SPSS课程PPT( 直线回归与相关分析)
合集下载
第9章 spss的相关分析和线性回归分析PPT课件

t nk2r (1 r2 )
r是相应的偏相关系数。n是观测个数,k是控 制变量的数目,n-k-2是自由度。 在SPSS的偏相关分析过程的输出中只给出偏相 关系数和假设成立的概率p值。
偏相关分析的操作
与简单相关分析操作类似,只不过菜单为
Analyze→Correlate→Partial
实例:利用数据相关回归分析(高校科研研 究).sav,分析发表立项课题数与论文数之间的 偏相关关系,其中投入高级职称的人数为控制变 量。
Pearson相关系数 Spearman 秩相关系数 Kendall t 相关系数
Pearson 相 关 系 数 ( Pearson’s correlation coefficient)又叫相 关系数或线性相关系数。它一般用
字母r表示。
r (xx)(yy) (xx)2 (yy)2
它是由两个变量的样本取值得到,这是一个描 述线性相关强度的量,取值于-1和1之间。当两 个变量有很强的线性相关时,相关系数接近于1 (正相关)或-1(负相关),而当两个变量不 那么线性相关时,相关系数就接近0。
Pearson 相 关 系 数 的 局 限 性 :
①要求变量服从正态分布 ②只能度量线性相关性,对于曲线相关等更为复杂的 情形,该相关系数的大小并不能代表相关性的强弱。 如果Pearson系数很低,只能说明两变量之间没有线 性关系,并不能说明两者之间没有相关关系。也就是 说,该指标只能度量线性相关性,而不是相关性。 (线性相关性隐含着相关性,而相关性并不隐含着线 性相关性)
这很难一概而论。但在计算机输出 中都有和这些相关度量相应的检验
和p-值;因此可以根据这些结果来
判断是否相关
简单相关分析菜单
画散点图
Graphs→Scatter 选择散点图的类型 根据所选择的散点图类型,单击Define对散点图作具体定
r是相应的偏相关系数。n是观测个数,k是控 制变量的数目,n-k-2是自由度。 在SPSS的偏相关分析过程的输出中只给出偏相 关系数和假设成立的概率p值。
偏相关分析的操作
与简单相关分析操作类似,只不过菜单为
Analyze→Correlate→Partial
实例:利用数据相关回归分析(高校科研研 究).sav,分析发表立项课题数与论文数之间的 偏相关关系,其中投入高级职称的人数为控制变 量。
Pearson相关系数 Spearman 秩相关系数 Kendall t 相关系数
Pearson 相 关 系 数 ( Pearson’s correlation coefficient)又叫相 关系数或线性相关系数。它一般用
字母r表示。
r (xx)(yy) (xx)2 (yy)2
它是由两个变量的样本取值得到,这是一个描 述线性相关强度的量,取值于-1和1之间。当两 个变量有很强的线性相关时,相关系数接近于1 (正相关)或-1(负相关),而当两个变量不 那么线性相关时,相关系数就接近0。
Pearson 相 关 系 数 的 局 限 性 :
①要求变量服从正态分布 ②只能度量线性相关性,对于曲线相关等更为复杂的 情形,该相关系数的大小并不能代表相关性的强弱。 如果Pearson系数很低,只能说明两变量之间没有线 性关系,并不能说明两者之间没有相关关系。也就是 说,该指标只能度量线性相关性,而不是相关性。 (线性相关性隐含着相关性,而相关性并不隐含着线 性相关性)
这很难一概而论。但在计算机输出 中都有和这些相关度量相应的检验
和p-值;因此可以根据这些结果来
判断是否相关
简单相关分析菜单
画散点图
Graphs→Scatter 选择散点图的类型 根据所选择的散点图类型,单击Define对散点图作具体定
SPSS相关分析与回归分析专题课件

SPSS相关分析与回归分析专题课件
线性回归
相关分析 与
回归分析
回归分析一般步骤: •确定回归方程中的解释变量(自变量)和
被解释变量(因变量) •确定回归模型 •建立回归方程 •对回归方程进行各种检验 •利用回归方程进行预测
SPSS相关分析与回归分析专题课件
线性回归
线性回归模型
相关分析 与
回归分析
研究者把非确定性关系称为相关关系。
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
三.相关分析的特点和应用
相关关系是普遍存在的,函数关系仅是相关关系的特 例。 1.相关关系的类型
相关关系多种多样,归纳起来大致有以下6种: 强正相关关系,其特点是一变量X增加,导致另一变量
Y明显增加,说明X是影响Y的主要因素。 弱正相关关系,其特点是一变量X增加,导致另一变量
所以,相关分析的意义和目的在于: (1)在统计学中有理论与实践意义 (2)对相关关系的存在性给出判断
( 3 ) 对相关关系的强度给出度量和分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
二、相关分析的概念
变量之间的关系分为确定性关系和非确定性关系。 确定性关系:当一个变量值(自变量)确定后,另一个 变量值(因变量)也就完全确定了,确定性关系往往可以 表示成一个函数的形式,比如圆的面积和半径的关系: S=πr² 非确定性关系:给定了一个变量值后,另一个变量值可 以在一定范围内变化,例如家庭的消费支出和家庭收入的 关系。
回归分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
(1)案例处理摘要。“案例处理摘要”表格给出了数 据使用的基本情况。主要是对有无缺失值的统计信息, 可见本例的11个案例没有缺失,全部用于分析。 (2)近似矩阵。“近似矩阵”表格给出的是各变量之 间的相似矩阵,图中以线框标注了相关系数较大的几对 变量。它们在进一步的分析中应重点关注,或者直接对 其进行适当的预处理(例如变量约减)
spass教程第五章相关分析和回归分析ppt课件

5.1 下表为青海一月平均气温与海拔高度及纬度的数
据,试分析一月平均气温与海拔高度和纬度的偏相关 系数〔由于第三个变量纬度(海拔)的存在所起的作用, 能够会影响纬度(海拔)与一月平均温度之间的真实关 系〕。
测站 昂欠 清水河 玛多 共和 铁卜加 茫崖 托勒 伍道梁 察尔汗 吉迈 尖扎 西宁
一月气温
曲线回归
检验结果和系数
MODEL: MOD_3.
Independent: 年降水量 Dependent Mth Rsq d.f. F Sigf b0 b1 b2 b3 海拔高度 LIN .462 10 8.60 .015 -780.60 2.0951 海拔高度 LOG .484 10 9.39 .012 -10241 1672.91 海拔高度 INV .477 10 9.13 .013 2504.03 -1.E+06 海拔高度 QUA .506 9 4.60 .042 -2676.6 6.9415 -.0029 海拔高度 CUB .559 8 3.39 .074 5011.03 -23.623 .0356 -2.E-05 海拔高度 COM .665 10 19.85 .001 63.4154 1.0030 海拔高度 POW .710 10 24.54 .001 6.7E-05 2.4296 海拔高度 S .719 10 25.64 .000 8.9234 -1781.4 海拔高度 GRO .665 10 19.85 .001 4.1497 .0030 海拔高度 EXP .665 10 19.85 .001 63.4154 .0030
降水量
多元非线性回归
7.6 某变量受其它两个变量的影响,其中X、Y这两 个变量对y影响的函数表达式为 Z=a+bX+cX2+dY+eY2+fXY,根据下面的数据计算 这个关系式〔不可直线化的多元非线性回归,知曲 线的方式〕 注:多元多项式回归也用此方法
《spss回归与相关》PPT课件

ANOVAb Model 1 Sum of Squares 3948.159 529.041 4477.200 df 1 18 19
Adjusted R Square .875
Std. Error of the Estimate 5.42136
Regression Residual Total
Mean Square 3948.159 29.391
的神经功能缺损程度,试分析总胆固醇与神经功能
评分是否相关。
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
制作:王立芹
Correlations Spearman's rho x Correlation Coefficient Sig. (2-tailed) N Correlation Coefficient Sig. (2-tailed) N x 1.000 . 12 .851** .000 12 y .851** .000 12 1.000 . 12
1.建立数据文件 取两个变量:X变量(本例为“年龄”)、 Y变量(本例为“运动后最大心率”)
2018年11月24日星期六9时15分24秒
制作:王立芹
2.统计分析 (1)散点图
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2 -1 0 1 2
R e g re s s io n S ta n d a rd iz e d P re d ic te d Va lu e
Adjusted R Square .875
Std. Error of the Estimate 5.42136
Regression Residual Total
Mean Square 3948.159 29.391
的神经功能缺损程度,试分析总胆固醇与神经功能
评分是否相关。
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
制作:王立芹
Correlations Spearman's rho x Correlation Coefficient Sig. (2-tailed) N Correlation Coefficient Sig. (2-tailed) N x 1.000 . 12 .851** .000 12 y .851** .000 12 1.000 . 12
1.建立数据文件 取两个变量:X变量(本例为“年龄”)、 Y变量(本例为“运动后最大心率”)
2018年11月24日星期六9时15分24秒
制作:王立芹
2.统计分析 (1)散点图
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
制作:王立芹
2018年11月24日星期六9时15分24秒
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2 -1 0 1 2
R e g re s s io n S ta n d a rd iz e d P re d ic te d Va lu e
《spss回归与相关》PPT课件

制作:王立芹
a
Met hod
St epwise
(Crit eria: Probabilit
y-of -
F-to-enter
.
<= .050,
Probabilit y-of -
F-to-remo
ve >= . 100).
St epwise
(Crit eria:
Probabilit y-of -
F-to-enter
1
Sig. (2-tailed)
.000
N
15
15
**. Correlation is significant at the 0.01 level (2-tailed).
23.11.2020 23:43:55
制作:王立芹
2.秩相关
例13-2 某医生收集12例急性脑梗死(AMI)病人, 记录了患者在抢救期间的总胆固醇,用爱丁堡-斯堪 的那维亚神经病学中SNSS量表评分标准评定患者 的神经功能缺损程度,试分析总胆固醇与神经功能 评分是否相关。
Model
B Std. Error Beta
t
1 (Consta6n.7t)74 .156
43.545
x3
.110 .027
.693 4.079
a.Dependent Variable: y
Sig. .000 .001
23.11.2020 23:43:57
制作:王立芹
R e g re s s io n S ta n d a rd iz e d R e s id u a l
23.11.2020 23:43:57
制作:王立芹 23.11.2020 23:43:57
Spss线性回归分析讲稿ppt课件

绘制各自变量与因变量之间的关系散点图,观
察其与因变量之间是否具有线性关系。然后,
将自变量进行组合,生成若干自变量的子集,再
针对每一个自变量的子集生成回归分析报告。
比较调整后的R2值,挑选最优的自变量子集,
生成回归分析模型。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
①一元线性回归:y=a+bx (有一个自变量)
②多元线性回归:
(有两个或两个以上的自变量)
(2)按回归曲线的形态分
①线性(直线)回归
②非线性(曲线)回归
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
回归分析
(二)回归分析的主要内容
即销售量的95%以上的变动都可以被该模型所解释,拟和优度较高。
表3
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归分析
表4给出了回归模型的方差分析表,可以看到,F统计量为
734.627,对应的p值为0,所以,拒绝模型整体不显著的
图1
奖金-销售量表
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归
以奖金-销售量表图1做回归分析
2、绘制散点图
打开数据文件,选择【图形】-【旧对话框】-【散点/点状】
图2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
察其与因变量之间是否具有线性关系。然后,
将自变量进行组合,生成若干自变量的子集,再
针对每一个自变量的子集生成回归分析报告。
比较调整后的R2值,挑选最优的自变量子集,
生成回归分析模型。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
①一元线性回归:y=a+bx (有一个自变量)
②多元线性回归:
(有两个或两个以上的自变量)
(2)按回归曲线的形态分
①线性(直线)回归
②非线性(曲线)回归
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
回归分析
(二)回归分析的主要内容
即销售量的95%以上的变动都可以被该模型所解释,拟和优度较高。
表3
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归分析
表4给出了回归模型的方差分析表,可以看到,F统计量为
734.627,对应的p值为0,所以,拒绝模型整体不显著的
图1
奖金-销售量表
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归
以奖金-销售量表图1做回归分析
2、绘制散点图
打开数据文件,选择【图形】-【旧对话框】-【散点/点状】
图2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
第七章SPSS的相关分析PPT课件
2024/10/14
25
基本操作步骤
• 菜单选项:analyze->correlate->partial
选择参与分析的 变量
选择一个或多个 控制变量
option选项:
– zero-order correlations:输出简单相关系数
20• 将家庭常住人口数作为控制变量,对家庭收入与计划购房面积做偏相 关分析
• 利用住房状况调查数据,分析家庭收入和计划购买的住房面积之间的 关系
• 两变量均为定距变量,采用简单相关系数
2024/10/14
21
偏相关分析
• 研究商品的需求量和价格、消费者收入之间的关系. – 需求量和价格之间的相关关系包含了消费者收入对商品需求量的 影响;同时收入对价格也产生影响,并通过价格变动传递到对商 品需求量的影响中
相关分析 须面对的 四个问题
关系的 强度如何
※这种关系 是否为因果
关系
这种关系 能否从样本推
到总体
2024/10/14
9
相关系数
• 相关系数以数值的方式精确地反映了两个变量间线性相关的强弱程度 • 利用相关系数进行变量间线性关系的分析的步骤
1. 计算样本相关系数r – 相关系数r的取值在-1~+1之间 – R>0表示两变量存在正的线性相关关系;r<0表示两变量存在负的
线性相关关系 – R=1表示两变量存在完全正相关;r=-1表示两变量存在完全负相
关;r=0表示两变量不相关 – |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示两变量之间的
线性关系较弱 2. 对样本来自的两总体是否存在显著的线性关系进行推断
2024/10/14
spss统计分析及应用教程-第6章 相关和回归分析课件PPT
实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。
《SPSS的相关分析》PPT课件
两个变量之间的相关程度用相关系数r的绝对值表示,其绝对值越接 近1,表明两个变量的相关程度越高;其绝对值越接近于0,表明两个变量 相关程度越低。如果其绝对值等于零1,则表示两个变量完全直线相关。 如果其绝对值为零,则表示两个变量完全不相关(不是直线相关)。
7.1.2 相关分析
3.相关系数
变量相关的方向通过相关系数r所具有的符号来表示,“+” 号表示正相关,即0≤r≤1。“﹣”表示负相关,即0≥ r ≥ ﹣1。在使用相关系数时应该注意下面的几个问题。 (1)相关系数只是一个比率值,并不具备与相关变量相同的测量 单位。 (2)相关系数r 受变量取值区间大小及样本数目多少的影响比较 大。 (3)来自于不同群体且不同质的事物的相关系数不能进行比较。 (4)对于不同类型的数据,计算相关系数的方法也不相同。
计量的Bootstrap估计。 ● 描述统计表支持均值和标准差的Bootstrap 估计。 ● 相关性表支持相关性的Bootstrap 估计。
7.2 SPSS在简单相关分析中的应用
Step07:单击【OK】按钮,结束操作,SPSS软件自动输出结果。
7.2 SPSS在简单相关分析中的应用
7.2.3 实例分析:股票指数之间的联系
(2)根据变量值变动方向的趋势,相关关系可分为正相关和负相关。 (3)根据变量关系的形态,相关关系可分为直线相关和曲线相关。 (4)根据研究变量的多少,可分为单相关、复相关。
7.1.2 相关分析
1.相关分析的作用
(1)判断变量之间有无联系 (2)确定选择相关关系的表现形式及相关分析方法 (3)把握相关关系的方向与密切程度 (4)相关分析不但可以描述变量之间的关系状况,而且用来进行预测。 (5)相关分析还可以用来评价测量量具的信度、效度以及项目的区分度等。
7.1.2 相关分析
3.相关系数
变量相关的方向通过相关系数r所具有的符号来表示,“+” 号表示正相关,即0≤r≤1。“﹣”表示负相关,即0≥ r ≥ ﹣1。在使用相关系数时应该注意下面的几个问题。 (1)相关系数只是一个比率值,并不具备与相关变量相同的测量 单位。 (2)相关系数r 受变量取值区间大小及样本数目多少的影响比较 大。 (3)来自于不同群体且不同质的事物的相关系数不能进行比较。 (4)对于不同类型的数据,计算相关系数的方法也不相同。
计量的Bootstrap估计。 ● 描述统计表支持均值和标准差的Bootstrap 估计。 ● 相关性表支持相关性的Bootstrap 估计。
7.2 SPSS在简单相关分析中的应用
Step07:单击【OK】按钮,结束操作,SPSS软件自动输出结果。
7.2 SPSS在简单相关分析中的应用
7.2.3 实例分析:股票指数之间的联系
(2)根据变量值变动方向的趋势,相关关系可分为正相关和负相关。 (3)根据变量关系的形态,相关关系可分为直线相关和曲线相关。 (4)根据研究变量的多少,可分为单相关、复相关。
7.1.2 相关分析
1.相关分析的作用
(1)判断变量之间有无联系 (2)确定选择相关关系的表现形式及相关分析方法 (3)把握相关关系的方向与密切程度 (4)相关分析不但可以描述变量之间的关系状况,而且用来进行预测。 (5)相关分析还可以用来评价测量量具的信度、效度以及项目的区分度等。
SPSS的相关分析和线性回归分析课堂PPT
其中;SSR是由x和y的直线回归关系引起的,可以由回归 直线做出解释;SSE是除了x对y的线性影响之外的随机因素所 引起的Y的变动,是回归直线所不能解释的。
30
2、可决系数(判定系数、决定系数)
回归平方和在总离差平方和中所占的比例可以作为一个统 计指标,用来衡量X与Y 的关系密切程度以及回归直线的代表 性好坏,称为可决系数。 对于一元线性回归方程:
原因有两个:
由于x的取值不同,使得与x有线性关系的y值不同; 随机因素的影响。
28
y
( y0 y)
y
yˆ a bx
( y0 yˆ )
( yˆ y)
x
29
总离差平方和可分解为
y y 2 y y2 y y 2
即:总离差平方和(SST)=剩余离差平方和(SST) +回归 离差平方和(为偏相关系数,n为样本数,q为阶数。 T统计量服从n-q-2个自由度的t分布。
20
8.3.2 偏相关分析的基本操作
1.选择菜单Analyze-Correlate-Partial
21
2.把参与分析的变量选择到Variables框中。 3.选择一个或多个控制变量到Controlling for框
相关关系,设计思想与Pearson简单相关系数相同, 只是数据为非定距的,故计算时并不直接采用原始数
据 (xi , yi ),而是利用数据的秩,用两变量的秩(Ui ,Vi ) 代替 (xi , yi ) 代入Pearson简单相关系数计算公式中
,于是其中的 xi 和 yi 的取值范围被限制在1和n之间
在完全负相关;r=0表示两变量不相关 |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示
两变量之间的线性关系较弱
30
2、可决系数(判定系数、决定系数)
回归平方和在总离差平方和中所占的比例可以作为一个统 计指标,用来衡量X与Y 的关系密切程度以及回归直线的代表 性好坏,称为可决系数。 对于一元线性回归方程:
原因有两个:
由于x的取值不同,使得与x有线性关系的y值不同; 随机因素的影响。
28
y
( y0 y)
y
yˆ a bx
( y0 yˆ )
( yˆ y)
x
29
总离差平方和可分解为
y y 2 y y2 y y 2
即:总离差平方和(SST)=剩余离差平方和(SST) +回归 离差平方和(为偏相关系数,n为样本数,q为阶数。 T统计量服从n-q-2个自由度的t分布。
20
8.3.2 偏相关分析的基本操作
1.选择菜单Analyze-Correlate-Partial
21
2.把参与分析的变量选择到Variables框中。 3.选择一个或多个控制变量到Controlling for框
相关关系,设计思想与Pearson简单相关系数相同, 只是数据为非定距的,故计算时并不直接采用原始数
据 (xi , yi ),而是利用数据的秩,用两变量的秩(Ui ,Vi ) 代替 (xi , yi ) 代入Pearson简单相关系数计算公式中
,于是其中的 xi 和 yi 的取值范围被限制在1和n之间
在完全负相关;r=0表示两变量不相关 |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示
两变量之间的线性关系较弱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆ y 57.0400 2.5317 x
36
40 30 20
ˆ y 57.0400 2.5317 x
11.8-----20.4
天数(天)
10 0 10 12 14 16 18 20 22 温度 (℃)
用x估计y,存在随机误差,必须根据回归的数 学模型对随机误差进行估计,并对回归方程进 行检验。
与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
15
4
3 2 1 1 4 3 2 3 4 5 6
正向直线关系
2
1 1 4 3 2 1 1 2 3 4 5 6 2 3 4 5 6
负向直线关系
曲线关系
定性研究16
定量研究
回归(regerssion)
相关(correlation)
17
直线型
曲线
非直线型
47
依变量 y的平方和,总平方和,SSy,SS总
ˆ ˆ ( y y) ( y y) ( y y)
2 2
2
回归平方和 U
离回归平方和 Q
48
SS y U Q
ˆ ˆ ( y y) ( y y) ( y y)
2 2
2
SS y U Q
说明未考虑x与y的回归关系时y的变异。
45
ˆ ( y y)
2
回归平方和 (regression sum of squares) U
反映了由于y与x间存在直线关系所引起的y的 变异程度,因x的变异引起y变异的平方和,称 为回归平方和。 它反映在y的总变异中由于x与y的直线关系, 而使y变异减小的部分,在总平方和中可以用 x解释的部分。 U值大,说明回归效果好。
2
ˆ ˆ ( y y) ( y y) ( y y)
2 2
2
43
依变量 y的平方和,总平方和,SSy,SS总
ˆ ˆ ( y y) ( y y) ( y y)
2 2
2
回归平方和 U
离回归平方和 Q
44
( y y)
2
SS y
y的离均差,反映了y的总变异程度,称 为y的总平方和。
身高与体重之间存在相关关系。
23
第二节:直线回归
Linear Regression Regression)
简单回归(Simple
一、直线回归方程的建立
二、直线回归的数学模型和基本假定
三、直线回归的假设检验
四、直线回归的区间估计
24
一、直线回归方程的建立
直线回归就是用来描述一个 变量如何依赖于另一个变量
二元
变量
多元
18
直线回归与相关分析
第一节
回归与相关的概念 直线回归
第二节
第三节
直线相关
19
第一节:回归与相关的概念
一个变量的变化受另一个 变量或几个变量的制约
因果关系
相 关 变 量
回归分析(regression analysis)
平行关系
两个以上变量之间共同受 到另外因素的影响
相关分析(correlation analysis) 20
生物统计与实验设计
Biological Statistics And Experimental Designs
直线相关与 回归分析
2
平均数
标准差
方差分析
多重比较
集中点
施肥量
离散程度
差异显著性
一个变量 (产量)
品种
播种密度
3
双变量计量资料:每个个体有两个变量值 总体:无限或有限对变量值 样本:从总体随机抽取的n对变量值
42
ˆ ˆ ( y y) ( y y) ( y y)
2
2 2
2
ˆ ˆ ˆ ˆ ( y y ) ( y y ) 2 ( y y )( y y )
ˆ ˆ ( y y)( y y) b( x x) ( y y) b( x x) SP SP 2 bSP xy b SS x ( ) SP ( ) SS x 0 SS x SS x
40
三、直线回归的假设检验
ˆ y a bx
任何两个变量都可以建立一个直线回归方 程,该方法有意义?可以指导实践
是否真正存在线性关系
回归关系是否显著
41
一、直线回归的变异来源
(x,y) y=a+bx y-y y-y
y
y-y
y-y
实际值与估计值之差,剩余或残差。
估计值与均值之差,它与回归系数的大小有关。
1
n
ˆ ) 2 ( y a bx) 2 Q (y y
1 1
30
ˆ ) 2 ( y a bx) 2 Q (y y
1 1
n
n
最小
Q 2 ( y a bx) 0 a Q 2 ( y a bx) x 0 b
平行关系
两个以上变量之间共同 受到另外因素的影响
人的身高和体重之间的关系
兄弟身高之间的关系
8
历史背景:
英国人类学家 F.Galton首次在《自然遗传》 一书中,提出并阐明了“相关”和“相关系数” 两个概念,为相关论奠定了基础。其后,他和 英国统计学家 Karl Pearson对上千个家庭的身 高、臂长、拃长(伸开大拇指与中指两端的最 大长度)做了测量,发现:
在生物学中,研究两个变量间的关系, 主要是为了探求两变量的内在联系, 或从一个变量X(可以是随机变量,也 可以是一般的变量),去推测另一个 随机变量Y。
21
因果关系
一个变量的变化受另一个变量或几个变 量的制约
x
施肥量 (可以严格地人为控制)
y
产量
自变量(independent variable) 因变量(dependent variable)
y
a>0,b>0 a>0,b<0
a=0
a<0,b>0
0
x
27
变量1 温度
X
平均温度(℃) 11.8 14.7 15.6 16.8
变量2 天数
Y
历期天数(d ) 30.1 17.3 16.7 13.6
收集数据
17.1
18.8 19.5
11.9
10.7 8.3
散点图
28
20.4
6.7
黏虫孵化历期平均温度与历期天数关系图
9
儿子身高(Y,英寸)与父亲身高(X,
ˆ 英寸)存在线性关系: Y 33.73 0.516 X 。
也即高个子父代的子代在成年之后的 身高平均来说不是更高,而是稍矮于其父代 水平,而矮个子父代的子代的平均身高不是 更矮,而是稍高于其父代水平。 Galton 将 这种趋向于种族稳定的现象称之“回归”。
df y df U df Q
49
ˆ U ( y y)
b
2
2
2
U y b( x x ) y
( x x)
黏虫孵化历期平均温度与历期天数关系图
温度
天数
25Leabharlann 直线回归方程(linear regression equation)
自变量
Y=a+bx
斜率(slope) 回归系数(regerssion coefficient) 截距(intercept) 回归截距 与x值相对应的依变量y的点估计值
26
^
ˆ y a bx
回归直线通过中心点: ( x,
y)
33
ˆ y a bx
a y bx
ˆ y y b( x x )
回归方程的另外一种形式
34
X
平均温度(℃) 11.8
Y
历期天数(d ) 30.1
x 134 .7
x 2 2323 .19
14.7
15.6 16.8
17.3
16.7 13.6
(X1,Y1), (X2,Y2), …, (Xn,Yn)
目的:研究X和Y的数量关系
方法:回归与相关
简单、基本——直线回归、直线相关
4
在实际研究中,事物之间的相互关 系涉及两个或两个以上的变量,只 要其中的一个变量变动了,另一个 变量也会跟着发生变动,这种关系 称为协变关系,具有协变关系的变 量称为协变量。
ˆ y a bx
误差
y
37
二、数学模型和基本假定
y的总体平均数
y 因x引起y的变异 y的随机误差
y
(x x )
38
直线回归的数学模型
(model of linear regression)
y y ( x x)
y x
总体回归截距
y 115 .3
y 2 2039 .03
17.1
18.8 19.5 20.4
11.9
10.7 8.3 6.7
n 8
x 16 .8375 x n
y y 14 .4125 n
35
SSx x 2 SS y y 2
( x) 2 n ( y ) 2 n
13
散点图(scatter diagram)
两个变量间关系的性质(正向协同变化或 负向协同变化)和程度(关系是否密切)
两个变量间关系的类型(直线型或曲线型) 是否有异常观测值的干扰
14
目前,“回归”已成为表示变量 之间某种数量依存关系的统计学术语, 并且衍生出“回归方程”“回归系数”