电机电磁场数值分析方法

合集下载

工程电磁场数值分析(有限元法)

工程电磁场数值分析(有限元法)

b0
1 2 3 4 5 6
N 0 fd
三角形单元内的基函数
设三角形三个顶点处待求函数值 分别为u1, u2, u3。如果单元足够小, 可以采用线性近似,将单元内任 意p点的u(x,y)表示为
u ( x, y ) a bx cy
代入三个顶点的坐标,可以解出a、 b、c。得到
3 ( x, y) 1 ( x, y) 2 ( x, y) u( x, y) u1 u2 u3
1 1 x1 2 y1
1 1 1 x 2 y 1 1 2 x1 2 y1
1 x2 y2
1 x2 y2 1 x y
1 x3 y3
1 x3 y3 1 x3 y3 1 1 3 x1 2 y1
第4章 电磁场有限元法(FEM)
1. 有限元的基本原理与实施步骤 2. 有限元方程组的求解 3. 前处理与后处理技术 4. 渐近边界条件 5. 矢量有限元法 6. 求解运动导体涡流问题的迎风有限元法
1. 有限元法的基本原理与实施步骤
有限元法的数学基础是加权余量法,基本思想:
考虑算子方程
L(u ) f
n i 1
用 u 作为该方程的近似解(试探解): u ii
代入方程得余量:
R L(u ) f
在有限元法中,基函数一般用 {Ni , i 1, 2, , n} 表示。 采用Galerkin方案,取权函数与基函数相同。使与余量正交
化:
( Ni , R) Ni [ L(u ) f ] d 0
工程电磁场数值分析
(有限元法)
华中科技大学电机与控制工程系
陈德智
2007.12
第4章 电磁场有限元法 (Finite Element Method, FEM)

电磁场数值分析方法及其应用

电磁场数值分析方法及其应用

电磁场数值分析方法及其应用电磁场是无处不在的,它在我们的日常生活中也发挥着极其重要的作用,比如说电视、手机、电脑和家用电器等等。

由于电磁现象的特殊性质,使得电磁场的理论计算非常困难,因此需要引入数值计算方法,对电磁场进行模拟分析,这就是电磁场数值分析方法的基本概念。

一、电磁场数值分析方法简介1. 经典电磁场理论在介绍电磁场数值分析方法之前,我们需要先了解一下经典电磁场理论,也即麦克斯韦方程组。

麦克斯韦方程组描述了电磁场的本质规律,包括电场E、磁场B、电荷密度ρ和电流密度J等四个基本物理量。

这些物理量之间的关系是非常复杂的,因此对于麦克斯韦方程组的求解,需要引入数值计算方法。

2. 电磁场数值计算方法电磁场数值计算方法是指采用离散化方法,将复杂的连续介质分割成有限的、简单的小单元,通过在每个小单元内求解基本电磁场变量的数值解,再通过数值方法进行拼合,最终得到求解区域内的电磁场分布特征。

3. 数值计算方法分类目前常用的电磁场数值计算方法主要包括有限元法、时域有限差分法、频域有限差分法、矩量法等等。

这些方法各有特点,适用于不同的电磁问题求解。

二、电磁场数值分析方法应用1. 微波器件设计微波器件中电磁场的分布特征是十分重要的,它决定了微波器件的性能。

采用电磁场数值分析方法可以清晰地描述微波场的分布特征,从而进行优化和改进设计,提高微波器件的性能。

2. 汽车电磁兼容性分析汽车中各类电子设备的数量越来越多,它们之间的干扰和互相影响也越来越严重。

采用电磁场数值分析方法可以对汽车中的电磁问题进行深入分析,确定干扰成因,从而提出解决方案。

3. 太阳能电池板设计太阳能电池板在光电转化过程中,需要考虑光的反射、折射和吸收等问题。

而这些问题都涉及到电磁场的分布特征。

因此,采用电磁场数值分析方法可以对太阳能电池板的设计进行优化,并提高其能量转换效率。

三、结论电磁场数值分析方法是一种强大的工具,它可以帮助我们深入了解电磁场的本质规律,并对各类电磁问题进行分析和优化设计。

电机电磁场数值分析方法

电机电磁场数值分析方法

B
C
D
A
边值问题转换为条件变分问题
A A W ( A) [( ) 2 ( ) 2 ] J z Adxdy H t Adl min 2 2 x y : A A 0 1
A A A A W [ ] J zAdxdy H tAdl 0 2 x x y y
We ( Ai , A j , Am ) {

[(bi Ai b j A j bm Am ) 2 (ci Ai c j A j c m Am ) 2 ] 2 8

J [(ai bi x ci y) Ai (a j b j x c j y) A j (a m bm x c m y) Am ]}dxdy 2
总体合成
k11 k 21 k n1
k12 k 22 kn 2
k1n A1 p1 k 2 n A2 p2 k nn An pn
电机电磁场数值分析方法
有限元法
• • • • • 能计算具有多种媒质区域内的电磁场; 能精确地逼近复杂的几何边界; 能很好地处理非线性问题; 能精确地描述场源的分布; 已形成一套比较合理和成熟的算法。
边值问题和条件变分问题
• 有限元法是基于偏微分方程的方法。微分 方程要获得唯一解,必须给定相应的条件, 称为定解条件。微分方程和定解条件作为 一个整体,称为定解问题。对于电机恒定 电磁场问题,定解条件就是边界条件,边 界条件表达场的边界所处的物理情况,这 又被称为边值问题。
A A : y J z x x y 1 : A A0 A 2 : Ht n

电磁场数值模拟方法研究与应用

电磁场数值模拟方法研究与应用

电磁场数值模拟方法研究与应用随着计算机技术和数值模拟方法的不断发展,电磁场数值模拟也越来越成为现代电磁学研究和应用领域中不可或缺的手段。

电磁场数值模拟是通过数学方法和计算机计算,模拟电磁场在空间中的分布、演变和作用规律,从而为电磁场的分析、设计、控制和优化提供基础和依据。

一、电磁场数值模拟方法1. 有限元法有限元法(Finite Element Method,FEM)是一种广泛应用于电磁学领域的数值模拟方法。

该方法将电磁问题离散化为一系列局部问题,在每个局部问题中,通过解决一个代表导体和介质的区域内所能发生的任何电磁过程的方程,来确定局部场分布。

最后,通过组合这些局部场,来得到整个电磁场分布。

有限元法是一种适应性强的方法,能够处理任意复杂的几何形状和材料特性,广泛应用于电动机、变压器、电力电子器件等领域的设计和分析。

2. 有限差分法有限差分法(Finite Difference Method, FDM)是一种将区域划分为网格,通过对每个网格内的方程进行差分,建立离散的求解方程组来模拟整个电磁场分布的方法。

该方法简单易行,特别适用于规则区域的情况,如平面波导、电磁谐振腔等的分析和设计。

3. 时域有限差分法时域有限差分法(Finite Difference Time Domain, FDTD)是一种基于时域求解Maxwell方程的数值模拟方法。

该方法将Maxwell方程组离散化、网格化后,采用差分法对时间和空间进行离散,通过迭代求解来计算电磁场在时域的分布变化。

FDTD方法具有模拟宽带高频信号、自然分析非线性、高精度等优点,在雷达、无线通信等领域有广泛应用。

二、电磁场数值模拟应用1. 电子设备设计电磁场数值模拟可用于电子设备的设计和优化。

例如,可以使用有限元法和时域有限差分法来对电子器件进行仿真模拟,分析其电磁场分布、电场强度等参数,以优化电路传输、EMC抗干扰等性能。

2. 电磁兼容性分析电磁兼容性(Electromagnetic Compatibility,EMC)是评估电子设备互相之间及其周围电子环境中的电磁干扰程度的一种能力。

数值分析方法在电磁场计算中的应用

数值分析方法在电磁场计算中的应用

数值分析方法在电磁场计算中的应用电磁场是物理学中最重要的一部分之一,它广泛应用于现代工业、交通、通信、能源和医疗设备等领域。

因此,研究电磁场的行为对于建立新技术和改进现有技术非常重要。

不过由于电磁场是一个非线性的动态系统,因此分析它的行为非常困难。

为了解决这个问题,我们需要数值分析方法来帮助我们更好地理解电磁场的行为。

电磁场的计算方法有很多种,常见的有有限元法、有限差分法等等。

本文将着重介绍有限差分法在电磁场计算中的应用。

有限差分法是经典的数值计算方法,它是一种数值求解偏微分方程的方法。

它的基本原理是将要求解的偏微分方程转化为差分方程,然后利用计算机来求解这个差分方程。

有限差分法的求解过程是离散化的,因此它更便于计算机的处理,同时它的数值误差也比较小。

有限差分法在电磁场计算中的应用非常广泛。

我们可以利用有限差分法来计算电磁场的强度、分布、辐射等参数。

下面我们将介绍一些在电磁场计算中使用有限差分法的实例。

首先,我们来看一个简单的电磁场问题:平面电容器之间的电场强度。

在这个问题中,我们需要求解电场的分布情况。

我们可以利用有限差分法来求解这个问题。

将计算区域离散化成若干个网格点,然后利用电场的高斯定理,将它的积分式子转化为差分式子,最后用差分方程来求解电场值。

在电磁场计算中,还有一些需要注意的问题。

首先是边界条件的处理。

由于有限差分法是一种离散的方法,因此我们需要在计算区域的外部放置边界条件。

这些边界条件包括电场的值、电势的值、电荷密度等等。

其次是计算精度的问题。

由于有限差分法是一种数值方法,因此它的计算精度有时会受到误差的影响。

我们可以通过适当地选择网格点的数量和大小来提高计算精度。

总体来说,有限差分法在电磁场计算中的应用非常广泛,并且具有很好的计算效果。

在实际应用中,我们需要根据具体问题选择合适的数值计算方法,并且在计算时注意处理边界条件和计算精度的问题。

电磁场数值计算

电磁场数值计算

电磁场数值计算引言:电磁场是电荷和电流产生的物理现象,它在现代科技和工程中起着至关重要的作用。

对电磁场的数值计算是研究和应用电磁学的基础。

本文将介绍电磁场数值计算的原理和方法,并探讨其在实际问题中的应用。

一、电磁场的数值计算方法:电磁场的数值计算可以通过求解麦克斯韦方程组来实现,这是描述电磁场的基本方程。

麦克斯韦方程组包括四个方程,分别是电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培环路定律。

通过数值方法求解这些方程,可以得到电磁场在空间中的分布情况。

1. 有限差分法:有限差分法是一种常用的数值计算方法,通过将空间离散化为有限个点,时间离散化为有限个步骤,将偏微分方程转化为差分方程进行求解。

在电磁场计算中,可以将空间划分为网格,通过有限差分法计算电场和磁场在网格节点上的数值。

2. 有限元法:有限元法是一种广泛应用于工程领域的数值计算方法,它通过将计算域划分为许多小的有限元,将偏微分方程转化为代数方程组进行求解。

在电磁场计算中,可以将计算域划分为三角形或四边形网格,通过有限元法计算电场和磁场在每个有限元上的数值。

3. 边界元法:边界元法是一种适用于边界值问题的数值计算方法,它将偏微分方程转化为积分方程进行求解。

在电磁场计算中,可以通过边界元法计算电场和磁场在边界上的数值,然后利用边界条件求解整个计算域内的电磁场分布。

二、电磁场数值计算的应用:电磁场数值计算在科学研究和工程应用中具有广泛的应用价值,以下是一些常见的应用领域:1. 电磁场仿真:电磁场数值计算可以用于电磁场仿真,模拟和预测电磁场在不同结构和材料中的分布情况。

例如,可以通过数值计算预测电磁波在天线中的传播情况,从而优化天线设计和布局。

2. 电磁场辐射:电磁场数值计算可以用于估计电磁场辐射对人体和环境的影响。

例如,可以通过数值计算评估电磁辐射对人体健康的潜在风险,从而制定相应的防护措施。

3. 电磁场感应:电磁场数值计算可以用于分析电磁感应现象,研究电磁场对电路和设备的影响。

电磁场数值计算与分析技术研究

电磁场数值计算与分析技术研究

电磁场数值计算与分析技术研究1. 研究背景电磁场是物理学中重要的研究领域,涉及到电磁波传播、电磁辐射、电磁场对物质的影响等多个方面。

在现代科学技术中,电磁场的应用十分广泛,如无线通信、电子设备、雷达测量等。

而电磁场数值计算与分析技术则是电磁场研究中的基础工具,它能够通过计算机模拟的方式帮助我们快速地了解电磁场的特性,分析电磁场对物体的影响。

2. 电磁场数值计算的方法电磁场数值计算的方法主要分为两类,即有限元法和有限差分法。

这两种方法在具体应用中各有优缺点。

有限元法是一种适用于复杂结构的数值计算方法,它将电磁场模型划分为有限个小的单元,然后在每个单元内进行计算,最后整合得到整个模型的计算结果。

有限元法的优点在于它能够处理各种复杂结构,如非线性材料、异形结构等,并且具有精度高、计算速度快等特点。

但是,有限元法的计算成本比较高,需要大量的计算资源,并且需要较高的计算技术水平。

有限差分法是一种比较简单的数值计算方法,它将空间分为一个个离散的网格,然后通过在不同的网格点上进行计算,得到整个空间内的电磁场分布。

有限差分法的优点在于它很容易实现且计算速度快,但是对于复杂的结构和材料效应处理能力较弱,并且需要网格的密度比较高才能够得到比较精确的结果。

3. 电磁场数值计算技术的应用电磁场数值计算技术的应用非常广泛,其中包括电磁波传播、电磁场对物体的影响、电磁设备设计等。

在电磁波传播方面,电磁场数值计算技术可以通过计算电磁波在空间中的传播路径、干扰区域等,来帮助无线通信等领域的设计和优化。

在电磁场对物体的影响方面,电磁场数值计算技术可以帮助我们计算电磁场对物体的激发情况,例如电磁波照射在人体上的吸收情况等,这对于电磁辐射防护等领域非常重要。

在电磁设备设计方面,电磁场数值计算技术可以帮助我们了解电磁场在设备内的分布情况,优化电磁场对设备的影响,提高设备的性能和可靠性。

4. 电磁场数值计算技术的未来发展随着计算机技术的不断进步,电磁场数值计算技术也在不断发展。

电磁场数值分析

电磁场数值分析

电磁场数值分析电和磁现象在自然界普遍存在,两者相互依存形成一个不看分割的整体。

电能产生磁,磁能生电。

很早以前人们就注意到电现象和磁现象,但是两者之间的这种相互联系在很长的一段时间内都没有被人们认识。

直到奥斯特首先发现了通电直导线周围存在磁场这一现象人们才开始把电和磁放在一起来研究。

然而这个时候人们依然没有办法揭示电和磁中间的秘密,只是停留在实验研究阶段,没有形成科学的理论。

1831年法拉第发现了电磁感应定律,从此电和磁的计算可以量化了,人类历史也开启了一个新的时代—电气时代。

由于法拉第的杰出工作,电和磁不再是不可触摸的了,人们已经掌握了运用它的钥匙。

在法拉第之后,另一位杰出的科学家麦克斯韦则更进一步,建立了麦克斯韦方程组,电和磁的理论已经到了相当完美的程度。

现代电机,不管结构多么复杂,都是基于法拉第电磁感应定律和麦克斯韦方程组的原理来运行的,其电和磁的相关量都可以利用这两个定律来进行精确地分析,在设计电机时,我们也是基于这两个定律对电机的电磁过程来进行精确的设计,从而设计出理想的电机。

学会电磁场分析,主要是基于麦克斯韦方程组的相关计算,对电机的学习非常重要。

它为我们今后的学习打下基础。

在学习过程中,主要要把握以下几个度之间的关系:梯度、旋度、散度,这三者的变换正体现了电和磁之间的转换。

一基本原理电磁场的内在规律由电磁场基本方程组—麦克斯韦(Maxwell )方程组表达。

这些方程是由麦克斯韦对大量实验结果及基本概念进行了数学加工和推广归纳而成的。

麦克斯韦方程组是分析和计算电磁场问题的出发点,它既可写成微分形式,又可写成积分形式。

微分形式的麦克斯韦方程组为 t DJ H ∂∂+=⨯∇(1) t BE ∂∂-=⨯∇(2) 0=⋅∇B(3) ρ=⋅∇D (4)式中,E 为电场强度(V/m );B 为磁感应强度(T );D 为电位移矢量(C/m 2);H 为磁场强度(A/m );J 为电流密度(A/m 2);ρ为电荷密度(C/m 2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元法
• 能计算具有多种媒质区域内的电磁场; • 能精确地逼近复杂的几何边界; • 能很好地处理非线性问题; • 能精确地描述场源的分布; • 已形成一套比较合理和成熟的算法。
边值问题和条件变分问题
• 有限元法是基于偏微分方程的方法。微分 方程要获得唯一解,必须给定相应的条件, 称为定解条件。微分方程和定解条件作为 一个整体,称为定解问题。对于电机恒定 电磁场问题,定解条件就是边界条件,边 界条件表达场的边界所处的物理情况,这 又被称为边值问题。
磁矢量位A和磁标量位Ф
• 有源(电流)区域或无源区域都可以用矢 量位求解,标量位适用于无电流区域。对 于二维电磁场,矢量位只有一个分量,待 求量个数与标量位相同,其微分方程的形 式具有普适性,而且使用矢量位可以很方 便地绘出磁力线分布并求出磁通,目前电 机的二维电磁场计算大都采用矢量位。
平面场域Ω上的电磁场问题可表 示成边值问题
(a j
b j x c j y)Aj
(am
bm x cm y)Am ]}dxdy
单元节点磁位求偏导数
We Ai
We
A
j
We
Am
kii
k
ji
kmi
kij k jj kmj
kim Ai pi
k
jm
A
j
p
j
kmm Am pm
y j
m 0
i x
1 Nh 2 (ah bh x ch y)
(h i, j, m)
条件变分问题离散化
单元能量函数We为
We ( Ai , A j ,
Am )
{ 82
[(bi Ai
bj Aj
bm Am ) 2
(ci Ai
cj Aj
cm Am ) 2 ]
J 2
[(ai
bi x ci y) Ai
u ) n
f3 ()
典型边界条件
(1)边界线与磁力线重合 (2)边界线与磁力线处处正交
例如,将铁和空气的交界处作为边界,当 区域内是铁、区域外是空气,则该边界线 与磁力线重合;当铁在外空气在内,则磁 力线与边界正交。
(3)周期性条件作为边界条件 如选取一对极的范围作为求解区域,达到 减少计算量、提高计算速度的目的。
2
[(A)2 x
(
A)2 y
]
J
z
Adxdy
2 Ht Adl min
1 : A A0
W
[
A x
A x
A y
A y
]
J
zAdxdy
2 HtAdl 0
有限元法的处理过程
• 区域剖分 • 构造插值函数 • 变分问题离散化 • 形成总体方程 • 方程求解
剖分插值
A Ni Ai N j Aj Nm Am
总体合成
k11 k12 k1n A1 p1
k21 k22
k2n
A2
p2
k条件
第一类边界条件(狄里赫利):边界上的物理条件规定了物 理量u在边界Γ上的值。
u f1()
第二类边界条件(牛曼):边界上的物理条件规定了物理量 u的法向微商在边界上的值。
u n
f2 ()
第三类边界条件(洛平):边界上的物理条件规定了物 理量u及其法向微商在边界上的某一线性关系。
(u
:
x
A x
y
A y
Jz
1 : A A0
2
:
A n
Ht
矢量磁位计算4极12槽永磁无刷电机的二维磁场求解区域
• 圆弧AB和CD为第一类 边界条件。
• 直线AD和BC为第二类
齐次边界条件(仅计
算永磁磁场)
B
C
D
A
• 直线AD和BC为整周期
边界(计算负载磁场)
边值问题转换为条件变分问题
W (A)
相关文档
最新文档