《平方根》实数PPT课件

合集下载

平方根北师大版八年级数学上册精品课件PPT1

平方根北师大版八年级数学上册精品课件PPT1
6. 一个正奇数的算术平方根是a,那么与这个正奇 数相邻的下一个正奇数的算术平方根是( C )
A. a+2 B. a2+2 C. D.
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
三级检测练
一级基础巩固练 7. 4的算术平方根是( B ) A. 4 B. 2 C. -2 D. ±2

6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
感谢观看,欢迎指导!
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
8. |-9|的算术平方根是( C ) A. 9 B.-9 C. 3 D. ±3
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章 实数
第2课 平方根(1)
新课学习
知识点1.算术平方根 一般地,如果一个正数x的平方等于a,即x2=a, 那么这个正数x就叫做a的算术平方根,记作,读 作“根号a”.
1.(例1)36的算术平方根是( B ) A. ±6 B. 6 C. -6 D. ±18
2. 某数的算术平方根等于它本身,那么这个数一 定是(C )
10. 如果 xy的算术平方根是多少?
,那么
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件

人教版七年级数学下册 (平方根)实数课件教学(第2课时)

人教版七年级数学下册 (平方根)实数课件教学(第2课时)

(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线

初中数学《平方根》完美课件 【北师大版】1

初中数学《平方根》完美课件 【北师大版】1

由于

所以这个数是3或-3. 这里的3是前面学过的 9 的__算__术__平__方___根__.
-3与 9 的算术平方根有什么关系?
-3与 9 的算术平方根互为相反数.
思考 根据上面的研究过程填表:
1
16
36
49
如果我们把
分别叫做 1、16、36、49、 的平
方根,你能类比算术平方根的概念,给出平方根的概念吗?
例题 说出下列各式的意义,并求它们的值:
如果知道一个数的算术平 方根就可以立即写出它的 负的平方根,为什么?
正数的两个平方根互为相反数.
练习 1.判断下列说法是否正确:
(1)0的平方根是0;
(2)1的平方根式1;
(3)-1的平方根式-1;
(4)0.01是0.1的一个平方根.
练习 2.填表:
x
8 -8
正数a的算术平方根可以表示用_____表示; 正数a的负的平方根,可以用符号______表示, 正数a的平方根用符号________表示. 读作“正、负根号a”.
例如,
平方根的表示 符号 有意义的条件是什么?
表示 a 的算术平方根.
任何数的平方都不可能是负数,所以负数没有算术平方根, 所以当a≥0时有意义,a<0时无意义.
复习巩固 1.求下列各数的算术平方根:
(1)81;
(3)0.04;
初中数学《平方根》完美课件 北师大版1-精品课件ppt(实用版)
初中数学《平方根》完美课件 北师大版1-精品课件ppt(实用版)
复习巩固 2.下列各式是否有意义,为什么?
初中数学《平方根》完美课件 北师大版1-精品课件ppt(实用版)
练习 说出下列各式的意义,并求值.

八年级上册数学第二章算术平方根PPT

八年级上册数学第二章算术平方根PPT

③ ( 2)2 的算术平方根是
3
2 3

④若 m 2 2 ,则 (m 2)2 16 .
2.求下列各数的算术平方根
(1)25; (2)4891 ;(3)0.36 ;(4) 16.
解:(1)因为52 25 ,所以25的算术平方根是5,即 25 5.
(2)因为 (7) 2 49 ,所以 49 的算术平方根是 7 ,
0.0009 0.0009 表示0.0009的算术平方根, 0.0009=0.03
典例精析
例1:求下列各数的算术平方根: (1) 900; (2) 1; (3) 49; (4) 14.
64
解: (1)因为302=900, 所以900的算术平方根是30,
即 900 30 ;
(2)因为12=1, 所以1的算术平方根是1,即 1 1 ;
非负数
a 0 (a≥0)
算术平方根具有双重非负性
例2 若|m-1| + n 3 =0,求m+n的值. 解: 因为|m-1| ≥0, n 3 ≥0,又|m-1| + n 3 =0,
所以 |m-1| =0, n 3 =0,所以m=1,n=-3, 所以m+n=1+(-3)=-2.
归纳 几个非负数的和为0,则每个数均为0,初中 阶段学过的非负数有绝对值、偶次幂及一个数的算 术平方根.
5 dm 因为 52=25
讲授新课
一 算术平方根的概念
填一填(1)
已知正方形的面积,求出其边长: 正方形 的面积 1 9 16 36 0.25
边长 1 3 4 6 0.5
填一填(2)
请大家根据勾股定理,结合图形完成填空:
x2 y2 z2 w2
2,

人教版七年级下册数学《平方根》实数PPT教学课件

人教版七年级下册数学《平方根》实数PPT教学课件

想一想
1. 121的平方根是什么? 11
2. 0的平方根是什么?
0
3.
16 49
的平方根是什么?
4 7
4. -9有没有平方根?为什么?
问题:(1)正数有几个平方根? (2)0有几个平方根? (3)负数呢?
没有,因为一个数的平方不可能是负数.
归纳总结
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3. 0的平方根是0,算术平方根也是0. 区别:1.个数不同:一个正数有两个平方根,但只有
一个算术平方根.
2.表示法不同:平方根表示为 a ,而算术平
方根表示为 a .
随堂练习
1.“± a ”的意义是( C ) A.a的平方根 B.a的算术平方根 C.当a≥0时,± a 是a的平方根 D.以上均不正确
开平方及相关运算
例 a的一个平方根是3,则另一个平方根是 -3 , a= 9 。
练一练
1.分别求下列各数的平方根:
(1)36 ; (2)295 ;
(3)1.21 .
2. 若一个数的平方等于5,则这个数等于 ___5___.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
1.a的一个平方根是3,则另一个平方根是 -3 ,a= 9 . 2.81的平方根是___9_, 81 的算术平方根是__3__ . 3.3a-2和2a-3是一个正数的两个平方根,则这两个平方根 是__1_和_-_1_,这个数是_1__.

人教版数学平方根公开课PPT

人教版数学平方根公开课PPT


2.该类题目考察学生对文本的理解, 在一定 程度上 是在考 察学生 对这类 题型答 题思路 。因此 一定要 将这些 答题技 巧熟记 于心, 才能自 如运用 。
• • •
3. 结合实际,结合原文,根据知识库 存,发 散思维 ,大胆 想象。 由文章 内容延 伸到现 实生活 ,对现 实生活 中相关 现象进 行解释 。对人 类关注 的环境 问题等 提出解 决的方 法,这 种题考 查的是 学生的 综合能 力,考 查的是 学生对 生活的 关注情 况。 4.做好这类题首先要让学生对所给材 料有准 确的把 握,然 后充分 调动已 有的知 识和经 验再迁 移到文 段中来 。开放 性试题 ,虽然 没有规 定唯一 的答案 ,可以 各抒已 见,但 在答题 时要就 材料内 容来回 答问题 。 5.木质材料由纵向纤维构成,只在纵 向上具 备强度 和韧性 ,横向 容易折 断。榫 卯通过 变换其 受力方 式,使 受力点 作用于 纵向, 避弱就 强。
典型例题
【例1】已知m的两个平方根是a+3与2a-15,求m的值.
解:当a+3与2a-15是同一个数的平方根时, a+3=-(2a-15). 解得a=4,此时m=49.
【例2】一个数的算术平方根为2m+5,平方根为±(m-2)
,求这个数.
解:①2m+5=m-2, 解得m=-7, 2m+5=-9;(舍去) ②2m+5=-(m-2) 解得m=-1, 2m+5=3, 32=9, 故这个数是9.
举一反三
1.如果一个正数的平方根为2a+1和3a-11,则a= ( C )
A. ±1
B. 1
C. 2
D. 9
2. 已知2a-1的平方根是±3,b-1的算术平方根是4,求
a+2b的值.
解:∵2a-1的平方根是±3, ∴2a-1=9. ∴a=5. ∵b-1的算术平方根是4, ∴b-1=16. ∴b=17. ∴a+2b=5+2×17=39.

平方根与立方根课件

平方根与立方根课件

平方根的减法运算
平方根的乘法运算
平方根的除法运算
对于任何正实数a和b,有√a √b = √(a-b)。
对于任何正实数a和b,有√a * √b = √(ab)。
对于任何正实数a和b(b≠0) ,有√a / √b = √(a/b)。
02
立方根的定义与性质
立方根的基本定义
80%
立方根的概念
若一个数的三次方等于a,则这 个数称为a的立方根。
开方与加减法的关系
当被开方数的小数点向右移动一位,则其立方根的小数点相应地向右移 动三位;当被开方数的小数点向左移动一位,则其立方根的小数点相应 地向左移动三位。
03
平方根与立方根的应用
在数学中的应用
平方根用于求解非负数平方的问题,例如计算一个数的平方或求 解一元二次方程的实数根。
立方根用于求解一个数的立方的问题,例如计算一个数的立方或 求解一元三次方程的实数根。
详细描述
配方法适用于求解任意实数的平方根。首先,将被开方数进行配方,使其成为一 个完全平方数的形式,然后利用开平方的公式进行计算。例如,求√25的值,可 以先将25写成(5×5)的形式,即√25=√(5×5)=5。
因式分解法
总结词
因式分解法是一种通过因式分解来求解平方根的方法。
详细描述
因式分解法适用于求解一些特殊数的平方根。首先,将被开方数进行因式分解,将其写成两个相同因数的乘积形 式,然后利用开平方的公式进行计算。例如,求√8的值,可以先将8写成(2×2×2)的形式,即 √8=√(2×2×2)=2√2。
运算性质
立方根具有一些运算性质,例 如√[3]a^3=a, √[3](a+b)^3=a+b等。
立方根的运算规则

人教数学七下《平方根》实数PPT精品教学课件

人教数学七下《平方根》实数PPT精品教学课件

感悟新知
解:本题运用夹逼法来求整数a 与b 的值. 因为a,b 为连续整数,a< 7 <b, 而22<7<32,所以2< 7 <3. 所以a=2,b=3. 所以a+b=5.
感悟新知
3-1.[中考·天津] 估计 22 的值在( B ) A. 3 和4 之间 B. 4 和5 之间 C. 5 和6 之间 D. 6 和7 之间
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
感悟新知
(3) 412-402 表示412-402 的算术平方根.
∵ 412-402=81,92=81,
∴ 412-402 = 81 =9
被开方数412-402 是一个整
体,首先要将412-402 化简,
1. 定义:一般地,如果一个数的平方等于 a,那么这个数 叫做a 的平方根或二次方根 . 这就是说,如果x2=a,那 么x 叫做a的平方根. 表示方法:非负数a 的平方根记为± a ,读作“正、 负根号a”.
感悟新知
2. 开平方:求一个数a 的平方根的运算,叫做开平方. 特别提醒: a ,- a ,± a (a ≥ 0)的区别
6.1 平方根
感悟新知
知识点 1 算术平方根
1. 定义:一般地,如果一个正数x的平方等于a,即x2=a, 那么这个正数x 叫做a 的算术平方根 . 规定:0 的算术平 方根是0. 表示方法:a 的算术平方根记为 a ,读作“根号a”,a 叫做被开方数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档