动力学分析方法

动力学分析方法
动力学分析方法

1 动力学分析方法

结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10]

分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精、去伪存真的过程。在结构动力学中,着重研究力学模型(物理模型)和数学模型。建模方法很多,一般可分为正问题建模方法和反问题建模方法。正问题建模方法所建立的模型称为分析模型(或机理模型)。因为在正问题中,对所研究的结构(系统)有足够的了解,这种系统成为白箱系统。我们可以把一个实际系统分为若干个元素或元件(element),对每个元素或元件直接应用力学原理建立方程(如平衡方程、本构方程、汉密尔顿原理等),再考虑几何约束条件综合建立系统的数学模型。如果所取的元素是一无限小的单元,则建立的是连续模型;如果是有限的单元或元件,则建立的是离散模型。这是传统的建模方法,也称为理论建模方法。反问题建模方法适用于对系统了解(称黑箱系统——black box system)或不完全了解(称灰箱系统——grey box system)的情况,它必须对系统进行动力学实验,利用系统的输入(载荷)和输出(响应——response)数据,然后根据一定的准则建立系统的数学模型,这种方法称为试验建模方法,所建立的模型称为统计模型。

在动力平衡方程中,为了方便起见一般将惯性力一项隔离出来,单独列出,因此通常表达式为:

+P

M (2)

u

I

-

=

其中M为质量矩阵,通常是一个不随时间改变的产量;I和P是与位移和速度有关的向量,而与对时间的更高阶导数无关。因此系统是一个关于时间二级导数的平衡系统,而阻尼和耗能的影响将在I和P中体现。可以定义:

+

= (3)

I

Ku

C

u

如果其中的刚度矩阵K和阻尼矩阵C为常数,系统的求解将是一个线性的问题;否则将需要求解非线性系统。可见线性动力问题的前提是假设I是与节点位移和速度是线性相关的。

将公式(2)代入(1)中,则有

(4)

+

M=

+

u

P

Ku

C

u

上述平衡方程是动力学中最一般的通用表达式,它适合与描述任何力学系统的特征,并且包含了所有可能的非线性影响。求解上述动力问题需要对运动方程在时域内积分,空间有限元的离散化可以把空间和时间上的偏微分基本控制方程组在某一时间上转化为一组耦合的、非线性的、普通微分方程组。

线性动力问题是建立在结构内各点的运动和变形足够小的假设基础之上的,能够满足线性叠加原理,且系统的各阶频率都是常数。因此结构系统的响应可以由每个特征向量的线性叠加而得到,通常所说的模态叠加法由此而来。

在静力分析中,结构响应与施加在结构上的载荷和边界条件有关,使用有限元方法可以求解得到应力、应变和位移在空间上的分布规律;在动力分析中,结构响应不但与载荷和边界条件有关,还和结构的初始状态有关,在时域的任何一点上都可以使用有限元方法求解空间上的应力、应变和位移,然后可以使用一些数值积分技术来求解得到时域中各个点上的响应。

某特定系统动力分析方法的选择在很大程度上依赖于是否需要详细考虑非线性的影响。如果系统是线性的,或者系统能够被合理地线性化,最好选用模态分析的方法,因为程序对线性问题分析的效率较高,而且同时在频域和时域范围内求解将更有利于洞察系统的动力特性。

1.1 模态叠加法

对于多自由度系统,如果考虑粘性阻尼,则其受迫振动的微分方程为:

)(t f Ku u C u

M =++ …………………………………(5) 解此运动方程一般有两类方法,一类是直接积分法,就是按时间历程对上述微分方程直接进行数值积分,即数值解法。另一类解法就是模态(振型)叠加法。

若已解出系统的各阶固有频率n ωωω,,, 21和各阶主振型(模态)

n φφφ,,, 21,并有:

{}T 21ni i i i a a a ,,, =φ (6)

因为主振型的正交性,可知主振型是线性无关的,设有常数n ξξξ,,, 21使

∑==n i i i 10φ

ξ (7)

上式两端左乘M T

j φ有:

∑==n i i T j i

M 10φφξ (8)

注意到主振型关于质量阵的正交性:0=i T

j M φφ,并代入上式,可推出

021====n ξξξ ,这就是证明了n φφφ,,, 21线性无关。

于是,由线性代数理论知向量n φφφ,,, 21构成了n 维空间的一组向量基,因此对于n 个自由度系统的任何振动形式(相当于任何一个n 维矢量),都可以表示为n 个正交的主振型的线性组合,即

∑==n

i i i u 1φξ (9)

写成矩阵的形式为:

φξ=u (10)

上式就是展开定理。用模态(振型)叠加法求系统响应就是建立在展开定理的基础上。在实际问题的应用中,应注意的是系统自由度太多,而高阶模态对应的影响通常又很小,所以应用时在满足工程精度的前提下,只取低阶模态(N<

根据展开定理,对方程(2)实行坐标变换,再以模态矩阵的转置T φ乘方程的两边,得:

)(t f K C M T T T T φξφφξφφξ

φφ=++ ………………(11) 若系统为比例阻尼,则可利用正交条件使上述方程变位一系列相互独立的方程组:

f K C M =++ξξξ

………………………………(12) 其中M 、C 和K 都是对角矩阵,它们的对角线元素分别为:

i T i i M m φφ=

i i i i T i i M C c ωξφφ2==

i i i T i i M K k 2ωφφ==

i i i m k =2ω n i ,,2,1 = (13)

其广义力为:

)(t f f T i i φ= (14)

这样方程组(11)可写为:

i

i i i K C M =++ξξξ n i ,,2,1 = (15) 这是n 个相互独立的单自由度系统的运动方程,每一个方程都可以按自由度系统的振动理论去求解。 如果i 为任意激振力,对于零初始条件的系统可以借助于杜哈梅积分公式求出响应,即:

?-=t

i i i d t h 0)()(τττξ…………………………………(16) 其中)(τi h 为单位脉冲响应函数。 如果i f 为简谐激励,即:

t j i i e f f ω0= (17)

则系统的稳态响应为:

t j i i e ωξξ0= (18)

将上式代入(14),可解得:

i i i i i c j m k ωωξ+-=

2 (19)

或 )

21()21(222i i i i i i i i i i i i j m f j k f λξλωλξλξ+-=+-= ………………(20) 其中,i i ωωλ=,在主坐标i ξ解出之后,应返回到原广义坐标i u 上,利用公式(9)和(20)得:

∑=+-=n

i i i i i T i c j m k f u 12ωω?φ……………………………(21) 上式表示了多自由度系统在简谐激振力f 作用下的稳态响应。从中可以看出激振响应除了与激振力f 有关外,还与系统各阶主模态及表征系统动态特性的各个参数有关。

通过以上的内容可以看出在以模态理论为基础的各种分析过程中,必须首先进行模态分析,提取结构的自然频率。对于自由振动方程在数学上讲就是固有(特征)值方程(eigen-equations)。特征值方程的解不仅给出了特征值(eigenvalues),即结构的自振频率和特征矢量——振型或模态(eigenmodes),而且还能使结构在

动力载荷作用下的运动方程解耦,即所谓振型分解法或叫振型叠加法(modal summation methods)。

特征值或特征频率的提取是建立在一个无阻尼自由振动系统上的,即振动方程中没有阻尼项的影响:

+Ku

M (22)

u

=

特征值和结构振动模态描述了结构在自由振动下的振动特点和频率特征。

通过使用振型分解法解得振兴和频率,能够很容易地求得任何线性结构的响应。在结构动态分析中,响应通常与低阶响应有关。而且在通常实际问题中,只需要考虑前面几个振型就能获得相当精度的解。对于只有几个自由度的力学模型,只需要考虑一个或者两个自由度就能求得动力响应的近似解,而对于具有几百个甚至上千个自由度的高度复杂有限元模型,就需要考虑数十个甚至上百个振型对响应的影响。

曲柄连杆机构动力学分析与计算

第一章绪论 1.1内燃机概述 汽车自19世纪诞生至今,已经有100多年的历史了。汽车工业从无到有,以惊人的速度在发展着,汽车工业给人类的近代文明带来翻天覆地的变化,在人类的文明进程中写下了宏伟的篇章。汽车工业是衡量一个国家是否强大的重要标准之一,而内燃机在汽车工业中始终占据核心的地位。内燃机是将燃料中的化学能转变为机械能的一种机器。由于内燃机的热效率高(是当今热效率最高的热力发动机)、功率范围广、适应性好、结构简单、移动方便、比质量(单位输出功率质量)轻、可以满足不同要求等特点,已经广泛的应用于工程机械、农业机械、交通运输(陆地、内河、海上和航空)和国防建设事业当中。因此,内燃机工业的发展对整个国民经济和国防建设都有着十分重要的作用。 1.1.1世界内燃机简史 内燃机的出现和发明可以追溯到1860年,来诺伊尔(J.J.E.Lenoir1822~1900年)首先发明了一种叫做大气压力式的内燃机,这种内燃机的大致工作过程是:空气和煤气在活塞的上半个行程被吸入气缸内,然后混合气体被火花点燃;后半个行程是膨胀行程,燃烧的煤气推动着活塞下行,然后膨胀做功;活塞上行时开始排气。这种内燃机和现代主流的四冲程内燃机相比,在燃烧前没有压缩行程,但基本思想已经有了雏形。这种内燃机的热效率低于5%,最大功率只有4.5KW,1860~1865年间,共生产了约5000台。1867年奥拓(Nicolaus A.Otto,1832~1891

年)和浪琴(Eugen Langen,1833~1895年)发明了一种更为成功的大气压力式内燃机。这种内燃机是利用燃烧所产生的缸内压力,随着缸内压力的升高,在膨胀行程时加速一个自由活塞和齿条机构,他们的动量将使得缸内产生真空,然后大气压力推动活塞内行。齿条则通过滚轮离合器和输出轴相啮合,然后输出功率。这种发动机的热效率可以达到11%,共生产了近5000台。 由于煤气机必须使用气体燃料,而当时的气体燃料的来源非常困难,这从某种意义上讲就阻碍了煤气机的进一步发展。1885年德国人戈特利布·戴姆勒(Gottlieb ·Daimler)仿照四冲程煤气机的工作原理,成功地制造了第一台汽油机,并于1886年搭载这台汽油机驱动汽车问世。由于这种内燃机的体积小、重量轻、价格便宜;起动性好,最大功率时的转速高,工作中的噪声和振动小,运转平稳等优点,迅速在运输车辆上得到了广泛的应用。 紧接着,在1890年英国的克拉克(Dugald Clerk,1854~1913年)和罗宾逊(James Robson 1833~1913年)、德国的卡尔·奔驰(Karl Benz,1844~1929年)成功的发明了二冲程内燃机,即在膨胀行程末期和压缩行程初期进行进气和排气行程。二冲程内燃机和四冲程内燃机相比,二冲程内燃机具有较高的单位容积功率和比较均匀的扭矩,并且结构简单、使用和维修方便;二冲程的燃油及润滑油耗量较高,冷却比较困难,耐用性较差。目前二冲程内燃机多用于摩托车、割草机、大型船舶等,而四冲程内燃机多用于汽车行业,并且比较广泛。 1892年德国工程师鲁道夫·迪塞尔(Rudolf Diesel,1858~1913年)提出了一种新型的内燃机,即在压缩终了时,将液体燃料喷人缸内,利用压缩终了的气体高温将燃料点燃。这种内燃机可以采用大的压缩比和膨胀比,没有爆燃,热效率可以比当时其他的内燃机高出一倍。迪塞尔的构想在5年后终于变成了现实,一种崭新的压燃式发动机——柴油机。之后,学者们曾提出了各种各样的回转式内燃机的结构方案,但直到1957年才由汪克尔(F.Wankel)成功地实验了他发明的转子发动机。这种发动机通过多年的努力和发展,在解决了密封和缸体震纹之后,也在一定领域获得了较好的应用。现代汽车企业中,马自达仍有转子发动机技术,马自达官方说是技术储备了,但并不是不再研究了,是因为就现在的科技来讲满足不了转子发动机的用钢需求。 1.1.2内燃机的燃料

第三章 瞬态动力学分析

§3.1瞬态动力学分析的定义 瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 瞬态动力学的基本运动方程是: 其中: [M] =质量矩阵 [C] =阻尼矩阵 [K] =刚度矩阵 {}=节点加速度向量 {}=节点速度向量 {u} =节点位移向量 在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和 阻尼力([C]{})的静力学平衡方程。ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。两个连续时间点间的时间增量称为积分时间步长(integration time step)。 §3.2学习瞬态动力学的预备工作 瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。例如,可以做以下预备工作:

1.首先分析一个较简单模型。创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。 2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。在某些场合,动力学分析中是没必要包括非线性特性的。 3.掌握结构动力学特性。通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。同时,固有频率对计算正确的积分时间步长十分有用。 4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。<<高级技术分指南>>中将讲述子结构。 §3.3三种求解方法 瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。ANSYS/Professional产品中只允许用模态叠加法。在研究如何实现这些方法之前,让我们先探讨一下各种方法的优点和缺点。 §3.3.1完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。

14_奇瑞_崔英杰_利用AVL EXCITE Timing Drive进行配气机构动力学分析

利用AVL EXCITE Timing Drive进行配气机构动力学分析 崔英杰刘波张璐 (奇瑞发动机工程研究二院试验与分析部,安徽芜湖, 241009)摘要:利用A VL Timing Drive建立某机型配气机构的单阀系模型,评价凸轮型线和配气机构各零件的动力学表现。首先分析凸轮型线运动学,然后判断该配气机构是否会出现气门飞脱、反跳、弹簧并圈、液力挺柱失效、凸轮磨损等现象,评价气门动力学特性及本组型线的可行性。 关键词:发动机;配气机构;运动学;动力学 主要软件:A VL EXCITE Timing Drive 1. 前言 本文通过A VL EXCITE Timing Drive建立配气机构的单阀系仿真模型,继而对一组凸轮型线进行动力学分析,考察是否会出现气门飞脱、反跳、弹簧并圈、液力挺柱失效、凸轮磨损等现象,评价气门动力学特性及本组型线的可行性。 2.模型搭建 2.1 配气机构布置图 该机型采用双顶置凸轮轴,配气机构主要由凸轮、液力挺柱、指型摇臂、气门及气门弹簧等零件组成,摇臂几何尺寸由机构布置如图1确定。 图1 配气机构布置图 2.2 零件质量、刚度、阻尼参数值确定 各零件质量、转动惯量均从Pro/E三维数模中分析所得。 指型摇臂、气门杆、气门阀面的刚度按照培训教材推荐采用有限元方法计算,弹簧的刚度则由弹簧测力曲线用曲线拟合方法得到变刚度值。

零件相互之间相对阻尼,都采用培训教材中所推荐的值。 2.3 其他参数 缸内压力曲线、排气道压力曲线由BOOST提供,如图2、3。 图2 缸内压力曲线图3 排气道压力曲线 2.3 EXCITE Timing Drive模型建立 采用以上数据,建立A VL EXCITE Timing Drive单阀系分析模型,如图4。 图4 TYCON分析模型 3.计算结果分析 3.1 型线运动学分析 以该发动机超速转速,分析这组凸轮型线。图5、6分别为进、排气气门的升程、速度、加速度曲线。 图5 进气运动学分析图6 排气运动学分析

四连杆机构分析代码动力学--精简

平面连杆机构的运动分析和动力分析1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm 最短杆长度+最长杆长度(125.36+73.4) ≤其余两杆长度之和(103.4+103.52) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm 最短杆长度+最长杆长度(125.36+50.1) ≤其余两杆长度之和(109.8+72.85) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第三组(3代)四杆机构L1=163.2mm,L2=61.6mm,L3=150mm,L4=90mm 最短杆长度+最长杆长度(163.2+61.6) ≤其余两杆长度之和(150+90) 最短杆为连架杆,四杆机构为曲柄摇杆机构 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立 图1机构结构简图 在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。如图1所示,先建立一直角坐标系。设各构件的长度分别为L1 、L2 、L3 、L4 , 其方位角为、、、。以各杆矢量组成一个封闭矢量多边形,即ABCDA。其个矢量之和必等于零。即:

平面四杆机构分析报告

工业设计机械设计基础大作业 一、序言 平面连杆机构是若干个刚性构件通过低副(转动副、移动副)联接,且各构件上各点的运动平面均相互平行的机构。虽然与高副机构相比,它难以准确实现预期运动,设计计算复杂,但是因为低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器。对连杆机构进入深入透彻的研究,有助于工业设计的学生在今后的产品设计中对其进行灵活应用或创新改进。 二、平面连杆机构优缺点的介绍 连杆机构应用十分广泛,它是由许多刚性构件用低副连接而成的机构,故称为低副机构,这类机构常常应用于各种原动机、工作机和仪器中。例如,抽水机、空气压缩机中的曲柄连杆机构,牛头刨床机构中的导杆机构,机械手的传动机构,折叠伞的收放机构等。这其中铰链四杆机构,曲柄滑块机构和导杆机构是最常见的连杆机构形式。 它们的共同特点是:第一,它们的运动副元素是面接触,所以所受的压力较高副机构小,磨损轻;第二,低副表面为平面和圆柱面,所以制造容易,并且可获得较高的加工精度;第三,低副元素的接触是依靠本身的几何约束来实现的,因此不需要高副机构中的弹簧等保证运动副的封闭装置。 连杆机构也存在如下一些缺点:为了满足设计的要求,往往要增加构件和运动副数目,使机构构造复杂,有可能会产生自锁;制造的不精确所产生的累积误差也会使运动规律发生偏差;设计与计算比高副机构复杂;在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的惯性力难以用一般方法方法加以消除,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计却是十分困难的,且一般只能近似地得以满足。 正因如此,所以如何根据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研究的一个重要课题。 三、平面四杆机构的基本类型与应用实例。 连杆机构是由若干刚性构件用低副连接所组成的。在连杆机构中,若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。平面四杆机构是平面连杆机构的最基本形式,这其中所有运动副均为转动副的四杆机构称为铰链四杆机构。 在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为三种基本形式。即曲柄摇杆机构、双曲柄机构和双摇杆机构。其中: 1.曲柄摇杆机构 在铰链四杆机构中,若两连架杆中有一个为曲柄(整周回转),另一个为摇杆(一定范围内摆动),则称为曲柄摇杆机构。 在这种机构中,当曲柄为原动件时,可将原动件的连续转动,转变为摇杆的反复摆动。如飞剪、间歇传送机构、传送带送料机构等。

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

内燃机配气机构系统动力学分析_张晓蓉

第31卷第3期重庆大学学报 Vo.l 31 No .3 2008年3月 Jour nal of Chongqi n g U niversity M ar .2008 文章编号:1000-582X (2008)03-0294-05 内燃机配气机构系统动力学分析 张晓蓉1,2 ,朱才朝2 ,吴佳芸 2 (1.重庆科技学院机械学院,重庆400042;2.重庆大学机械传动国家重点实验室,重庆400030) 摘 要:内燃机配气机构直接影响着内燃机的性能和可靠性。论文对顶置四气门配气机构工作过程进行了分析,采用理论计算和实验方法确定了配气机构动力学模型的主要参数,利用AVL / TYCON 分析软件建立了顶置配气机构凸轮轴)摇臂)气门系统的一维动力学分析模型,并对其动态特性进行了数值仿真,验证了动力学模型及分析结果的正确性,为配气机构动态性能的评价和优化提出了理论依据。 关键词:内燃机;配气机构;动力学 中图分类号:TH 132.47 文献标志码:A System Dynam ic Analysis of Engine Valve -train ZHANG X i a o-ro ng 1,2 ,ZHU C a i -cha o 2 ,W U J i a -yun 2 (1.C ollege o fM echan ical Eng i n eeri n g ,Chongqi n g U niversity o f Science and Techno l o gy ,Chongqing 400042,P .R .China ; 2.State K ey Laboratory o fM echan ica lTrans m issi o n ,Chongqing University ,Chongq i n g 400030,P .R.Ch i n a)Abst ract :Va l v e tra i n is the key factor for the perfor m ance and reliab ility of eng ine .W e analyze the w or k i n g m echanis m of over head va l v e train w ith four valves ,and obtained the m a i n para m eters o f dyna m ic m odeli n g w ith t h eore tica l and experi m ental m ethods .On the basis of the above stud i e s ,w e buil d the m odel o f ca m shaf-t rocke-t valve syste m w ith AVL /TYCON soft w are .Its dyna m ic characteristics is si m ulated and ver ified by experi m ents .Th is paper prov ides a theoretical approach for the evaluati o n and opti m izati o n of dyna m ic perfor m ance of valve tra i n .K ey w ords :eng i n e ;va lve -train ;dyna m ics 配气机构是内燃机的重要组成部分,其设计优良与否直接影响内燃机的性能指标。这些指标不仅包括动力性、经济性,也包括运转性能如内燃机的振动、噪声、排放指标和可靠性等,因而开展配气机构系统动力学研究具有重要意义。 配气凸轮机构一直是内燃机研究的重要组成部分,研究内容已从最初单纯的凸轮经验设计,拓展到整个配气机构的运动学与动力学的综合研究。国外自20世纪初就有许多学者开始进行这方面的深入 研究;相比而言,国内则起步较迟,20世纪70年代起才开始全面研究凸轮设计与动力学分析,研究的重点放在凸轮型线设计、多质量动力学研究方面 [1-3] 。目前,国际上已有各种配气凸轮设计软件, 国内也出现了一些类似的软件,这些软件在速度与计算精度上都有所提高。文中以顶置四气门配气机构为例,通过理论计算和利用实验方法确定了配气机构动力学模型的主要参数,利用TYCON 分析软件建立了该配气机构的凸轮轴)摇臂)气门系统动力

动力学分析方法

1 动力学分析方法 结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10] 分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精、去伪存真的过程。在结构动力学中,着重研究力学模型(物理模型)和数学模型。建模方法很多,一般可分为正问题建模方法和反问题建模方法。正问题建模方法所建立的模型称为分析模型(或机理模型)。因为在正问题中,对所研究的结构(系统)有足够的了解,这种系统成为白箱系统。我们可以把一个实际系统分为若干个元素或元件(element),对每个元素或元件直接应用力学原理建立方程(如平衡方程、本构方程、汉密尔顿原理等),再考虑几何约束条件综合建立系统的数学模型。如果所取的元素是一无限小的单元,则建立的是连续模型;如果是有限的单元或元件,则建立的是离散模型。这是传统的建模方法,也称为理论建模方法。反问题建模方法适用于对系统了解(称黑箱系统——black box system)或不完全了解(称灰箱系统——grey box system)的情况,它必须对系统进行动力学实验,利用系统的输入(载荷)和输出(响应——response)数据,然后根据一定的准则建立系统的数学模型,这种方法称为试验建模方法,所建立的模型称为统计模型。 在动力平衡方程中,为了方便起见一般将惯性力一项隔离出来,单独列出,因此通常表达式为: +P M (2) u I - = 其中M为质量矩阵,通常是一个不随时间改变的产量;I和P是与位移和速度有关的向量,而与对时间的更高阶导数无关。因此系统是一个关于时间二级导数的平衡系统,而阻尼和耗能的影响将在I和P中体现。可以定义: + = (3) I Ku C u 如果其中的刚度矩阵K和阻尼矩阵C为常数,系统的求解将是一个线性的问题;否则将需要求解非线性系统。可见线性动力问题的前提是假设I是与节点位移和速度是线性相关的。 将公式(2)代入(1)中,则有 (4) + M= + u P Ku C u

ANSYS动力学分析

第5章动力学分析 结构动力学研究的是结构在随时间变化载荷下的响应问题,它与静力分析的主要区别是动力分析需要考虑惯性力以及运动阻力的影响。动力分析主要包括以下5个部分:模态分析:用于计算结构的固有频率和模态。 谐波分析(谐响应分析):用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析:用于计算结构在随时间任意变化的载荷作用下的响应,并且可涉及上述提到的静力分析中所有的非线性性质。 谱分析:是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 显式动力分析:ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 本章重点介绍前三种。 【本章重点】 ?区分各种动力学问题; ?各种动力学问题ANSYS分析步骤与特点。 5.1 动力学分析的过程与步骤 模态分析与谐波分析两者密切相关,求解简谐力作用下的响应时要用到结构的模态和振型。瞬态动力分析可以通过施加载荷步模拟各种何载,进而求解结构响应。三者具体分析过程与步骤有明显区别。 5.1.1 模态分析 1.模态分析应用 用模态分析可以确定一个结构的固有频率利振型,固有频率和振型是承受动态载荷结构设计中的重要参数。如果要进行模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。可以对有预应力的结构进行模态分析,例如旋转的涡轮叶片。另一个有用的分析功能是循环对称结构模态分析,该功能允许通过仅对循环对称结构的一部分进行建模,而分析产生整个结构的振型。 ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即Block Lanczos(默认)、Subspace、Power Dynamics、Reduced、Unsymmetric、Damped及QR Damped,后两种方法允许结构中包含阻尼。 2.模态分析的步骤

ansys动力学分析全套讲解

第一章模态分析 §模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。 1.分块Lanczos法 2.子空间(Subspace)法 Dynamics法

四连杆机构分析代码动力学--精简

平面连杆机构的运动分析和动力分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm 最短杆长度+最长杆长度(125.36+73.4) ≤其余两杆长度之和(103.4+103.52) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm 最短杆长度+最长杆长度(125.36+50.1) ≤其余两杆长度之和(109.8+72.85) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第三组(3代)四杆机构L1=163.2mm,L2=61.6mm,L3=150mm,L4=90mm 最短杆长度+最长杆长度(163.2+61.6) ≤其余两杆长度之和(150+90) 最短杆为连架杆,四杆机构为曲柄摇杆机构 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立

机械原理课程设计六杆机构运动与动力分析

目录 第一部分:六杆机构运动与动力分析 一.机构分析分析类题目 3 1分析题目 3 2.分析内容 3 二.分析过程 4 1机构的结构分析 4 2.平面连杆机构运动分析和动态静力分析 5 3机构的运动分析8 4机构的动态静力分析18 三.参考文献21 第二部分:齿轮传动设计 一、设计题目22 二、全部原始数据22 三、设计方法及原理22 1传动的类型及选择22 2变位因数的选择22 四、设计及计算过程24 1.选取两轮齿数24 2传动比要求24 3变位因数选择24

4.计算几何尺寸25 五.齿轮参数列表26 六.计算结果分析说明28 七.参考文献28 第三部分:体会心得29

一.机构分析类题目3(方案三) 1.分析题目 对如图1所示六杆机构进行运动与动力分析。各构件长度、构件3、4绕质心的转动惯量如表1所示,构件1的转动惯量忽略不计。构件1、3、4、5的质量G1、G3、G4、G5,作用在构件5上的阻力P工作、P空程,不均匀系数δ的已知数值如表2所示。构件3、4的质心位置在杆长中点处。 2.分析内容 (1)对机构进行结构分析; (2)绘制滑块F的运动线图(即位移、速度和加速度线图); (3)绘制构件3角速度和角加速度线图(即角位移、角速度和角加速度线图); (4)各运动副中的反力; (5)加在原动件1上的平衡力矩; (6)确定安装在轴A上的飞轮转动惯量。 图1 六杆机构

二.分析过程: 通过CAD制图软件制作的六杆机构运动简图: 图2 六杆机构 CAD所做的图是严格按照题所给数据进行绘制的。并机构运动简图中活动构件的序号从1开始标注,机架的构件序号为0。每个运动副处标注一个字母,该字母既表示运动副,也表示运动副所在位置的点,在同一点处有多个运动副,如复合铰链处或某点处既有转动副又有移动副时,仍只用一个字母标注。见附图2所示。 1.机构的结构分析 如附图1所示,建立直角坐标系。机构中活动构件为1、2、3、4、5,即活动构件数n=5。A、B、C、D、F处运动副为低副(5个转动副,2个移动副),共7个,即P l=7。则机构的自由度为:F=3n-2P l=3Χ5-2Χ7=1。 ,转速为n1,如附图3-a所示;(2)拆基本杆组:(1)标出原动件1,其转角为φ 1, 试拆出Ⅱ级杆组2—3,为RPR杆组,如附图3-b所示;(3)拆出Ⅱ级杆组4—5,为RRP 杆组,如附图3-c所示。由此可知,该机构是由机架0、原动件1和2个Ⅱ级杆组组成,故该机构是Ⅱ级机构。

发动机配气机构系统的动力学建模及仿真分析

发动机配气机构系统的动力学建模及仿真分析 罗卫平,陈曼华,姜小菁,王 (金陵科技学院机电工程学院,江苏南京211169) 摘要:针对发动机配气机构系统,在ADAM S/Engine软件中建立了其虚拟模型,在此基础上,对该机构进行了仿真分析,得到了气门的升程、速度、加速度和摇臂与挺柱的接触力等特性曲线,为配气机构动态性能的评价和优化提出了理论依据,从而为虚拟样机技术在新产品开发中的应用提供了有效方法。 关键词:配气机构;ADAM S/Engine;虚拟样机;多体动力学 中图分类号:U463.33;TP391.9文献标识码:A文章编号:1672-1616(2012)01-0051-04 配气机构的功用是根据发动机每一汽缸内进 行的工作循环顺序,定时地开启和关闭各汽缸的 进、排气门,以保证新鲜可燃混合气或空气得以及 时进入汽缸,并把燃烧后生成的废气及时排出汽 缸。配气机构的传统开发方法往往是多方案的比 较和试凑过程,这种基于物理样机的频繁的试验, 会延长研发周期和增加开发成本。虚拟样机技术 就是在这种情况下产生的一种数字化的研发模式, 即工程师在计算机上建立样机模型,对模型进行各 种动态性能的分析,然后改进样机设计方案,最后 投入生产。本文就是在这样的背景下,以多体动力 学为理论基础,采用美国MDI公司开发的 ADAM S软件。对发动机配气机构进行建模与仿 真,预测实际产品的特性,提供一个全面地研究产 品工作性能的方法。 1多体系统动力学研究的理论基础 随着多体动力学的发展,目前应用于多刚体系 统动力学的方法主要有以下几种:牛顿-欧拉法、 拉格朗日方法论、图论4法、凯恩法、变分法、旋量 法等。ADAMS用刚体i的质心迪卡儿坐标和反 映刚体方位的欧拉角作为广义坐标,即:q i=[x, y,z,W,H,<]T i,q=[q T1,,,q T n]T。采用拉格朗日 乘子法建立系统运动方程[1]: d d t 5T 5q# T - 5T 5q T +f T q Q+g T q#L=Q(1) 式中:T为系统动能;q为系统广义坐标列阵;Q 为广义力列阵;Q为对应于完整约束的拉氏乘子列阵,完整约束方程时,f(q,t)=0;L为对应于非完整约束的拉氏乘子列阵,非完整约束方程时,g(q, q#,t)=0。 2配气机构的动力学建模 配气机构是由凸轮轴、摇臂、气门、气门弹簧、挺柱、气门座等多个构件组成的机械系统,它是由凸轮的旋转带动驱动气门按预定的运动规律开启和关闭来实现配气的过程。ADAM S/Engine提供了多种配气机构部件模型的模板,因此在建立配气机构的模型时只需在ADAMS/Engine软件中选取 正确的模板,然后根据实际部件的特征,修改部件几何参数。如果模型库中不包含要建立的几何部件类型,则可以根据需要建立新的模板,然后导入标准界面进行分析[2]。本文利用ADAM S/Eng ine 模板建立了某柴油发动机顶置凸轮轴式配气机构的多刚体虚拟样机模型,如图1所示。 1)凸轮轴;2)摇臂;3)挺柱;4)气门弹簧; 5)气门;6)气门座 图1配气机构的虚拟样机模型 收稿日期:2011-08-10 作者简介:罗卫平(1973-),女,江苏南京人,金陵科技学院讲师,硕士,主要研究方向为虚拟技术和动力学仿真。

配气机构的多体系统动力学分析英文

Article ID:100420579(2000)0420375205 Multibody System Dynamics Analysis for V alve T rains Q IN Wen2jie, ZUO Zheng2xing (School of Vehicle and Trans portation Engineering,Beijing Institute of Technology,Beijing100081) Abstract:The theory of multibody system dynamics is used to simulate valve trains’kinematics and dynamics characteristics,and the methods of establishing and analyzing the multibody sys2 tem dynamics model for valve trains are discussed.Since most of the flexible bodies of a valve train are slender parts,the finite segment method is used to build their models.Other parts such as cams,valve heads etc.,are built as rigid bodies.After applying the constraints,forces and motions,the establishing of the whole system is accomplished,and the Lagrange’s multiplier method can be used to obtain its dynamics constitutive equations.As an example,a valve trainπs multibody system model of4100QB engine made by the Yunnan Internal Combustion Engine Limited2Liability Company is established,and the analysis results obtained show that its work2 ing performance is generally good except that the air2pass ability and the lubrication effect of the cam and the tappet have to be improved. K ey w ords:valve train;multibody system;dynamics C LC number:T K4 Document code:A Valve trains are broadly used to control the induction and exhaust of four2stroke engines. They are usually designed as rigid systems,in which valves’movements are completely controlled by the cam’s profiles.In fact,a valve train is an elastic system and the valve’s motion will devi2 ate from the theoretical result derived from the kinematics analysis due to the effect of the inertia and the elastic vibration.Thus the separation in the mechanism will occur and this will make its working conditions worse[1].With the improvement of engine’s speed,these dynamics problems become more and more significant.Therefore,the valve train’s dynamics characteristics must be checked. Usually a valve train is considered as a single2mass or multi2mass vibration system in the dy2 namic analysis[2].But this method cannot reflect the parts’movement and deformation directly, and the model’s parameters must be derived from experiments or other analysis.This will in2 crease the difficulties of model establishment and influence the calculation’s explicitness.Multi2 body system dynamics is a new science which studies the mechanics properties of the system com2 posed of flexible bodies and rigid bodies during the large span spatial movements.According to such a structure2mechanism system as a valve train,using it can not only simulate the motions and R eceived d ate:2000206212 Biography:QIN Wen2jie(1968-),female,lecturer,master.

配气机构的动力学分析

配气机构动力学分析课程设计 目录 一、配气机构的机构简图 ..................................... 错误!未定义书签。 二、配气机构运动学计算分析 (1) 1)配气机构中间参数法的代数分析 (1) 2)运初始值的设定及简化计算 (3) 三、配气机构动力学计算分析 (8) 1)受力分析及微分方程的建立 (8) 2)配气机构质量的换算及方程参数的计算 (10) 3)动力学微分方程的求解 (12) 四、配气机构动力学优化比较 (16) 参考文献: (23) 附件: (24)

配气机构的运动学和动力学分析 一、配气机构的机构简图 其自由度为5432352621F n p p =--=?-?-= 主动件为凸轮轴,输出件为气门。 二、配气机构的运动学计算分析 1、配气机构中间参数法的代数分析 由上面的机构简图可以得到,摇臂轴与凸轮轴的竖直位移为: 000c o s c o s c o s c o s T T T T y l l h l l h H αγαγ++=++= 化简得到: 000(cos cos )(cos cos )T T T l l h h ααγγ-+-=- (1) 摇臂轴与凸轮轴的水平位移: 00sin sin sin sin T T x l l l l H αγαγ+=+= 化简得到: 00(sin sin )(sin sin )0T l l ααγγ-+-= (2) 上面(1)(2)两式对时间求导得到

sin sin cos cos 0 T T T T dh dh l l dt d l l α γα γωαωγω?ωαωγ? +==??? ?--=? 解得cos sin() T T h l αωγ ωαγ'= - c o s s i n ()T h l γωαωαγ'=-- 其中αω,γω分别为摇臂和推杆的角速度,两式对时间求导得到摇臂和推杆的角加速度为: 22 22 (cos sin )sin()cos()()cos [sin()]cos sin []sin() cos sin()sin() [sin()]cos cos cos()[]sin()sin() T T T T T T T T T T T T T T T T h h l l h l h h l h l l l h h l l l γαγαωγωγωαγαγωωωγ εαγωα ωγαγωγαγαγαγωγωα αγαγαγ''''-?----= -''- -''-=---''-+--- 222223cos [sin()]cos cos cos()cos ()sin()sin () T T T T T T h l h h l l ωγ αγωγωγαγλααγαγ'-'''-+=--- 同理,得到推杆的角加速度为 22223 cos cos cos cos()()sin()sin () T T T h h l l γωαωγλααγελαγαγ'''+-=-+-- 其中T l l λ= 即为挺柱和推杆长度比 根据机构简图上的几何关系,00ββαα-=- 0(cos cos )V V l h ββ-=对时间求导可以得到 sin sin V V V dh l l dt βαβωβω=?=? 22 2 (cos sin )V V d h l dt ααβωβε=?+? 将摇臂的角速度,角加速度带入可以得到: cos cos sin sin sin()sin() V V T V T T T dh l h l h dt l l ωγ γββωαγαγ''=?=--

相关文档
最新文档