考研数学三(多元函数微积分学)历年真题试卷汇编1(题后含答案及解析)
2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。
而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。
各科的考试时间均为3小时。
考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。
考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。
数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。
数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。
这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。
二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。
其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。
考研数学三真题试卷带答案解析(高清版)

2023考研数学三真题试卷带答案解析(高清版)2024年全国硕士研究生入学考试数学(三)真题及参考答案2024年考研数学复习时间规划复习的阶段大致可以分为三个阶段:基础奠定,强化训练,模拟冲刺。
1、6月之前:夯实基础通过看老师的基础课程数,学习基础知识,有视频的可以结合视屏看,看完一节,知道里面讲的什么,公式、概念。
看完一章,结合之前做的笔记,复盘这一章的内容,主要将说明,各知识点都用在什么地方,然后刷一刷这一章的讲义。
看完一章视频或书籍之后,最后做一做三大计算+660题。
2、7-9月:强化训练方法同打基础阶段。
看完视频后做对应的习题330题。
3、10-11月20日:真题冲刺后期可以做一做近10年的真题了,从近往远做,越近的真题越要花时间研究,不懂的地方可以看看名师的知识点讲解。
真题的错题,尤其要弄懂。
4、11月20日-考前:模拟训练最后一两个星期,就需要持续的模拟考场做试卷的状态和题型,建议大家做一做模拟卷,网上就可以购买,一般12月初都出来了,挑自己喜欢的老师即可。
提示:不要看押题卷,知识点学就会后,以不变应万变。
考研必考科目政治、英语和专业课。
所有专业都会考查政治,虽然管理类联考初试不涉及,但复试会考查。
除小语种专业外,其他专业都会考查英语,主要有英语一和英语二。
考研专业分为13个学科大类,包含上百个专业,每一专业都会有自己的专业课考试。
考研初试科目:初试方式为笔试,共四个科目:两门公共课、两门业务课。
两门公共课:政治、英语一或英语二;业务课一:数学或专业基础;业务课二(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。
法硕、西医综合、中医综合、教育学、历史学、心理学、计算机、农学等属于统考专业课,其他非统考专业课都是各院校自主命题,具体考试科目请参照各大考研院校招生简章。
会计硕士(MPAcc)、图书情报硕士、工商管理硕士(MBA)、公共管理硕士(MPA)、旅游管理硕士、工程管理硕士和审计硕士只考两门,即:英语二和管理类联考综合能力。
数三考研真题及答案

数三考研真题及答案数学是考研数学一和数学二中的一门科目,也是许多考生最为关注的科目之一。
为了更好地备考数学,考生们普遍会通过做真题来提高自己的解题能力。
本文将为大家提供一份数学三(数三)考研真题及答案,希望对考生们的备考有所帮助。
一、选择题1. 集合A由m个不同的整数组成,集合B由n个不同的整数组成,A与B有r个公共元素。
则A与B的并集有几个元素?A. m + nB. m + n - rC. m + n + rD. m - n + r答案:B2. 设函数f(x) = x^n,其中n为大于1的正整数。
若f(2+x) = f(2-x),则x的值为多少?A. 0B. 1C. 2D. -1答案:A二、填空题1. 若f(x) = x^2 + 1,则f(a) + f(-a)的值为________。
答案:22. 设A为一个n阶方阵,若A^2 = A,则称A满足条件________。
答案:幂等矩阵三、解答题1. 解方程组:2x + 4y = 103x - 2y = 7解答:首先,将第二个方程两边同乘以2,得到方程6x - 4y = 14。
然后,将第一个方程和得到的方程相加,得到8x = 24,解得x = 3。
将x的值代入第一个方程,得到3*2 + 4y = 10,解得y = 1。
因此,方程组的解为x = 3,y = 1。
2. 求函数f(x) = e^xln(1 - x)的定义域。
解答:首先,根据指数函数的定义域可知,e^x的定义域为实数集R。
其次,根据对数函数的定义域可知,ln(1 - x)的定义域为(-∞, 1)。
因此,函数f(x) = e^xln(1 - x)的定义域为x < 1。
以上就是数学三(数三)考研真题及答案的部分内容。
希望通过这些题目的练习,考生们能够提高自己的解题能力,为考研数学的顺利通过打下坚实的基础。
祝愿所有的考生都能在考试中取得优异的成绩!。
考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2002年试题,二)考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有( ).A.②→③→①B.③→②→①C.③→④→①D.③→①→④正确答案:A解析:由题设,分析4条性质可知,①与④没有直接联系,从而可排除C,D,关于A和B,重点在于分析性质②和③,显然性质②更强,即f的两个偏导数连续则f可微,因此②→⑧,B也被排除,从而只有A正确,选A.知识模块:多元函数微分学2.(1997年试题,二)二元函数在点(0,0)处( ).A.连续,偏导数存在B.连续,偏导数不存在C.不连续,偏导数存在D.不连续,偏导数不存在正确答案:C解析:二元函数的连续性与可偏导性之间的关系并非与一元函数中可导与连续的关系一样,因此需要按定义一一加以判断.由已知,[*]所以f(x,y)在点(0,0)处不连续;又[*]因此f(x,y)在(0,0)点的两个偏导数都存在.综上选C.讨论分段、分块定义的函数的连续性、偏导数的存在性以及可微性一般按定义处理.知识模块:多元函数微分学3.(2012年试题,一)如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是( ).A.若极限存在,则f(x,y)在(0,0)处可微B.若极限存在,则,(x,y)在(0,0)处可微C.若f(x,y)在(0,0)处可微,则极限存在D.若f(x,y)在(0,0)处可微,则极限存在正确答案:B解析:f(x,y)在(0,0)处连续,如果存在,则f(0,0)=0.且由存在,知存在,则即fx(0,0)=0,同理可得fy(0,0)=0,再根据可微定义;0.可知f(x,y)在(0,0)处可微.选B.知识模块:多元函数微分学4.(2005年试题,二)设函数其中函数φ具有二阶导数,ψ具有一阶导数,则必有( ).A.B.C.D.正确答案:B解析:由题意可得因为所以选B.题中含有二元变限积分,求偏导时,可将一个变量视为常数,按一元函数积分学中求变限积分的导数方法求解即可.知识模块:多元函数微分学5.(2010年试题,一)设函数z=z(x,y)由方程确定,其中F为可微函数,且F2’≠0,则等于( ).A.xB.zC.一xD.-z正确答案:B解析:根据题意可得故而有即正确答案为B.解析二在方程两边求全微分得从而即正确答案为B.解析三方程两边分别对X,Y求偏导数,则有解得从而即正确答案为B.知识模块:多元函数微分学6.(2005年试题,二)设有三元方程xy—xlny+exy=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)正确答案:D解析:根据题意,记方程为F(x,y,z)=0,其中F(x,y,z)=xy—zlny+exx 一1F对x,y,z均有连续偏导数,而且可知r(0,1,1)=0由于F(X,y,z)满足偏导数的连续性,根据隐函数存在定理可知,存在点(0,1,1)的一个邻域,在此邻域该方程可确定有连续偏导数的隐函数:x=x(y,z)和y=y(x,z)所以选D.求解此题应理解隐函数存在性定理的条件和结论,该知识点是2005年大纲新增加的考点.知识模块:多元函数微分学7.(2008年试题,一)函数一在点(0,1)处的梯度等于( ).A.iB.一iC.jD.一j正确答案:A解析:梯度的计算公式中涉及到函数的偏导数,故先求二元函数f(x,y)的偏导数:则fx(0,1)=lfy(0,1)=0.梯度gradf(0,1)=1×i+0×j=i,故应选A.知识模块:多元函数微分学8.(2001年试题,二)设函数f(x,y)在点(0,0)附近有定义,且fx’(0,0)=3,fy’(0,0)=1,则( ).A.出dz|(0,0)=3dx+dyB.曲面z=f(x,y)在点(0,0,f(0,0))的法向量为{3,1,1}C.曲线在点(0,0,f(0,0))的切向量为{1,0,3}D.曲线在点(0,0,f(0,0))的切向量为{3,0,1}正确答案:C解析:多元函数可偏导不一定可微,这一点与一元函数有本质区别,因此从题设给定(0,0)点有偏导数的条件无法推出在(0,0)点函数可微,因而A不一定成立;关于B,假设z=f(x,y)在(0,0,f(0,0))点法向量存在,由定义知该法向量也应为{3,1,一1},何况题设仅给出(0,0)点处fx’,fy’的值,因此B也可排除;选项C,D是互斥的,可算出曲线在点(0,0,f(0,0))的切向量为{3,1,一1}×{0,1,0}={1,0,3},从而选C.本题考查了多个知识点:可微性与可偏导的关系,曲面的法向量及其求法,空间曲线的切向量及其求法.注意A选项是考生易犯的错误,简单地认为将偏导数代入全微分计算公式即得出全微分,而忽视了全微分是否存在的前提.知识模块:多元函数微分学9.(2011年试题,一)设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是( ).A.f(0)>1,f’’(0)>0B.f(0)>1,f’’(0)0D.f(0)若z=f(x)lnf(y)在(0,0)处取极值,则A=f’’(0)lnf(0),B=0,c=f’’(0)由AC=[f’’(0)]2lnf(0)>0且A>0得f(0)>1且.f’’(0)>0,故选A.知识模块:多元函数微分学10.(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则f’(x’,y’)=0B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0正确答案:D解析:考查化条件极值问题为一元函数极值问题.根据拉格朗日乘子法,令F(x,y,λ)=,(x,y)+λφ(x,y),则(x0,y0)满足若fx’(x0,y0)=0,由(1)→λ=0或φx’(x0,y0)=0当A=0时,由(2)得fx’(x0,y0)=0;但当A≠0时,由(2)及φy’(x0,x0)≠0,fy’(x0,y0)≠0所以A,B错误.若fx’(x0,y0)≠0,由(1)→λ≠0,再由(2)及φy’(x0,x0)≠0→fy’(x0,y0)≠0故选D.知识模块:多元函数微分学11.(2003年试题,二)已知函数f(x,y)在点(0,0)的某个邻域内连续,且则( ).A.点(0,0)不是f9x,y)的极值点B.点(0,0)是f(x,y)的极大值点C.点(0,0)是f(x,y)的极小值点D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点正确答案:A解析:根据题意,可将原式改用极坐标表示,即因此且f(pcosθ,psinθ)=ρ2cosθ.sinθ+ρ4+o(ρ4)当p充分小时,f(pcosθ,psinθ)的符号由p2cosθ.sin θ决定,但sinθ.cosθ符号不定,因此f(x,y)在(0,0)点不取极值,选A.知识模块:多元函数微分学填空题12.(2011年试题,二)设函数=____________.正确答案:涉及知识点:多元函数微分学13.(2009年试题,二)设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则____________.正确答案:则解析二因f(u,v)有二阶连续偏导数,故而涉及知识点:多元函数微分学14.(2007年试题,二)设f(u,v)为二元可微函数,z=f(xy,yz).则=____________.正确答案:涉及知识点:多元函数微分学15.(1998年试题,一)设具有二阶连续导数,则=______________.正确答案:由题设,有解析:本题亦可先求再求.因为题设复合函数的混合偏导数与求导次序无关.但求导时应注意f(xy)和φ(x+y)均为一阶复合函数,对x求导时,y被视为常数;对y求导时,x视为常数,切不可与多元复合函数的求导法则混淆.知识模块:多元函数微分学16.(2005年试题,一)设函数单位向量则=____________.正确答案:由题意可知根据方向导数计算公式可得涉及知识点:多元函数微分学17.(2003年试题,一)曲面z=x2+y2与平面2x+4y一z=0平行的切平面的方程是________________。
数学三考研题目答案及解析

数学三考研题目答案及解析数学三考研题目答案及解析:题目:设函数\( f(x) \)在区间\( [a, b] \)上连续,且\( f(a) =f(b) \),证明至少存在一点\( c \)在区间\( (a, b) \)内,使得\( f(c) = f(a) \)。
答案:根据罗尔定理(Rolle's Theorem),如果一个函数在闭区间\( [a, b] \)上连续,在开区间\( (a, b) \)内可导,并且两端的函数值相等,即\( f(a) = f(b) \),那么至少存在一点\( c \)在开区间\( (a, b) \)内,使得\( f'(c) = 0 \)。
首先,我们构造一个新的函数\( g(x) = f(x) - f(a) \)。
显然,\( g(x) \)在\( [a, b] \)上连续,并且在\( (a, b) \)内可导,因为\( f(x) \)在这些区间上具有相应的性质。
由于\( f(a) = f(b) \),我们有\( g(a) = g(b) = 0 \)。
现在,我们可以应用罗尔定理于函数\( g(x) \)在\( [a, b] \)上。
根据定理,存在至少一点\( c \)在\( (a, b) \)内,使得\( g'(c) = 0 \)。
计算\( g'(x) \),我们得到\( g'(x) = f'(x) - 0 = f'(x) \)。
因此,\( g'(c) = f'(c) = 0 \)。
由于\( g(c) = f(c) - f(a) \),并且我们已经知道\( g'(c) = 0 \),我们可以得出\( g(c) = 0 \)。
这意味着\( f(c) - f(a) = 0 \),即\( f(c) = f(a) \)。
这就证明了至少存在一点\( c \)在区间\( (a, b) \)内,满足\( f(c) = f(a) \)。
考研数学三(多元函数微分学)模拟试卷1(题后含答案及解析)

考研数学三(多元函数微分学)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设则f(x,y)在点O(0,0)处( )A.极限不存在B.极限存在,但不连续C.连续,但不可微D.可微正确答案:C解析:|f(x,y)-0|=所以f(x,y)=0,f(x,y)在点O处连续,排除(A),(B).下面考查(C).所以fˊx(0,0)=0,fˊy(0,0)=0.若在点O(0,0)处可微,则应有△f=f(0+△x,0+△y)-f(0,0)= =fˊx(0,0)△x+fˊy(0,0)△y+o(ρ)(其中ρ=) =o(ρ).但是上式并不成立,事实上,所以f(x,y)在点O(0,0)处不可微,故应选(C).知识模块:多元函数微分学2.二元函数,其中m,n为正整数,函数在(0,0)处不连续,但偏导数存在,则m,n需满足( )A.m≥2,n<2B.m≥2,n≥2C.m<2,n≥2D.m<2,n<2正确答案:B解析:当(x,y)沿y=kx(k≠0)趋向点(0,0)时,当m≥2,n≥2时,k取不同值,上式结果不唯一,所以函数在(0,0)处极限不存在,故函数不连续.又因为fˊx(0,0)==0,同理可得fˊy(0,0)=0,故偏导数存在.当n<2时,有n=1,因而,函数f(x,y)在(0,0)处连续.同理,当m<2时,函数f(x,y)在(0,0)处连续.综上,应选(B).知识模块:多元函数微分学3.函数z=f(x,y)=在(0,0)点( )A.连续,但偏导数不存在B.偏导数存在,但不可微C.可微D.偏导数存在且连续正确答案:B解析:从讨论函数是否有偏导数和是否可微入手.由于=0,所以fˊx (0,0)=0,同理fˊy(0,0)=0.令α=△z-fˊx(0,0)△x-fˊy(0,0)△y=当(△x,△y)沿y=x趋于(0,0)点时≠0,即α不是ρ的高阶无穷小,因此f(x,y)在(0,0)点不可微,故选(B).知识模块:多元函数微分学4.函数x3+y3-3x2-3y2的极小值点是( )A.(0,0)B.(2,2)C.(0,2)D.(2,0)正确答案:B解析:由=3x2-6x=0和=3y2-6y=0,可得到4个驻点(0,0),(2,2),(0,2)和(2,0).在(0,2)点和(2,0)点,均有AC-B2<0,因而这两个点不是极值点.在(0,0)点,AC-B2=36>0,且A=-6<0,所以(0,0)点是极大值点.在(2,2)点,AC-B2=36>0,且A=12>0,所以(2,2)点是极小值点,故选(B).知识模块:多元函数微分学5.函数,则极限( )A.等于1B.等于2C.等于0D.不存在正确答案:C解析:当xy≠0时,0≤≤|x|+|y|,当(x,y)→(0,0)时,由夹逼准则,可得极限值为0.知识模块:多元函数微分学6.设函数z=1-,则点(0,0)是函数z的( )A.极小值点且是最小值点B.极大值点且是最大值点C.极小值点但非最小值点D.极大值点但非最大值点正确答案:B解析:由极值点的判别条件可知.知识模块:多元函数微分学7.设f(x,y)=arcsin,则fˊx(2,1)= ( )A.B.C.D.正确答案:A解析:fˊx(2,1)= 知识模块:多元函数微分学8.zˊx(x0,y0)=0和zˊy(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的( )A.必要条件但非充分条件B.充分条件但非必要条件C.充要条件D.既非必要也非充分条件正确答案:D解析:若z=z(x,y)=,则(0,0)为其极小值点,但zˊx(0,0),zˊy(0,0)均不存在.知识模块:多元函数微分学9.函数不连续的点集为( )A.y轴上的所有点B.x=0,y≥0的点集C.空集D.x=0,y≤0的点集正确答案:C解析:当x≠0时,f(x,y)为二元连续函数,而当.所以,(0,y0)为f(x,y)的连续点,故此函数的不连续点的集合为φ.知识模块:多元函数微分学10.函数在点(0,0)处( )A.连续,偏导数存在B.连续,偏导数不存在C.不连续,偏导数存在D.不连续,偏导数不存在正确答案:C解析:取y=kx,可得f(x,y)在(0,0)处不连续.由偏导数定义,可得f(x,y)在(0,0)处的偏导数存在.知识模块:多元函数微分学填空题11.函数f(x,y)=ln(x2+y2-1)的连续区域是_________.正确答案:x2+y2>1解析:一切多元初等函数在其有定义的区域内是连续的.知识模块:多元函数微分学12.设=_________.正确答案:0解析:本题属于基本计算,考研中多次考过这种表达式.知识模块:多元函数微分学13.若函数2=2x2+2y2+3xy+ax+by+C在点(-2,3)处取得极小值-3,则常数a、b、c之积abc=_________.正确答案:30解析:由极值的必要条件知在点(-2,3)处,zˊx=0,zˊy=0,从而可分别求出a、b、c之值.知识模块:多元函数微分学14.设u=x4+y4-4x2y2,则=_________.正确答案:12x2-8y2解析:因=4x3-8xy2,故=12x2-8y2.知识模块:多元函数微分学15.设=________.正确答案:-sinθ解析:由x=rcosθ,y=rsinθ,得u=cosθ,=-sinθ.知识模块:多元函数微分学16.设则fˊx(0,1)=_________.正确答案:1解析:fˊx(0,1)==1.知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。
2022考研数学三真题及答案解析(数三)
2022年全国硕士研究生入学统一考试数学(三)试题及参考答案一、选择题:1~10题,每小题5分,共50分.1、当0→x 时,)()(x x βα、是非零无穷小量,给出以下四个命题 ① 若)(~)(x x βα,则)(~)(22x x βα; ② 若)(~)(22x x βα,则)(~)(x x βα; ③ 若)(~)(x x βα,则))(()()(x o x x αβα=-; ④ 若))(()()(x o x x αβα=-,则)(~)(x x βα. 其中正确的序号是( )A :①②;B :①④;C :①③④;D :②③④. 答案:C .解析:当0→x 时,若)(~)(x x βα,则1)()(lim 0=→x x x βα,故1)()(lim )()(lim 20220=⎪⎪⎭⎫⎝⎛=→→x x x x x x βαβα,即)(~)(22x x βα,且011)()()(lim0=-=-→x x x x αβα,故))(()()(x o x x αβα=-.所以①③正确.当0→x 时,)(~)(22x x βα,则1)()(lim 220=→x x x βα,此时1)()(lim 0±=→x x x βα,而1)()(lim 0-=→x x x βα时,)(x α与)(x β不是等价无穷小,故 ②不正确.当0→x 时,若))(()()(x o x x αβα=-,1)()(lim ))(()()(lim )()(lim000==-=→→→x x x o x x x x x x x αααααβα,所以)(~)(x x βα,④正确.综上,C 为选项.2 、已知),2,1()1( =--=n nn a nnn ,则}{n a ( ) A :有最大值,有最小值; B :有最大值,没有最小值; C :没有最大值,有最小值; D :没有最大值,没有最小值. 答案:A .解析:1212,1221<-=>=a a ,又1lim =∞→n n a ,故存在0>N ,当N n >时,12a a a n <<,所以}{n a 有最大值和最小值,选项A 正确.3、设函数)(t f 连续,令⎰---=y x dt t f t y x y x F 0)()(),(,则( )A :2222y F x F y F x F ∂∂=∂∂∂∂=∂∂,; B :2222y Fx F y F x F ∂∂-=∂∂∂∂=∂∂,; C :2222y F x F y F x F ∂∂=∂∂∂∂-=∂∂,; D :2222yF x F y F x F ∂∂-=∂∂∂∂-=∂∂,. 答案:C .解析:⎰⎰⎰-----=--=y x y x y x dt t tf dt t f y x dt t f t y x y x F 0)()()()()(),(,⎰⎰--=-----+=∂∂y x y x dt t f y x f y x y x f y x dt t f x F 00)()()()()()(,)(22y x f x F -=∂∂,同理⎰⎰---=--+----=∂∂y x y x dt t f y x f y x y x f y x dt t f yF00)()()()()()(,)(22y x f y F -=∂∂, 综上2222yF x F y F x F ∂∂=∂∂∂∂-=∂∂,,选项C 正确. 4、已知⎰⎰⎰+=++=+=101031021sin 12,cos 1)1ln(,)cos 1(2dx x xI dx x x I dx x x I ,则( ) A :321I I I <<; B :312I I I <<; C :231I I I <<; D :123I I I <<. 答案:A .解析:⎰⎰⎰+=++=+=1010310212sin 1,cos 1)1ln(,)cos 1(2dx xx I dx x x I dx x xI ,先比较21,I I 的大小,令)1,0()1ln(2)(∈+-=x x xx f ,此时0)0(=f ,此时0)1(211121)(<+-=+-='x x x x f ,即)(x f 单调递减,从而0)0()(=<f x f ,可得)1,0()1ln(2∈+x x x《,从而21I I <.再比较23,I I 的大小,因)1,0(,cos 12sin 1,)1ln(∈+<+<+x x x x x ,则2sin 1cos 1)1ln(x xxx +<++,从而23I I >.综上,可得A 正确.5、设A 为3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=Λ000010001,则A 的特征值为011,,-的充分必要条件是( )A :存在可逆矩阵Q P ,,使得Q P A Λ=;B :存在可逆矩阵P ,使得1-Λ=P P A ; C :存在正交矩阵Q ,使得1-Λ=Q Q A ; D :存在可逆矩阵P ,使得TP P A Λ=; 答案:B解析:3阶A 有011,,-三个不同的特征值,所以A 可以相似对角化,故存在可逆矩阵P ,使得1-Λ=P P A ;若存在可逆矩阵P ,使得1-Λ=P P A ,即A 相似与Λ,而相似矩阵具有相同的特征值,而Λ的特征值为011,,-,故A 的特征值为011,,-.因此选B . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=421,1111122b b b a a A ,则线性方程组b Ax =解的情况为( )A :无解; B: 有解; C:有无穷多解或无解 ; D: 有唯一解或无解; 答案:D .解析:⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫⎝⎛→31101110111141211111)|2222b b a a b b a a b A ((1)当1=a 或1=b 时,)|()(b A r A r ≠,方程无解(2)当1≠a 且1≠b 时,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+→11130011110111113110111101111)|a b a b a a b b a a b A ( (i )当b a ≠时,3)|()(==b A r A r ,方程有唯一解 (ii )当b a =时,3)|(2)(==b A r A r ,,方程无解; 综述:方程有唯一解或无解,选D .7、设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=243211,11,11,11λλαλαλαλα,若向量组321,,ααα与421,,ααα等价,则λ的取值范围( )A :}1,0{ ; B:}2,|{-≠∈λλλR ;C:}2,1,|{-≠-≠∈λλλλR ; D:}1,|{-≠∈λλλR . 答案:C解析:向量组321,,ααα与421,,ααα等价的充要条件是()),,.,,(,,),,(421321421321ααααααααααααr r r ==,而),,,(),,.,,(4321421321αααααααααα,r r =()⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛→λλλλλλλλλλλλαααα2222431201101101111111111,,,(1)当1=λ时,()1).,,(,,),,(4321421321===ααααααααααr r r ,此时向量组等价 (2)当1≠λ时()⎪⎪⎪⎭⎫ ⎝⎛++---→⎪⎪⎪⎭⎫⎝⎛---+→⎪⎪⎪⎭⎫ ⎝⎛-++→24312)1(2001110111111001101110110110111,,,λλλλλλλλλλλαααα(i )当2-=λ时,3).,,(),,(2),,(4321421321===ααααααααααr r r ,,此时向量组不等价 (ii )当1,2-=-≠λλ时,3).,,(2),,(3),,(4321421321===ααααααααααr r r ,,,此时向量组不等价(iii )当1,2-≠-≠λλ时,3).,,(),,(),,(4321421321===ααααααααααr r r ,此时向量组等价 综上,当1,2-≠-≠λλ时,向量组321,,ααα与421,,ααα等价;选C8、随机变量)4,0(~N X ,随机变量⎪⎭⎫⎝⎛31,3~B Y ,且X 与Y 不相关,则=+-)13(Y X D ( )A: 2; B: 4; C: 6; D: 10. 答案:D .解析:由题意知,0),(32)(,4)(===Y X Cov Y D X D ,; 10)(9)()3()13(=+=-=+-Y D X D Y X D Y X D ,故选D .9、设随机变量序列 ,,,21n X X X 独立同分布,且i X 的概率密度为⎩⎨⎧<-=其他11)(x xx f 则当∞→n 时,∑=n i i X n 121依概率收敛于( )A :81; B : 61; C: 31; D: 21. 答案:B .解析:61)1(2)1()()(1211222=-=-==⎰⎰⎰-+∞∞-dx x x dx x x dx x f x X E i ,从而∑∑====⎪⎭⎫ ⎝⎛n i i n i i X E n X n E 121261)(11,由辛钦大数定律可得,∑=n i i X n 121依概率收敛于⎪⎭⎫ ⎝⎛∑=n i i X n E 121,从而选B .10、设二维随机变量),(Y X 的概率分布若事件}2},{max{==Y X A 与事件}1},{min{==Y X B 相互独立,则=),(Y X Cov ( )A :6.0- ; B: 36.0-; C: 0; D: 48.0. 答案:B .解析:1.0}2,1{)(,2.0)(,1.0)(=====+=Y X P AB P B P b A P ,由B A ,相互独立,故)()()(B P A P AB P =,解得4.0=b ,由分布律的性质得2.0=a ,6.0)(,2.1)(,2.0)(-==-=XY E Y E X E从而36.0)()()(),(-=-=Y E X E XY E Y X Cov ,故选B . 二、填空题:11~16题,每题5分,共30分.11、若=⎪⎪⎭⎫ ⎝⎛+→xx x e cot 021lim .答案:21e .解析:21tan 21lim21ln cot lim cot 00021lim e eeex e e x xxx x x xx ===⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+→→→.12、⎰=++-2024242dx x x x .答案:333ln π-. 解析:原式⎰⎰++-+++=2022024*******dx x x dx x x x ⎰⎰++-++++=20222022)3()1(1642)42(dx x x x x x d 20202|31arctan 36|)42ln(+-++=x x x 333ln π-=.13、已知函数x xe e xf sin sin )(-+=,则=''')2(πf .答案:0.解析:方法一:x xxe xex f sin sin cos cos )(--=',x x e x x e x x x f sin 2sin 2)sin (cos )sin (cos )(-++-='',)cos sin cos 2()sin (cos cos )sin (cos cos )cos sin cos 2()(sin sin 2sin 2sin x x x eex x x e x x x e x x x x f xxxx +-++--+--='''--从而01111)2(=+--='''πf . 方法二:x xe ex f sin sin )(-+=,显然)()(sin sin x f e e x f x x=+=--,故)(x f 为偶函数,且周期π2=T ,于是)(x f '为奇函数,)(x f ''为偶函数,)(x f '''为奇函数,从而0)0(='''f ,而0)0()2(='''='''f f π.14、已知⎩⎨⎧≤≤=其他,010,)(x e x f x ,则=-⎰⎰∞+∞-∞+∞-dy x y f x f dx )()( .答案:2)1(-e .解析:记}10,10|),{(≤-≤≤≤=x y x y x D ,原式⎰⎰⎰⎰-=-=Dx y x Ddxdy e e dxdy x y f x f )()(,2111)1()1(-=-==⎰⎰⎰+-e dy e e dy edx e x x xxy x.15、设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第一列,得到矩阵⎪⎪⎪⎭⎫ ⎝⎛----=001011112B ,则1-A 的迹=-)(1A tr .答案:-1.解析:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=100011001,010********P P ,则B AP P =21 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛==--0100011111000110010010111120101000011211BP P A 0)1)(1(1011112=++-=-------=-λλλλλλE A ,解得i i -==-=321,,1λλλ 故1-A 的特征值为i i =-=-=321,,1λλλ,从而1)(1-=-A tr16、设C B A ,,为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P .答案:85. 解析:()C B A P C B P C B A C B P )()|(=()98)()())(()()(95)()()()()()()()(=+=-+==-+=-+=C B P A P C B A P C B P A P C B A P C P B P C P B P BC P C P B P C B P从而85)|(=C B A C B P . 三、解答题:17~22小题,共94分,解答应写出文字说明,证明过程或演算步骤. 17、(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.解:])2([)(2121C dx ex ex y dxxdxx+⎰+⎰=⎰-])2([C dx e x e x x ++=⎰-]2[C xee xx +=-xCe x -+=2,其中C 为任意常数,又3)1(=y ,得e C =,即xe x x y -+=12)(.22limlim 1=+==-+∞→+∞→xe x x y a xx x ,0lim )2(lim 1==-=-+∞→+∞→xx x e x y b ,故x y 2=为曲线)(x y y =的斜渐近线.18、(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =,该产品的销售单价P 与Q 的关系为Q P 5.11160-=,若单位资本投入量和单位蓝洞投入量的价格分别为6和8,求利润最大时的产量.解:利润y x xy y x y x Q Q y x PQ L 862161392086)6.11160(86316121---=---=--=令⎪⎩⎪⎨⎧=--=--='=--=--='--------08)722320(872232006)722320(362166960612132326521612131316121y x xy xy y x L y x y y y x L yx,得驻点)64,256(, 此时38464256126=⨯⨯=Q ,在实际问题中由于驻点唯一,故利润L 在384=Q 处取到最大值. 19、(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算⎰⎰+-=Ddxdy y x y x I 222)(. 解:⎰⎰⎰⎰⎰⎰--+-=+-=ππϕϕπρρϕϕϕρρϕϕϕ2cos sin 20220202222)sin (cos )sin (cos )(d d d d dxdy y x y x I D⎰⎰+-=πππϕϕϕϕ2202)cos sin 21(2d d 22)12(2|)sin (2202-=+-=+-=ππππϕϕπ. 20、(本题满分12分)求幂级数∑∞=++-02)12(41)4(n nnn x n 的收敛域及和函数)(x S . 解:1)12(41)4()32(41)4(lim 22211n <++-++-+++∞→nnn n n n x n xn ,解得1||<x ,从而1=R ,收敛区间)1,1(-,当1±=x 时,∑∞=++-0)12(41)4(n nn n 收敛,故收敛域为]1,1[-. 当]1,1[-∈x ,令∑∑∞=∞=+++-=012)12(412)1()(n n n nn n n x x n x S , 令∑∑∞=+∞=≠+-=+-=0120210,12)1(112)1()(n n n n n n x n x x n x x S ,此时∑∑∞=∞=++=-='⎪⎪⎭⎫ ⎝⎛+-02201211)1(12)1(n nn n n n x x n x ,x dx x n x x n n n arctan 1112)1(0202=+=+-⎰∑∞=,故0,arctan 1)(1≠=x x xx S .∑∑∞=+∞=≠+=+=0120220,1241)12(4)(n n n n n n x n x x n x x S )(,此时2202012444114124x x x n x n n nn n n -=-=='⎪⎪⎭⎫ ⎝⎛+∑∑∞=∞=+)(,0,22ln 4412402012≠-+=-=+⎰∑∞=+x x x dx x n x x n n n )(,故0,22ln 1)(2≠-+=x xx x x S .0=x 时,2)0(=S .综上当]1,1[-∈x ,⎪⎩⎪⎨⎧=-∈-++=0,2]1,0)0,1[,22ln1arctan 1)(x x xx x x x x S ( . 21、(本题满分12分)已知二次型312322213212343),,(x x x x x x x x f +++=,(1)求正交变换Qy x =将),,(321x x x f 化为标准形; (2)证明:2)(min=≠xx x f T x . 解:(1)二次型对应矩阵⎪⎪⎪⎭⎫⎝⎛=301040103A ,0)2()4(3010401032=---=---=-λλλλλλE A ,解得4,2321===λλλ21=λ对应特征向量满足0)2(=-x E A ,解得⎪⎪⎪⎭⎫⎝⎛-=1011ξ432==λλ对应特征向量满足0)4(=-x E A ,解得⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ321,,ξξξ已经两两正交,单位化得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=22022,010,22022321ηηη,故存在正交矩阵),,(321ηηη=Q ,当Qy x =时232221321442),,(y y y y y y f ++=.(2)2322212322232221232221222442)()()(y y y y y y y y y y y y y y f Qy Q y y f x x x f T T T Qy x T ++++=++++==== 当0≠x 时,由Qy x =得0≠y ,当0,0132≠==y y y 时,2322212322222y y y y y ++++的最小值为2,故2)(min=≠xx x f Tx . 22、(本题12分)设n X X X ,,,21 为来自均值为θ的指数分布总体X 的简单随机样本,m Y Y Y ,,,21 为来自均值为θ2的指数分布总体Y 的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数,利用样本n X X X ,,,21 ,m Y Y Y ,,,21 ,求θ的最大似然估计量θˆ,并求)ˆ(θD . 解:由题知:总体Y X ,的概率密度为,0021)(,0001)(2⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>=--y y ey f x x ex f y YxX θθθθ令θθθθθθθθθ21211111121211),(),(∑∑=⋅=⋅===--+=-=-==∏∏∏∏mj j ni ij iy x n m m mj y ni x m j j Y ni i Xee e ey f x fLθθθ2ln )(2ln ln 11∑∑==--+--=mj jni i yx n m m L02ln 2121=+++-=∑∑==θθθθmj jni i yx n m d L d 解得⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i y x n m 11211ˆθ故θ的最大似然估计量⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i Y X n m 11211ˆθ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++=∑∑∑∑====m j j n i i m j j n i i Y D X D n m Y X n m D D 11211)(41)()(1211)ˆ(θ⎪⎭⎫ ⎝⎛++=)(4)()(12j i Y D m X nD n m 而224)(,)(θθ==j i Y D X D ,从而n m m n n m D +=⎪⎭⎫ ⎝⎛⋅++=222244)(1)ˆ(θθθθ。
2018年考研(数学三)真题试卷(题后含答案及解析)
2018年考研(数学三)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.下列函数中,在x=0处不可导的是( )A.f(x)=|x|sin|x|B.C.f(x)=cos|x|D.正确答案:D解析:对D选项,由于f+’(0)≠f-’(0),因此f(x)在x=0处不可导.2.设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则( )A.当f’(x)<0时,B.当f”(x)<0时,C.当f’(x)>0时,D.当f”(x)>0时,正确答案:D解析:对于A选项:.此时f’(x)=一1<0,但对于B、D选项:,由∫01f(x)dx=0,可得当f”(x)=2a<0时,=b>0;当f”(x)=2a>0时,对于C选项:取f(x)=此时f’(x)=1>0,但故D选项正确.3.设则( )A.M>N>KB.M>K>NC.K>M>ND.K>N>M正确答案:C解析:由于而由定积分的性质,可知即K>M>N.故C选项正确.4.设某产品的成本函数C(Q)可导,其中Q为产量,若产量为Q0时平均成本最小,则( )A.C’(Q0)=0B.C’(Q0)=C(Q0)C.C’(Q0)=Q0C(Q0)D.Q0C’(Q0)=C(Q0)正确答案:D解析:平均成本函数其取最小值时,则导数为零,即从而C’(Q0)Q0—C(Q0)=0,即C’(Q0)Q0=C(Q0).5.下列矩阵中,与矩阵相似的为( )A.B.C.D.正确答案:A解析:本题考查矩阵相似的定义及相似矩阵的性质(相似矩阵的秩相等).若存在可逆矩阵P,使得P-1AP=B,则A~B.从而可知E一A~E一B,且r(E—A)=r(E一B).设题中所给矩阵为A,各选项中的矩阵分别为B1,B2,B3,B4.经验证知r(E—B1)=2,r(E—B2)=r(E一B3)=r(E—B4)=1.因此A~B1,即A相似于A选项下的矩阵.6.设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)表示分块矩阵,则( )A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(AT,BT)正确答案:A解析:解这道题的关键,要熟悉以下两个不等关系.①r(AB)≤min{r(A),r(B)};②r(A,B)≥max{r(A),r(B)}.由r(E,B)=n,可知r(A,AB)=r(A(E,B))≤min{r(A),r(E,B)}=r(A).又r(A,AB)≥max{r(A),r(AB)},r(AB)≤r(A),可知r(A,AB)≥r(A).从而可得r(A,AB)=r(A).7.设f(x)为某分布的概率密度函数,f(1+x)=f(1—x),∫02f(x)dx=0.6,则P{X<0}=( )A.0.2B.0.3C.0.4D.0.6正确答案:A解析:由于f(1+x)=f(1一x),可知f(x)图像关于x=1对称.而∫02f(x)dx=0.6,可得8.已知X1,X2,…Xn(n≥2)为来自总体N(μ,σ2)(σ>0)的简单随机样本,,则( )A.B.C.D.正确答案:B解析:解这道题,首先知道t分布的定义.假设X服从标准正态分布N(0,1),Y服从χ2(n)分布,则的分布称为自由度为n的t分布,记为Z~t(n).填空题9.曲线y=x2+2lnx在其拐点处的切线方程是_______.正确答案:y=4x一3解析:首先求得函数f(x)=x2+2lnx的定义域为(0,+∞).求一阶、二阶导,可得f’(x)=令y”=0,得x=1.当x>1时f”(x)>0;当x<1时f”(x)<0.因此(1,1)为曲线的拐点.点(1,1)处的切线斜率k=f’(1)=4.因此切线方程为y一1=4(x一1),即y=4x一3.10.正确答案:解析:本题考查分部积分法。
考研数学三(函数、极限、连续)历年真题试卷汇编1(题后含答案及解析)
考研数学三(函数、极限、连续)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2004年]函数在区间( )内有界.A.(-1,0)B.(0,1)C.(1,2)D.(2,3)正确答案:A解析:解一大家知道,若f(x)在有限闭区间[a,b]上连续,则f(x)一定在[a,b]上有界,但若f(x)在开区间(a,b)内连续,则f(x)在(a,b)内未必有界,而如果再附加条件和存在,则f(x)必在(a,b)内有界,这就是命题1.1.1.1(2).由于下述极限存在,又f(x)在(-1,0)内连续,故由命题1.1.1.1(2)知f(x)在(-1,0)内有界.仅(A)入选.解二因可补充定义则补充定义后的函数f(x)成为有界闭区间[-1,0]上的连续函数.利用有界闭区间上连续函数的有界性可知f(x)在[-1,0)[-1,0]上有界.仅(A)入选.解三因由命题[1.1.1.1(1):如果x∈(a,b),或则f(x)在(a,b)内无界。
即知,f(x)在(0,1)及(1,2),(2,3)内均无界.仅(A)入选.注:命题1.1.1.1 (1)如果x0(a,b),或则f(x)在(a,b)内无界.(2)如果和存在,且f(x)在(a,b)内连续,则f(x)在(a,b)内有界.知识模块:函数、极限、连续2.[2014年]设且a≠0,则当n充分大时,有( ).A.B.C.D.正确答案:A解析:解一由可取从而有不等式即亦即当a>0时有当a<0时有由式①、式②可知仅(A)入选.解二因由极限的定义,对任意ε>0,存在正整数N,使得n>N时,有|an一a|<ε,从而取时有即仅(A)入选.解三由得到取则存在N>0,当n>N时有即亦即故仅(A)入选.知识模块:函数、极限、连续3.[2000年]设对任意的x,总有φ(x)≤f(x)≤g(x),且则( ).A.存在且等于零B.存在但不一定为零C.一定不存在D.不一定存在正确答案:D解析:下面举反例说明(A),(B),(C)都不正确.仅(D)入选.令φ(x)=1-1/x2,f(x)=1,g(x)=1+1/x2,显然有φ(x)≤f(x)≤g(x),且这时有这说明(A)、(C)都不正确.事实上,满足上述条件的f(x),其极限不一定存在.因而(B)也不正确.例如,令φ(x)=x-1/x2,f(x)=x,g(x)=x+1/x2,显然它们均满足题设条件,但知识模块:函数、极限、连续4.[2015年]设{xn)是数列.下列命题中不正确的是( ).A.B.C.D.正确答案:D解析:由命题1.1.3.8的充分条件知选项(B)正确.由命题1.1.3.8的必要条件知选项(A)、(C)正确,因而仅(D)入选.注:命题1.1.3.8 如果与均存在且相等,则存在,且知识模块:函数、极限、连续5.[2009年]当x→0时,f(x)=x—sinax与g(x)=x2ln(1—bx)是等价无穷小量,则( ).A.a=1,b=-1/6B.a=1,b=1/6C.a=-1,b=-1/6D.a=-1,b=1/6正确答案:A解析:解一因故必存在,所以必有因而a=1.再由-a3/(6b)=1得-1/(6b)=1,故b=-1/6.仅(A)入选.解二反复利用洛必达法则求之.即a3=-6b(排除(B)、(C)).又因存在,而故必有即1-a=0,故a=1,从而b=-1/6.仅(A)入选.注:命题1.1.3.1 当x→0时,有(2)x-sinx~x3/6;1-cosλ~λx2(λ为常数). 知识模块:函数、极限、连续6.[2010年]若则a等于( ).A.0B.1C.2D.3正确答案:C解析:解一即a=2.仅(C)入选.解二由题设知,a-1=1,故a=2.仅(C)入选.知识模块:函数、极限、连续7.[2014年]设P(x)=a+bx+cx2+dx3,当x→0时,若P(x)=-tanx是比x3高阶的无穷小,则下列选项中错误的是( ).A.a=0B.b=1C.c=0D.正确答案:D解析:由题设得故a=0,b-1=0,c=0,即a=0,b=1,c=0,仅(D)入选.知识模块:函数、极限、连续填空题8.[2012年]设函数则正确答案:解析:当x=e时,y=lnx-1,故知识模块:函数、极限、连续9.[2012年]正确答案:解析:知识模块:函数、极限、连续10.[2009年]正确答案:3e/2解析:知识模块:函数、极限、连续11.[2015年]正确答案:解析:知识模块:函数、极限、连续12.[2002年]设常数则正确答案:解析:知识模块:函数、极限、连续13.[2005年]正确答案:2解析:解一当x→∞时,sin[2x/(x2+1)]~2x/(x2+1),由命题1.1.4.1 [*]其中m,n为正整数.得到[*] 解二令[*]则[*]故[*] 知识模块:函数、极限、连续14.[2007年]正确答案:0解析:解一因|sinx+cosx|≤|cosx|+|sinx|≤2,故sinx+cosx为有界变量,又根据命题1.1.3.6即得所求极限为0.解二当x→∞时,2x是比xk(k 为正整数)高阶的无穷大量,因而显然|sinx+cosx|≤2,于是由命题1.1.3.6即得所求极限为0.注:命题1.1.3.6 有界变量与无穷小量的乘积为无穷小量. 知识模块:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
2018年考研数学三真题及答案解析(完整版)
(C) f x cos x
(D) f x cos x
【答案】(D)
【解析】根据导数的定义:
x sin x
x
lim
lim
x 0,可导;
(A) x0 x
x0 x
x sin x
x
lim
lim
x 0,可导;
(B) x0
x
x0 x
cos lim
x
1
lim
1 2
t 0
t 0
2= lim (1 bt)et 1 lim et 1 lim btet 1 b,
t 0
t
t t 0
t t 0
从而b 1.
综上,a 1,b 1.
(16)(本题满分 10 分)
设平面区域D由曲线y 3 1 x2 与直线y 3x及y轴围成, 计算二重积分 x2dxdy.
2018 年全国硕士研究生入学统一考试数学(三)试题及答案解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的.
(1) 下列函数中,在 x 0 处不可导的是( )
(A) f x x sin x
(B) f x x sin x
x
x
x 0时,可得f (x) 2xf (x) f (x) 2xf (x) 0.
由公式得:f (x) Ce(2x)dx =Cex2 , f (0) 2 C 2. 故f (x)=2ex2 f (1) 2e.
(13) 设A为3阶矩阵, a1, a2, a3是线性无关的向量组,若Aa1 a1 a2, Aa2 a2 a3, Aa3 a1 a3,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学三(多元函数微积分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2008年] 设则( ).A.fx’(0,0),fy’(0,0)都存在B.fx’(0,0)不存在,fy’(0,0)存在C.fx’(0,0)存在,fy’(0,0)不存在D.fx’(0,0),fy’(0,o)都不存在正确答案:B解析:因而则极限不存在,故偏导数fx’(0,0)不存在.而因而偏导数fy’(0,0)存在.仅(B)入选.知识模块:多元函数微积分学2.[2003年] 设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是( ).A.f(x0,y)在y=y0处的导数大于零B.f(x0,y)在y=y0处的导数等于零C.f(x0,y)在y=y0处的导数小于零D.f(x0,y)在y=y0处的导数不存在正确答案:B解析:解一因f(x,y)在点(x0,y0)处可微,故f(x,y)在点(x0,y0)处两个偏导数存在,因而一元函数f(x0,y)在y=y0处的导数也存在.又因f(x,y)在点(x0,y0)处取得极小值,故f(x0,y0)在y=y0处的一阶(偏)导数等于零.仅(B)入选.解二由函数f(x,y)在点(x0,y0)处可微知,f(x.y)在点(x0,y0)处的两个偏导数存在.又由二元函数极值的必要条件即得f(x,y)在点(x0,y0)处的两个偏导数都等于零.因而有知识模块:多元函数微积分学3.[2016年] 已知函数则( ).A.fx’-fy’=0B.fx’+fy’=0C.fx’-fy’=fD.fx’+fy’=f正确答案:D解析:则仅(D)入选.知识模块:多元函数微积分学4.[2017年] 二元函数z=xy(3-x-y)的极值点为( ).A.(0,0)B.(0,3)C.(3,0)D.(1,1)正确答案:D解析:zy’=y(3-x-y)-xy=y(3-2x-y),zy’=x(3-x-y)-xy=x(3-x-2y),又zxx’=-2y,zxy=3-2x-2y,zyy’=-2x,将选项的值代入可知,只有(D)符合要求,即A=zxx”(1,1)=-2,B=zxy”(1,1)=-1,C=zyy”(1,1)=-2.满足B2-AC=-3<0,且A=-2<0,故点(1,1)为极大值点.仅(D)入选.知识模块:多元函数微积分学5.[2006年] 设f(x,y)与φ(z,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,Y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则fy’(x0,y0)=0B.若fx’(x0,y0)=0,则f’y(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则f’y(x0,y0)≠0正确答案:D解析:解一由拉格朗日乘数法知,若(x0,y0)是f(x,y)在条件φ(x,y)=0下的极值点,则必有fx’(x0,y0)+λφx’(x0,y0)=0,①fx’(x0,y0)+λφx’(x0,y0)=0.②若fx’(x0,y0)≠0,由式①知λ≠0.又由题设有φy’(x0,y0)≠0,再由式②知fy’(x0,y0)≠0.仅(D)入选.解二构造拉格朗日函数F(x,y,λ)=f(x,y)+λφ(x,y),并记对应于极值点(x0,y0)处的参数的值为λ0,则由式③与式④消去λ0得到fx’(x0,y0)/φx’(0,y0)=一λ0=f’y(x0,y0)/φ’y(x0,y0).即f’x(x0,y0)φ’y(x0,y0)一fy’(x0,y0)φx’(x0,y0)=0.整理得若fx’(x0,y0)≠0,则由式③知,φx’(x0,y0)≠0.因而fy’(x0,y0)≠0.仅(D)入选.解三由题设φy’(x,y)≠0知,φ(x,y)=0确定隐函数y=y(x).将其代入f(x,y)中得到f(x,y(x)).此为一元复合函数.在φ(x,y)=0两边对x求导,得到因f(x,y(x))在x=x0处取得极值,由其必要条件得到f’x+fy’y’=fx’+fy’(一φx’/φy’)=0.因而当fx’(x0,y0)≠0时,必有fy’(x0,y0)≠0.仅(D)入选.知识模块:多元函数微积分学填空题6.[2012年] 设连续函数z=f(x,y)满足则dz|(0,1)=__________.正确答案:2dx-dy解析:用函数f(x,y)在(x0,y0)处的微分定义:与所给极限比较易知:z=f(x,y)在点(0,1)处可微,且fx’(0,1)=2,fy’(0,1)=-1,f(0,1)=1,故dz|(0,1)=fx’(0,1)dx+fy’(0,1)dy=2dx-dy.知识模块:多元函数微积分学7.[2009年] 设z=(x+ey)x,则正确答案:2ln2+1解析:解一为简化计算,先将y=0代入z中得到z(x,0)=(x+1)x,z为一元函数.将x=1代入上式,得到解二考虑到z(x,0)=(x+1)x为幂指函数,先取对数再求导数:lnz=xln(x+1).在其两边对x求导,得到则知识模块:多元函数微积分学8.[2007年] 设f(u,v)是二元可微函数,则正确答案:解析:解一设u=y/x,v=x/y.为方便计,下面用“树形图”表示复合层次与过程.由式①一式②得到解二令f1’,f2’分别表示z=f(y/x,x /y)对第1个和第2个中间变量y/x、x/y求导数,则知识模块:多元函数微积分学9.[2004年] 函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则正确答案:解析:令u=xg(y),v=y,由此解出于是知识模块:多元函数微积分学10.[2005年] 设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=_________.正确答案:2edx+(e+2)dy解析:dz=d[xex+y+(x+1)ln(1+y)]=d(xex+y)+d[(x+1)ln(1+y)] =ex+ydx+xex+y(dx+dy)+ln(1+y)dx+[(x+1)/(1+y)]dy.①将x=1,y=0代入上式(其中dz,dx,dy不变),得到dz|(1,0)=edx+e(dx+dy)+2dy=2edx+(e+2)dy.解二利用全微分公式求之.为此,先求出偏导数故解三用定义简化法求之.固定一个变量转化为另一个变量的一元函数求导.由z(x,0)=xex得到由z(1,y)=ey+2ln(1+y)得到故知识模块:多元函数微积分学11.[2006年] 设函数f(u)可微,且f’(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|1,2=___________.正确答案:4dx一2dy解析:解一dz=df(4x2-y2)=f’(u)du=f’(u)d(4x2-y2)=f’(u)(8xdx-2ydy),其中u=4x2-y2.于是dz|1,2=f’(0)(8dx-4dy)=4dx-2dy.解二利用复合函数求导公式和定义简化法求之.由z=f(4x2-y2)得到解三由z=f(4x2-y2)得到于是故dz|1,2=4dx-2dy.知识模块:多元函数微积分学12.[2011年] 设函数则dz|1,1=____________.正确答案:(1+2ln2)(dx—dy)解析:解一所给函数为幂指函数,先在所给方程两边取对数,然后分别对x,y求偏导:由得到则解二先用定义简化法求出然后代入全微分公式求解.故dz|1,1=2(ln2+1/2)dx-2(ln2+1/2)dy=(1+2ln2)(dx-dy).知识模块:多元函数微积分学13.[2015年] 若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz|0,0=_______________.正确答案:解析:在ex+2y+3z+xyz=1①两边分别对x,y求偏导得到同法可得将x=0,y=0代入式①易求得z=0,代入式②、式③分别得到则知识模块:多元函数微积分学14.[2014年] 二次积分正确答案:解析:注意到不易求出,需先交换积分次序,由积分区域的表达式D={(x,y)|y≤x≤1,0≤y≤1)-{(x,y)|0≤y≤x,0≤x≤1}及交换积分次序得到故知识模块:多元函数微积分学解答题解答应写出文字说明、证明过程或演算步骤。
[2006年] 设x>0,y>0.求15.正确答案:涉及知识点:多元函数微积分学16.正确答案:涉及知识点:多元函数微积分学17.[2003年] 设f(u,v)具有二阶连续偏导数,且满足又求正确答案:设则同理,可求得由式①+式②得到涉及知识点:多元函数微积分学18.[2005年] 设f(u)具有二阶连续导数,且g(x,y)=f(y/x)+yf(x/y),求正确答案:由已知条件可得涉及知识点:多元函数微积分学19.[2011年] 已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(x+y,f(x,y)).求正确答案:由题设有因而涉及知识点:多元函数微积分学20.[2002年] 设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程zex -yey=zex所确定,求du.正确答案:解一下面求出dz与dx,dy的关系.由d(xex-yey)-d(zez)得到ex(x+1)dx-ey(1+y)dy=ez(1+z)dz,即代入式①即得解二设F(x,y,z)=xex-yey-zez,则Fx’=(x+1)ex,Fy’=-(y+1)ey,Fz’=-(z+1)ez,涉及知识点:多元函数微积分学[2008年] 设z=z(x,y)是由x2+y2-z=φ(x+y+z)所确定的函数,其中φ具有二阶导数,且φ’≠-1.求:21.dz;正确答案:解一利用一阶全微分形式不变性求之.在x2+y2-z=φ(x+y+z)两边求全微分,得到2xdx+2ydy-dz=φ’(x+y+z)d(x+y+z)=φ’(x+y+z)(dx+dy+dz),(φ’+1)dz=(2x-φ’)dx+(2y-φ’)dy,解二设F(x,y,z)=x2+y2-z-φ(x+y+z),则Fx’=2x-φ’,Fy’=2y-φ’,Fz’=-1-φ’,因而故解三在x2+y2-z=φ(x+y+z)两边对x求导,得到即由对称性即得则涉及知识点:多元函数微积分学22.记求正确答案:由上题式①知,则同法或由u(x,y)的对称性易求得涉及知识点:多元函数微积分学23.[2009年] 求二元函数f(x,y)=x2(2+y2)+ylny的极值.正确答案:令fx’(x,y)=2x(2+y2)=0,fy’(x,y)=2x2y+lny+1=0,得其驻点为(0,1/e).又fxx”=2(2+y2),fyy”=2x2+1/y,fxy”=4xy,因A=fxx”>0 而B2-AC=(fxy”)2-fxx”fyy”<0,故二元函数存在极小值,且f(0,1/e)=-1/e就是它的极小值.涉及知识点:多元函数微积分学24.[2018年] 将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.正确答案:设圆的周长为x,正三角形的周长为y,正方形的周长z,由题设可知x+y+z=2,则目标函数构造拉格朗日函数对参数求导并令导函数为零,则解得此时面积和有最小值,即涉及知识点:多元函数微积分学25.[2010年] 求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.正确答案:解一用拉格朗日乘数法求之.令F(x,y,z)=xy+2yz+λ(x2+y2+z2-10).且令由式①、式③分别得λ=-y/(2x),λ=-y/z,故y/(2x)=y/z,即z=2x.⑤将式⑤代入式②得到5x+2λy=0,即λ=-5x/(2y) (y≠0).⑥由式⑥和λ=-y/(2x)得到λ=-5x/(2y)=-y/(2x),即5x2=y2.⑦将式⑤、式⑦代入式④,得到10x2=10,即x2=1,x=±1.当x=1时,z=2,当x=-1时,z=-2,令y=0,由式②、式④得到x=-2z,4z2+z2=5z2=10.即故也是可能极值点.综上所述,得到可能的极值点有比较u在各点处的值可知,在点处取得最大值,最大值为在点处取得最小值,最小值为故所求函数u的最大值和最小值分别为解二由方程x2+y2+z2=10可确定z是x,y的函数,代入目标函数,得u为x,y的二元函数.令在x2+y2+z2=10两边对x,y求导,得到将其代入上式并联立方程④,有解上述方程组,得到可能的最值点为比较u的各点函数值得到为最大值,为最小值.涉及知识点:多元函数微积分学26.[2006年] 计算二重积分其中D是由直线y=x,y=1,x=0所围成的平面区域.正确答案:解一或解二用极坐标系计算(见图1.4.5.1).涉及知识点:多元函数微积分学。