逻辑代数的基本公式和运算规则
逻辑代数

1.逻辑函数的变换 1.逻辑函数的变换
3.1.3 逻辑函数的代数变换与化简
L = AC + C D = AC + C D = AC • C • D = ( A + C ) • (c + D ) = AC + AD + C D = AC + C D = AC + C D = A + C + C + D
在逻辑代数中, 在逻辑代数中,逻辑函数的变量只能取两个 二值变量), ),即 和 。 值(二值变量),即0和1。
基本运算规则
, 加运算规则: 加运算规则: 0+0=0 ,0+1=1 ,1+0=1,1+1=1 A+0 =A,A+1 =1,A+A =A, , , , A+A =1 乘运算规则: 0•0=0 乘运算规则: A•0 =0 非运算规则: 非运算规则: 0=1
根据逻辑表达式,可以画出相应的逻辑图, 根据逻辑表达式,可以画出相应的逻辑图,表 达式的形式决定门电路的个数和种类, 达式的形式决定门电路的个数和种类,因此实际中 需要对表达式进行变换。 需要对表达式进行变换。 例如L=A⊕B ⊕ 例如 1.用与非门实现:与或表达式→摩根定律 用与非门实现:与或表达式 摩根定律 用与非门实现 有反变量输入、 有反变量输入、无反变量输入 2.用或非门实现:或与表达式→摩根定律 用或非门实现:或与表达式 摩根定律 用或非门实现 有反变量输入、 有反变量输入、无反变量输入 3.用最少门实现 用最少门实现 化简;选用异( 化简;选用异(同)或门
(完整版)逻辑代数的基本公式和运算规则

逻辑代数的基本公式和运算规则
一、基本公式
表1.3.1中若干常用公式的证明1.证明: 2. A+AB=A 证明:A+AB=A(1+B)=A1=A
3.
证明:
4.
证明:
推论:
二、运算规则
1.代入定理任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立,这称为代入规则。
利用代入规则,反演律能推广到n个变量,即:
2.反演定理对于任意一个逻辑函数式F,若把式中的运算符“.”换成“+”, “+” 换成“.”,常量“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到的结果为。
这个规则叫反演定理运用反演定理时注意两点:① 必须保持原函数的运算次序。
② 不属于单个变量上的非号保留,而非号下面的函数式按反演规则变换。
例如:
其反函数:
3.对偶定理对于任意一个逻辑函数F,若把式中的运算符“.”换成“+”,“+”换成“.”,常量“0”换成“1”,“1”换成“0”,则得到F的对偶式F′。
例如:
其对偶式:
对偶定理:如果两个函数式相等,则它们对应的对偶式也相等。
逻辑代数的运算法则

逻辑代数的运算法则逻辑代数又称布尔代数。
逻辑代数与普通代数有着不同概念,逻辑代数表示的不是数的大小之间的关系,而是逻辑的关系,它仅有0、1两种状态。
逻辑代数有哪些基本公式和常用公式呢?1.变量与常量的关系与运算公式 一、基本公式A·1=AA·0=0或运算公式A+0=A A+1=101律2.与普通代数相似的定律与运算公式A·B=B·A 或运算公式A+B=B+A交换律A·(B·C)=(A·B)·C A+(B+C)=(A+B)+C 结合律A·(B+C)=A·B+A·C A+(B·C)=(A+B)(A+C)分配律3.逻辑代数特有的定律与运算公式或运算公式互补律重叠律(同一律) 反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+ 非非律(还原律)AA =A A A =⋅A A A =+真值表证明摩根定律0001101111111100结论:BA B A +=⋅ 以上定律的证明,最直接的办法就是通过真值表证明。
若等式两边逻辑函数的真值表相同,则等式成立。
【证明】公式1AB A AB =+B A AB +)(B B A += 互补律1⋅=A 01律A= 合并互为反变量的因子【证明】公式2AAB A =+AB A +)(B A +=1 01律A= 吸收多余项【证明】公式3BA B A A +=+B A A +BA AB A ++=B A A A )(++= 互补律BA += 消去含有另一项的反变量的因子【证明】CA AB BC C A AB +=++BC A A C A AB )(+++=BC C A AB ++ 分配律BC A ABC C A AB +++= 吸收多余项公式2互补律CA AB += 公式2逻辑代数的运算法则一、基本公式二、常用公式A·1=AA·0=0A+0=A A+1=1 1.变量与常量的关系01律2.与普通代数相似的定律交换律A·B=B·A A+B=B+A结合律 分配律3.逻辑代数特有的定律互补律A·A=A A+A=A 重叠律(同一律)反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+非非律(还原律)AA =AB A AB =+.1AAB A =+.2BA B A A +=+.3CA AB BC C A AB +=++.4A·(B·C )=(A·B )·C A+(B+C )=(A+B )+C A·(B+C )=A·B+A·CA +(B·C )=(A+B )(A+C )谢谢!。
第3章(1) 逻辑代数

3.2 逻辑函数的卡诺图化简法
3.2.1 最小项的定义及其性质
1、最小项 ⑴、定义:
在n个变量逻辑函数中,若m为包含n个因子的乘 积项,而且这n个变量均以原变量或反变量的形式在m 中出现一次,则称m为该组变量的最小项。
例:3变量逻辑函数中
ABC , ABC, ABC , ABC, ABC , ABC, ABC , ABC 是最小项
一、化简的意义和最简的概念 1、化简的意义
• 节省器材。元器件减少,成本降低。
• 提高了工作的可靠性。单个门电路减少,输入、输出头减 少,电路的工作可靠性提高
· 例: A B·
·· &
1
&
C
·1
&
≥1 Y=ABC+ABC+ABC
A
&
Y=ABC+ABC+ABC
B
≥1
C
=A(BC+BC+BC) =A(BC+BC+BC+BC) =A(B+C)
4、配项法:
利用 A=A(B+ B )作配项用,然后消去更多的项 Z=AB+ A C+BC=AB+ A C+(A+ A )BC
=AB+ A C+ABC+ A BC=AB+ A C 也可利用 A+1=1 或 A+A=A 来配项
Z=ABC+ A BC+ AB C=ABC+ A BC+ AB C+ABC =(A+ A )BC+( AB +AB)C=BC+C=C
3.1.1 逻辑代数的基本定律和恒等式 1 基本关系 加运算规则: 0+0=0 ,0+1=1 ,1+0=1,1+1=1 A+0 =A,A+1 =1,A+A A+A =1 =A, 乘运算规则: 0•0=0 0•1=0 1•0=0 1•1=1
代数法化简逻辑函数

2.1 逻辑代数
例1:证明 AB AB A AB B AB
证明: AB AB AB AA AB BB A A B B A B
A AB B AB A AB B AB
A AB B AB
(2)用与非门实现L。
应将表达式转换成与非—与非表达式:
L AB BC AC
L AB BC AC
AB BC AC
AB BC AC
(3)用非门、或非门实现L。
L AB BC AC
ABBC AC
ABBC AC
2.1 逻辑代数
例7化简: L AB BC BC AB
2.1 逻辑代数
例3化简: L AB AC BC CB BD DB ADE(F G) L ABC BC CB BD DB ADE(F G) (利用摩根律 )
A BC CB BD DB ADE(F G)(利用 AAB AB )
A BC CB BD DB (利用A+AB=A)
第二章 逻辑代数
2.1 逻辑代数 2.2 逻辑函数的卡诺图化简法
2.1 逻辑代数
二.基本定律和恒等式
1.பைடு நூலகம்基本公式 (公理)
与运算: 0۰0=0 或运算: 0+0=0
0۰1=0 0+1=1
1۰0=0 1+0=1
非运算: 0 1 1 0
2. 定律
常量与变量 运算律:
互补律:
重叠律: A+A=A
A۰ A=A
双重否定律: A A
1۰1=1 1+1=1
2.1 逻辑代数
结合律 (A+B)+C=A+(B+C) ; (AB)·C=A·(BC)
逻辑代数的基本公式和运算规则

逻辑代数的基本公式和
运算规则
-CAL-FENGHAI.-(YICAI)-Company One1
逻辑代数的基本公式和运算规则
一、基本公式
表1.3.1中若干常用公式的证明1.证明: 2. A+AB=A 证明:A+AB=A(1+B)=A1=A
3.
2
证明:
4.
证明:
推论:
二、运算规则1.代入定理任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立,这称为代入规则。
利用代入规则,反演律能推广到n个变量,即:
2.反演定理对于任意一个逻辑函数式F,若把式中的运算符“.”换成“+”, “+” 换成“.”,常量“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到的结果为。
这个规则叫反演定理运用反演定理时注意两点:① 必须保持原函数的运算次序。
② 不属于单个变量上的非号保留,而非号下面的函数式按反演规则变换。
例如:
其反函
数:
3.对偶定理对于任意一个逻辑函数F,若把式中的运算符“.”换成“+”,“+”换成“.”,常量“0”换成“1”,“1”换成“0”,则得到F的对偶式F′。
例如:
3
其对偶
式:
对偶定理:如果两个函数式相等,则它们对应的对偶式也相等。
4。
逻辑代数基本公式及定律59383

灯亮为逻辑“1”
灯灭为逻辑“0”
(3)
A
E 真值表 A B 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1
B
C Y
逻辑式:Y=A•B•C 逻辑乘法 (逻辑与) 逻辑符号: A B C
C 0 1 0 1 0 1 0 1
Y 0 0 0 0 0 0 0 1
&
Y
与逻辑运算规则: 0 • 0=0 1 • 0=0 0 • 1=0 1 • 1=1
(16)
用真值表证明摩根定理成立
A ·B=A+B A+B= A ·B Y2=A+B 1 相等 1 1 0
A 0 0 1 1
B 0 1 0 1
Y1=A· B 1 1 1 0
(17)
2.3.2 若干常用公式--几种形式的吸收律
吸收:多余(冗余)项,多余(冗余)因子被取消、去 掉 被消化了。
短项
长项
(4)
真值表特点: 有0出0, 全1出1
二、 “或”逻辑
或逻辑:决定事件发生的各条件中,有一个或一个 以上的条件具备,事件就会发生(成立)。 A B C
规定:
开关合为逻辑“1” Y 开关断为逻辑“0”
E
灯亮为逻辑“1”
灯灭为逻辑“0”
(5)
E 真值表 A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1
例:用代入规则证明德 摩根定理也适用于多 变量的情况。 二变量的德 摩根定理为:
AB A B A B AB
1 2
(22)
AB A B A B AB
1 2
以(B· C)代入(1)式中B,以(B+C)代入 (2)式中B,则得到:
逻辑代数的基本公式、定律和规则

逻辑代数的基本公式、定律和规则示例文章篇一:《逻辑代数的基本公式、定律和规则》一、逻辑代数的基本公式1. 常量之间的运算公式- 0和1是逻辑代数中的两个常量。
0就像是黑暗,1就像是光明。
在逻辑代数里,0 + 0 = 0,这就好比两个黑暗加在一起还是黑暗呀。
那0 + 1 = 1呢,就好像黑暗里来了一点光明,那结果就是光明啦。
1 + 1 = 1,这可能有点奇怪,可这就像两个光明加在一起还是光明,不会变得更亮啦。
- 0×0 = 0,这很好理解,就像两个没有东西相乘还是没有东西。
0×1 = 0,就像没有东西和有东西相乘,结果就是没有东西。
1×1 = 1,有东西和有东西相乘还是有东西嘛。
2. 变量与常量的运算公式- 对于变量A,A + 0 = A。
这就像你有一个东西A,再加上没有东西(0),那还是你原来的东西A呀。
A + 1 = 1,不管你原来有什么东西A,再加上光明(1),那结果就是光明(1)啦。
- A×0 = 0,不管你是什么东西A,和没有东西(0)相乘,结果就是没有东西(0)。
A×1 = A,就像你有东西A,和有东西(1)相乘,结果还是你原来的东西A。
3. 同一律、互补律等公式- 同一律就是A×A = A,A + A = A。
比如说你有一个苹果A,那一个苹果乘以一个苹果还是一个苹果,一个苹果加上一个苹果还是一个苹果(在逻辑代数的概念里哦)。
- 互补律是A×A' = 0,A+A' = 1。
A'就像是A的反面。
如果A是白天,A'就是黑夜。
白天和黑夜不能同时存在(A×A' = 0),而白天或者黑夜肯定有一个存在(A+A' = 1)。
二、逻辑代数的基本定律1. 交换律- 在逻辑代数里,加法交换律是A + B = B + A,就像你有苹果A和香蕉B,先数苹果再数香蕉,和先数香蕉再数苹果,总数是一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑代数的基本公式和运算规则
一、基本公式
表1.3.1中若干常用公式的证明1.证明: 2. A+AB=A 证明:A+AB=A(1+B)=A1=A
3.
证明:
4.
证明:
推论:
二、运算规则
1.代入定理任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立,这称为代入规则。
利用代入规则,反演律能推广到n个变量,即:
2.反演定理对于任意一个逻辑函数式F,若把式中的运算符“.”换成“+”, “+” 换成“.”,常量“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到的结果为。
这个规则叫反演定理运用反演定理时注意两点:① 必须保持原函数的运算次序。
② 不属于单个变量上的非号保留,而非号下面的函数式按反演规则变换。
例如:
其反函数:
3.对偶定理对于任意一个逻辑函数F,若把式中的运算符“.”换成“+”,“+”换成“.”,常量“0”换成“1”,“1”换成“0”,则得到F的对偶式F′。
例如:
其对偶式:
对偶定理:如果两个函数式相等,则它们对应的对偶式也相等。