断、产品质量控制等方面。在日常生活中,微弱信号检测的应用也非常广泛,如医疗诊断、环境保护等 。
智能制造
将微弱信号检测技术应用于智能 制造领域,实现设备故障预警、 产品质量控制等。
THANKS
[ 感谢观看 ]
研究新的信号处理算法,提高微弱信号的提取、处理 和辨识能力。
集成化与微型化
实现微弱信号检测设备的集成化和微型化,便于携带 和应用。
微弱信号检测与其他领域的交叉融合
生物医学工程
将微弱信号检测技术应用于生物 医学工程领域,如生理信号监测 、医学影像处理等。
环境监测
将微弱信号检测技术应用于环境 监测领域,实现对噪声、振动、 磁场等的微弱变化进行检测和分 析。
小波变换法
总结词
多尺度分析、自适应能力强
详细描述
小波变换法是一种时频分析方法,能够将信号在不同尺度上进行分解,从而在不同尺度 上检测微弱信号的存在和特性。这种方法自适应能力强,能够适应不同特性的微弱信号
030242006-微弱信号检测技术-刘晓阳

《弱信号检测技术》课程教学大纲课程代码:030242006课程英文名称:Weak signal detection课程总学时:24 讲课:24实验:0 上机:0适用专业:测控技术与仪器大纲编写(修订)时间:2011.7一、大纲使用说明(一)课程的地位及教学目标微弱信号检测是将淹没在强背景噪声下的微弱信号,通过有效的检测手段,抑制强背景噪声,从而获得信号的恢复是本课程的主要内容。
(二)知识、能力及技能方面的基本要求1、基本知识:要求学生掌握本专业的专业基础知识和专业课知识。
2、基本理论和方法:通过本课程的教学,使学生对“微弱信号检测”主要应用对象及主要实施方法有所了解,在掌握其基本原理的基础上并能完成较简单的微弱信号检测系统的设计。
(三)实施说明由于学时的关系,本课程着重在于扩大学生的知识面,使学生对这一新兴技术分支能有较深入的了解,以便进一步深造。
(四)对先修课的要求1.模拟电子技术(A)(含高频部分);2.信号与系统;3. 随机信号分析;(五)对习题课、实验环节的要求要求学生掌握BOXCAR积分器的使用方法,可求出SINR,会调整LIA的参数。
(六)课程考核方式1.考核方式:考查。
2.考核目标:考查学生是否理解微弱信号检测的基本原理及主要应用。
3.成绩构成:本课程的总成绩由三部分组成:平时成绩(包括作业、提问、出勤情况等)30%;开卷考试成绩70%。
(七)参考书目:1.《微弱信号检测(第2版)》曾庆勇浙江大学出版社2.《微弱信号检测》戴逸松吉林工业大学出版3.《微弱信号检测》高晋占清华大学出版社二、中文摘要本课程从应用角度出发介绍微弱信号检测的理论、方法和仪器,是测控技术与仪器本科专业的选修课。
该课程帮助学生了解微弱信号检测技术的发展历程和发展方向,了解微弱信号检测技术的运用领域;帮助学生理解微弱信号检测仪器的工作原理;帮助学生掌握微弱信号及其相关的基本概念,掌握微弱信号检测的一般方法。
三、课程学时分配表四、教学内容及基本要求第01部分绪论总学时(单位:学时):2 讲课:2 实验:0 上机:0具体内容:1)微弱信号检测的目的与意义2)噪声的基本性质3)噪声的统计特性4)器件噪声举例5)微弱信号检测方法概述重点:1)噪声的定义、种类、度量、电子噪声2)电阻、二极管、三极管的噪声3)弱信号检测的基本方法难点:1)噪声的定义、种类、度量、电子噪声2)电阻、二极管、三极管的噪声第02部分噪声与低噪声测试系统的设计总学时(单位:学时):6 讲课:6 实验:0 上机:0具体内容:1)噪声系数、噪声因子和其他噪声度量参量2)低噪声前置放大器3)低噪声放大器匹配网络与变压器特性重点:1)噪声系数、噪声因子、放大器NF值的测量、NF图2)设计原则,最佳输入电阻难点:1)噪声系数、噪声因子、放大器NF值的测量、NF图2)理想变压器作匹配时的SNIR第03部分同步相关检测-锁定放大器的工作原理总学时(单位:学时):6 讲课:6 实验:0 上机:0具体内容:1)滤波器2)选频检测的局限性与相干检测3)相敏检波器电路4)非周期移相器5)锁相放大器及其主要性能指标6)锁相放大器的使用与应用7)提高锁相放大器性能的一些技术重点:1)有源LPF、HPF、BPF2)相干检测3)掌握相敏检波器的基本电路4)移相环工作原理5)典型的锁相放大器6)锁相放大器的使用7)PCM技术难点:1)相干检测2)移相环工作原理3)典型的锁相放大器第04部分取样与取样积分原理总学时(单位:学时):6 讲课:6 实验:0 上机:0 具体内容:1)根号M法则与抽样定理2)取样积分器3)参数图解选择法4)取样积分器性能的一些重大改进5)BOXCAR信噪比改善的数学讨论6)数字平均器的特点及工作模式7)数字多点平均器8)BOXCAR与数字平均器应用举例重点:1)根号M法则、抽样定理2)门积分器、BOXCAR的工作模式3)参数图解选择法4)快速取样、基线取样5)BOXCAR信噪比改善的数学讨论6)数字平均器的特点及工作模式7)数字多点平均器原理、工作流程难点:1)根号M法则、抽样定理2)门积分器、BOXCAR的工作模式3)参数图解选择法4)快速取样、基线取样5)BOXCAR信噪比改善的数学讨论6)数字平均器的特点及工作模式7)数字多点平均器原理、工作流程第05部分光子计数技术总学时(单位:学时):2 讲课:2 实验:0 上机:0具体内容:1)光子计数器的原理概述2)光子计数器中的光电倍增管3)放大器-鉴别器4)光子计数器的测量方法5)模拟输出的光子计数器6)光子计数器中的脉冲堆积效应重点:放大器-鉴别器、光子计数器的测量方法难点:模拟输出的光子计数器第06部分总结与考试总学时(单位:学时):2 讲课:2 实验:0 上机:0具体内容:应用实例总结、综合复习与考试。
微弱信号检测的基本理论和技术

微弱信号检测的基本理论和技术微弱信号检测的基本理论和技术微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点和相关性,检测被噪声淹没的微弱有用信号。
微弱信号检测的宗旨是研究如何从强噪声中提取有用信号,任务是研究微弱信号检测的理论、探索新方法和新技术,从而将其应用于各个学科领域当中。
在微弱信号检测中,总是伴随着噪声,噪声属于电路中的随机扰动,它可能来自电路中元器件中的电子热运动,或者是半导体器件中载流子的不规则运动。
噪声是限制信号检测系统性能的决定性因素,因此它是信号检测中的不利因素。
对于微弱信号检测来说,如能有效克服噪声,就可以提高信号检测的灵敏度。
电路中噪声是一种连续型随机变量,即它在某一时刻可能出现各种可能数值。
电路处于稳定状态时,噪声的方差和数学期望一般不再随时间变化,这时噪声电压称为广义平稳随机过程。
若噪声的概率分布密度不随时间变化,则称为狭义平稳随机过程(或严格平稳随机过程)。
显然,一个严格平稳随机过程一定为广义平稳随机过程,反之则不然。
1.滤波器被噪声污染的信号波形恢复称为滤波。
这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值。
现在,在各种信号检测仪器中均离不开各种滤波器,它起到了排除干扰,分出信号的功能。
常用的滤波器是采用电感、电容等分立元件构成(例如,RC低通滤波器、LC谐振回路等),它对于滤去某些干扰谱线(例如,电源50Mz滤波,收音机、电视机中干扰的滤波),有较好的效果。
对于混在随机信号中的噪声滤波,这种简单的滤波器就不是最佳的滤波电路。
这是因为信号与噪声均可能具有连续的功率谱。
因此需要寻找一种使误差最小的最佳滤波方法,有称为最小最佳滤波准则。
维纳线性滤波理论就是一种在最小均方误差准则下的最佳线性滤波方法。
出于维纳滤波器电路实现上的困难,在维纳滤波基础上发展了一种基于状态空间方法的最佳线性递推滤波方法,称为卡尔曼滤波。
微弱信号检测技术概述

1213225王聪微弱信号检测技术概述在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、比如测定地震的波形和波速、材料分析时测量荧光光强、材料分析时测量荧光光强、材料分析时测量荧光光强、卫星信号的接收、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。
在物理、化学、生物医学、遥感和材料学等领域有广泛应用。
材料学等领域有广泛应用。
微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、信息论、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。
微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。
微弱信号检测的不同方法( 1) 生物芯片扫描微弱信号检测方法微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。
随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。
根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。
扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。
激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。
固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD 捕获荧光信号并成像, 从而完成对生物芯片的扫读。
微弱信号检测

图 对含扰信号的噪声消除和基线漂移消除结果
返回
结束
脉象信号扰动消除效果(二)
(1)自相关检测
自相关检测原理
x t s t n t
乘法器
积分器
Rss
延时器
(2)互相关检测
互相关检测原理框图
x t s t n t
y t
乘法器 积分器
Rxy
延时器
相干检测原理
Vi t
窄带放大器 乘法器 积分器
小波变换是一种信号的分析方法,它具有 多分辨率分析的特点,而且在时频两域都具有 表征信号局部特征的能力。 基于小波变换的多分辨率滤波技术有明显 优点。小波变换可用来提取和识别那些淹没在 噪声中的微弱电生理信号,在获得信噪比增益 的同时,能够保持对信号突变信息的良好分辨, 因此对临床上的非平稳信号的处理中具有独特 的优越性,应该能成为脉象信号的一种可行有 效的处理方法。
同步积累器的工作原理
设信号是一串周期窄脉冲,检测时可把信号通路接到 一个分配器上,分配器的每一个输出都接到一个积累 器,工作时信号通路被分配器轮流地接到不同的积累 器上 假设分配器的工作周期和信号的重复周期相同,并设 分配器从一个出路到另一个出路的切换时间可以忽略, 则分配器的工作周期被分割成若干个时间区间(取决 于积累器的个数),在每次信号到来的那个时间区间 都能保证通路恰好接到同一个积累器上,所以这种方 法称为同步积累 只要重复的次数足够多,基于同步积累法就可以把噪 声中的微弱信号提取出来,而且重复的次数越多,提 取微弱信号的能力越强
脉象微弱信号检测
概述
微弱信号是相对背景噪声而言,其信号幅度的 绝对值很小、信噪比很低(远小于1)的一类 信号 微弱信号检测的任务是采用电子学、信息论、 计算机及物理学、数学的方法,分析噪声产生 的原因和规律,研究被测信号的特点与相关性, 对被噪声淹没的微弱有用信号进行提取和测量 微弱信号检测的目的是从噪声中提取出有用信 号,或用一些新技术和新方法来提高检测系统 输入输出信号的信噪比
微弱信号检测技术

微弱信号检测技术科学技术发展到现阶段,极端条件下的物理实验已成为深化认识自然的重要手段.这些实验中要测量的物理量往往都是一些非常弱的量,如弱光、弱磁、弱声、微小位移、徽温差、微电导及微弱振动等等。
由于这些微弱的物理量一般都是通过各种传感器进行电量转换.使检测的弱物理量变换成电学量。
但由于弱物理量本身的涨落、传感器的本底和测量仪器的噪声的影响,被测的有用的电信号往往是淹没在数千倍甚至数十万倍的噪声中的微弱信号.为了要得到这一有用的微弱电信号,就产生了微弱信号检测技术。
因此.微弱信号检测技术是一种与噪声作斗争的技术.它利用了物理学、电子学和信息论的方法.分析噪声的原因和规律.研究信号的特征及相关性.采用必要的手段和方法将淹没在噪声中有用的微弱信号检测出来.目前.微弱信号检测主要有以下几种方法:‘1、相干检测相干检测是频域信号的窄带化处理方法.是一种积分过程的相关测量.它利用信号和外加参考信号的相干特性,而这种特性是随机噪声所不具备的,典型的仪器是以相敏检波器(PSD)为核心的锁相放大器。
2、重复信号的时域平均这种方法适用于信号波形的恢复测量。
利用取样技术.在重复信号出现的期间取样.并重复n次,则测量结果的信噪比可改善n倍。
代表性的仪器有Boccar 平均器或称同步(取样)积分器,这类仪器取样效率低,不利低重复率的信号的恢复.随着微型计算机的应用发展.出现了信号多点数字平均技术,可最大限度地抑制噪声和节约时间,并能完成多种模式的平均功能.3、离散信号的统计处理在微弱光检测中,由于微弱光的量子化,光子流具有离散信号的特征.使得利用离散信息处理方法检测微弱光信号成为可能。
微弱光检测又分为单道(Single-Channel)和多道(MuIti.-Channel)两类。
前者是以具有单电子峰的光电倍增管作传感器,采用脉冲甄别和计数技术的光子计数器;后者是用光导摄象管或光电二极管列阵等多路转换器件作传感嚣.采用多道技术的光学多道分析器(OMA)。
微弱信号检测教学

目录
• 微弱信号检测概述 • 微弱信号检测的基本原理 • 微弱信号检测的常用方法 • 微弱信号检测的实验操作
目录
• 微弱信号检测的案例分析 • 微弱信号检测的未来发展与挑战
01
微弱信号检测概述
定义与特点
定义
微弱信号检测是指对幅度较低、容易 被噪声淹没的信号进行提取、测量和 分析的过程。
信号放大
信号放大
通过放大器将微弱信号放大,使其更容易被检测和处理。常用的放大器类型包括电压放大器和电流放大器。
放大器选择
选择合适的放大器是关键,需要考虑放大倍数、带宽、输入噪声、线性范围等因素。
噪声抑制
噪声来源
噪声是影响微弱信号检测的重要因素 ,主要来源于环境、电路和器件本身 。
噪声抑制方法
采用滤波器、消噪电路、数字信号处 理等技术抑制噪声,提高信噪比。
ABCD
数据特征提取
从处理后的数据中提取有用的特征,如幅度、频 率等。
结果评估与优化
根据分析结果,评估微弱信号检测的效果,优化 实验参数和方法,提高检测精度和可靠性。
05
微弱信号检测的案例分析
案例一:生物电信号的检测
总结词
生物电信号是生物体内产生的微弱电流信号,检测这些 信号对于了解生物生理状态和疾病诊断具有重要意义。
信号滤波
滤波器类型
根据信号特性和需求选择合适的滤波器,如低通滤波器、高通滤波器、带通滤波器和陷波滤波器等。
滤波器设计
根据信号频谱和噪声频谱设计滤波器,以保留有用信号并抑制噪声。
相关检测
相关检测原理
相关检测是一种利用信号自相关或互相关特性进行检测的方法,可以有效抑制噪声和干 扰。
相关检测应用
微弱信号检测技术

同步检测法通过将输入信号与参考信号进行相关运算,提取 出目标信号。该方法能够有效地抑制噪声干扰,提高信噪比 。在实际应用中,同步检测法常用于雷达、通信等领域。
滤波器法
总结词
一种利用滤波器对信号进行筛选和处理的微弱信号检测方法。
详细描述
滤波器法通过设计合适的滤波器对输入信号进行筛选和处理,提取出目标信号。该方法具有简单易实 现的特点,适用于多种类型的微弱信号检测。在实际应用中,滤波器法常用于音频、图像等领域。
射级跟踪放大器法
总结词
一种通过调整放大器的增益来跟踪输入信号幅度的微弱信号检测方法。
详细描述
射级跟踪放大器法利用射级反馈电路来调整放大器的增益,使得放大器的输出信 号幅度与输入信号幅度保持一致。该方法能够有效地提高信噪比,降低噪声干扰 。
同步检测法
总结词
一种利用相关技术对信号进行同步检测的微弱信号检测方法 。
环境监测领域
噪声污染检测
在噪声污染控制和环境保护方面,微弱的噪声信号往往代表着环境质量的恶化,微弱信号检测技术能够对这些信 号进行准确的监测和分析,为环境治理提供科学依据。
放射性检测
在核能和核工业领域,放射性物质释放的微弱信号对人类健康和环境安全具有重要影响,微弱信号检测技术能够 实时监测和评估放射性水平,保障公共安全。
微弱信号检测技术的发展历程
基础理论建立
早期的研究主要集中在噪声抑制和放大技术上,为微弱信号检测奠 定了基础。
技术突破
随着电子技术和数字化技术的发展,如放大器技术、数字滤波技术、 相关检测技术等,微弱信号检测的灵敏度和分辨率得到显著提高。
应用拓展
随着微弱信号检测技术的不断发展,其应用领域也在不断扩大,涉及 到众多领域和行业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锁相放大器的工作过程
I 随时间缓变的信号
经过调制
λ(t)
I
信号恢复
输出信号 (与信号幅度成 λ(t) 正比,与相对相 位有关)
ωm
送入锁相放大器
信号输入
Lock-in
参考信号
ωm
互相关函数
两个具有确定频率和相位的周期性信号,它们的相关特
性可以用互相关函数来表达:
lim R12 ( ) T
1 2T
模拟锁相放大器
数字锁相放大器
锁相放大器
2. 锁定放大器抑制噪声的基本出发点
( 1 )用调制器将直流或慢变信号的频谱迁移到调制频率处,再进行放 大, 以避开1/f 噪声的不利影响; ( 2 )利用相关器实现对调制信号的解调,同时检测频率和相位,噪声
与信号同频又同相的概率很小; (3)利用低通滤波器来抑制噪声,低通滤波器的频带可以做的较窄,
1.锁相放大器概述
自从1962年,美国EG&G PARC公司制作了第一台锁相放大器(LIA)的 后,微弱信号检测技术得到了突破性的发展。后来又出现了模拟锁相放 大器(ALIA) 和数字锁相放大器(DLIA) 。对于数字锁相放大器而言,又 出现基于单片机的DLIA 和基于专用DSP的DLIA 。还有基于PC的系统级 模块化DLIA ,这种锁相的算法是采用C,C++等语言实现的。由于整个 系统运行在PC平台上,所以可以使用各种仿真软件对算法进行研究。
通常把由于材料或器件的物理原因产生的扰动称为噪 声。
把来自外部的原因的扰动称为干扰,有一定的规律性, 可以减少或消除。
锁相放大器要解决的就是如何在很强的外部干扰环境 中检测弱信号。
通常干扰是可以减少或消除的外部扰动,而由于材料 或器件的物理原因产生的噪声则很难消除。
常见的随机噪声
噪声虽然作为一个随机信号,仍具有统计学上的特征属 性。功率谱密度(功率的频谱分布)即是噪声的特征之一, 可以通过它来区分不同类型的噪声。这种噪声分类方法通 常会给予不同的功率谱密度一个不同的“色彩”称谓,即 不同种类的噪声会被命名为不同的颜色。
信号或过程。它的频谱在对数空间内是平坦的。
红噪声 红噪声是一个具有与功率谱密度与频率平方成反比的频
谱的信号或过程。
测量技术的分类
非相关测量 普通的电压表,示波器,频率计等 使用方便,用途广泛
相关测量 锁定放大器,同步积分器,数字滤波器等 抗干扰能力强,工作稳定,灵敏度高
常用小信号检测方法
锁相放大器
3. 锁相放大器的基本原理 锁相放大器是以相关检测技术为基础,利用互相关的原理 设计的一种同步相干检测仪。它是一种对检测信号和参考 信号进行相关运算的电子设备,利用参考信号频率与输入 信号频率相关,与噪声频率不相关,从而从噪声中提取有 用信号。它把交流分量放大并变成相应的直流信号输出。 是从强噪声中提取弱信号的重要手段。在国外常把这类仪 器称为锁定放大器(Lock-in Amplifier) 。
常用小信号检测方法
方法之二:调制放大与解调
调制与解调过程
锁相放大器
锁相放大器是一种对交变信号进行相敏检波的放大器。它 利用和被测信号有相同频率和相位关系的参考信号作为比较 基准,只对被测信号本身和那些与参考信号同频(或者倍 频)、同相的噪声分量有响应。因此,能大幅度抑制无用噪 声,改善检测信噪比。此外,锁相放大器有很高的检测灵敏 度,信号处理比较简单,是弱光信号检测的一种有效方法。
T
T f1(t) f2 (t )dt
式中f1(t) 和 f2(t)为两个周期信号,τ为两个信号之间的任意 延迟时间,T为平均积分时间(或称为时间常数)。
互相关函数
令f1(t)=V1(t)+n1(t),f2(t)=V1(t)+n2(t),其中n1(t)和n2(t)分别 代表与待测信号V1(t)及参考信号V2(t)混在一起的噪声,则
白噪声相对的,其他不具有常数功率谱密度性质的噪声 信号被称为有色噪声。
常见的随机噪声
白噪声 理想的白噪声具有无限带宽,因而其能量是无限大,这在 现实世界是不可能存在的。实际上,在实际应用中的白噪 声是指在某一特定频域内的谱密度函数是平坦的噪声。
常见的随机噪声
粉红(1/f)噪声 粉红噪声是一个具有功率谱密度与频率成反比的频谱的
Vm t Vs t•Vc t cosst •cosct Vm t 0.5cosc s t 0.5cosc s t
调制输出信号Vm(t)的频谱集中在载波频率的两边,可以对其 进行交流(AC)放大。因为载波频率较高,各级放大器之间可 以用隔直电容耦合,所以前级放大器的漂移和1/f噪声不会传 输到后级放大器。
而且其频带宽度不受调制频率的影响,稳定性也大大地提高。
调制过程和相敏检测过程
锁相放大器
锁相放大器继承了调制放大器使用交流放大,而不使用直 流放大的原理,避开了幅度较大的1/f噪声;同时又用相 敏检测器实现解调,用稳定性更高的低通滤波器取代带通 滤波器实现窄带化过程,使检测系统性能大为改善。
锁相放大器的等效噪声带宽可以达到0.0004Hz,增益可 以高达1011以上,所以0.1nV的微弱信号可以放大到10V 以上。
方法之一:滤波
某一频率信号上叠加有噪声,降低噪声的常用方法为 之一为滤波。 常用滤波器种类: 低通、高通、带通、带阻。
低通滤波器能有效地滤除高频噪声,常用于信号缓慢变化 的场合,但对低频段的噪声(如1/f噪声和缓慢漂移)无 能为力。
使用带通滤波器可以让想要测量的信号频率通过并抑 制噪声,带宽越窄,滤除的噪声越多。
0.25A cos 2c s t cos 2c s t 2 cos s t
常用小信号检测方法
方法之二:调制放大与解调 解调过程实现了频谱的二次迁移,利用低通滤波器可以滤除 Vd(t)中的高频分量和附加噪声,得到放大的被测信号Vo(t) 。
Vo t 0.5Acoss t 0.5AVs t
白噪声、粉红噪声、红噪声、蓝噪声、紫噪声、灰噪声。
常见的随机噪声
白噪声 白噪声是电子器件和电路中最常见的一种噪声,电阻的
热噪声、PN结的散弹噪声都是白噪声。白噪声的功率谱密 度为常数,各种频率成分的强度相等,类似于光学中的白 光,因此称之为“白噪声”。在实际应用中,只要噪声功 率谱密度平坦的区域比系统的通带宽度宽,就可以近似认 为是白噪声。
传统锁相放大器的构成原理
通常锁相放大器的参考通道输出是和信号同步的对称方波或正弦波,用以 驱动相关器的场效应管开关。参考通道主要由触发电路、倍频电路、相移 电路、方波形成电路及驱动电路组成。参考触发信号可在仪器内部产生, 也可从外部输入,大部分产品由外部输人。输入波形可以是正弦波、方波、 三角波、脉冲波等各种周期信号。
相关检测
如果是一个1Hz和一个1.1Hz的信号相乘,用乘法器相乘得到的结果是 一个交流调制波,基频是1Hz,幅频是0.1Hz
只有与参考信号频率完全一致的信号才能在乘法器输出端得到直流偏 量,其他信号在输出端都是交流信号。如果在乘法器的输出端加一个 低通滤波器,那么所有的交流信号分量全部被滤掉,剩下的直流分量 就只是正比于输入信号中的特定频率的信号分量的幅值。
f1(t)
乘法器
积分器T
输出
f2(t)
延时器τ
相关检测
如果两个信号的频率分别为ω1和ω2,并记为:
S1(t) V1(t) sin(1t 1) S2 (t) V2 sin(2t 2 )
S1(t) 和 S2(t) 的互相关函数为:
lim R12 (t)
T
1 2T
T
T V1 V2 sin(1t 1) sin(2t 2 2 )dt
频率完全相等(ω1=ω2) 时,才有相关信号输出:
R12 (
)
V1(t) V2 2
cos()
相关检测
R12 (
)
V1(t) V2 2
cos()
当输入信号与参考信号频率相等时,相关检测的输出信号与
输入信号的幅度V1(t)成正比,还与两个信号的相对相位Δφ
有关。锁相放大器就是基于相关检测的原理,将与参考信号 同频的信号检测出来,而把与参考信号不同频的噪声或干扰 信号抑制掉,从而提高了测量的信噪比。
lim R( )
1T
T 2T T
Vs t n1 t Vr t n2 t
dt
lim
T
1 2T
T T
Vs
t
Vr
t
dt
T T
Vs
t
n2
t
dt
T T
Vr
t
n1
t
dt
T T
n1
t
n2
t
dt
Rsr Rs2 Rr1 R12 Rsr
噪声作为随机变量与被测信号不相关联,经过长时间积分平均后对周期性 重复信号的累计要比对随机噪声的累计大得多,从而有可能将深埋于噪声 背景中的信号取出,这就是相关检测方法能提高信噪比的原因。
常用小信号检测方法
方法之二:调制放大与解调
振荡器是调制载波源,其输出通常是一个高频载波信号。
Vc t cosct
设被测低频信号为单一频率的余弦信号
Vs t cosst
常用小信号检测方法
方法之二:调制放大与解调
调制过程一般用变增益放大器或非线性放大器实现两个信 号的相乘过程,其输出为频率与调制载波相同,但幅度随 被测低频信号Vs(t)瞬时值变化的调制信号Vm(t)。
lim
V1 V2 T 4T
T T
c os1
2
t
1
2
2
dt
lim
V1 V2 T 4T
T
c
T
os1
2
t
dt
相关检测
相关检测的输出信号: