【高考数学】与球体截面有关的计算问题
2025版高考数学全程一轮复习第七章立体几何与空间向量专题培优课与球有关的切接问题课件

A.
5 3
C.233
B.
6 3
D.
15 3
答案:B
解析:如图所示,设△ABC的中心为O1,则OO1⊥平面ABC, 又O1B⊂平面ABC,故OO1⊥O1B,因为△ABC是边长为2的等边 三角形,所以O1B=23 × 23×2=233,又因为球O的表面积为8π, 所 以 4πR2 = 8π , 解 得 R = 2 , 即 OB = 2 , 所 以 OO1 =
解析:轴截面如图所示,设圆台的高为h,依题意V= 13(4π+36π+12π)h=104π,解得h=6.设O1O=x,则22+ x2=62+(6-x)2,解得x=137,
17
故OOOO12=6−3137=17.故选D.
角度三 定义法
例3 (1)[2024·重庆模拟]已知正四棱锥各棱的长度均为2,其顶点都
高为1的相同的圆锥形成的组合体,设它的体积为V1,它的内切球的
体积为V2,则V1∶V2=( )
A.2∶ 3 B.2 2∶3
答案:D
C.2∶ 2 D. 2∶1
解析:如题图,四边形PAP′B为该几何体的轴截面,
则四边形PAP′B的内切圆的半径即为该几何体内切球的
半径,设内切球的半径为r,由OP=OA=1,得r= 22,
专题培优课 与球有关的切、接问题
【考情分析】 与球有关的切、接问题是高考命题的热点之一,经 常以客观题出现.一般围绕球与柱、锥、台体的内切、外接命题,考 查球的体积与表面积,其关键点是确定球心.
关键能力·题型剖析 题型一 几何体的外接球 角度一 补形法 例1 (1)[2024·山东济宁模拟]如图,在边长为4的正方形ABCD中,点 E,F分别为AB,BC的中点,将△ADE,△BEF,△CDF分别沿DE, EF,DF折起,使A,B,C三点重合于点A′,则三棱锥A′-DEF的外接 球体积为( ) A.8 6π B.6 6π C.4 6π D.2 6π
2024年高考数学一轮复习课件(新高考版) 第7章 §7.2 球的切、接问题[培优课]
![2024年高考数学一轮复习课件(新高考版) 第7章 §7.2 球的切、接问题[培优课]](https://img.taocdn.com/s3/m/bd31667dfd4ffe4733687e21af45b307e871f9ec.png)
思维升华
(1)与球截面有关的解题策略 ①定球心:如果是内切球,球心到切点的距离相等且为半径;如果 是外接球,球心到接点的距离相等且为半径; ②作截面:选准最佳角度作出截面,达到空间问题平面化的目的. (2)正四面体的外接球的半径 R= 46a,内切球的半径 r=126a,其半径 之比 R∶r=3∶1(a 为该正四面体的棱长).
题型二 补形法
例2 (1)(2023·大庆模拟)在正方形ABCD中,E,F分别为线段AB,BC的
中点,连接DE,DF,EF,将△ADE,△CDF,△BEF分别沿DE,DF,
EF折起,使A,B,C三点重合,得到三棱锥O-DEF,则该三棱锥的外
接球半径R与内切球半径r的比值为
A.2 3
√C.2 6
B.4 3 D. 6
跟踪训练 2 (1)在三棱锥 A-BCD 中,侧棱 AB,AC,AD 两两垂直,△ABC,
△ACD,△ADB 的面积分别为 22, 23, 26,则三棱锥 A-BCD 的外接球
的体积为
√A. 6π
B.2 6π
C.3 6π
D.4 6π
在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,将其补成长方体, 两者的外接球是同一个,长方体的体对角线就是球的直径. 设长方体同一顶点处的三条棱长分别为a,b,c, 由题意得 ab= 6,ac= 3,bc= 2, 解得 a= 3,b= 2,c=1, 所以球的直径为 32+ 22+1= 6, 它的半径为 26,球的体积为43π× 263= 6π.
3 3和 4 3 ,其顶点都在同一球面上,则该球的表面积为
√A.100π
B.128π
C.144π
D.192π
由题意,得正三棱台上、下底面的外接圆的半径分别为
球体的外接与内切小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题12球体的外接与内切小题综合考点十年考情(2015-2024)命题趋势考点1直接求球的表面积与体积及相关应用(10年3考)2021·全国新Ⅰ卷、2020·山东卷、2017·上海卷理解、掌握球体的表面积公式和体积公式,熟练掌握不同模型的球体的外接球和内切球的相关计算,会利用(二级)结论快速解题本节内容是新高考卷的常考内容,一般有特殊几何体、墙角问题、对棱相等、侧棱垂直于底面、侧面垂直于底面的外接内切问题,需强化复习.考点2正方体与长方体中的球体切接问题(10年4考)2023·全国甲卷、2020·天津卷、2017·天津卷2016·全国卷、2016·全国卷考点3圆锥与圆柱中的球体切接问题(10年3考)2021·天津卷、2020·全国卷、2017·江苏卷考点4棱锥与棱台中的球体切接问题(10年5考)2023·全国乙卷、2022·全国新Ⅱ卷、2021·全国甲卷、2020·全国卷、2020·全国卷、2019·全国卷考点5球体切接问题中的最值及范围问题(10年5考)2023·全国甲卷、2022·全国乙卷、2022·全国新Ⅰ卷、2018·全国卷、2016·全国卷、2015·全国卷考点01直接求球的表面积与体积及相关应用1.(2021·全国新Ⅰ卷·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%【答案】C【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为:226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.故选:C.2.(2020·山东·高考真题)已知球的直径为2,则该球的体积是.【答案】43π【分析】根据公式即可求解.【详解】解:球的体积为:344133V ππ=⨯⨯=,故答案为:43π3.(2017·上海·高考真题)已知球的体积为36π,则该球主视图的面积等于【答案】9π【详解】由球的体积公式,可得34363r ππ=,则3r =,所以主视图的面积为239S ππ=⨯=.考点02正方体与长方体中的球体切接问题1.(2023·全国甲卷·高考真题)在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有个公共点.【答案】12【分析】根据正方体的对称性,可知球心到各棱距离相等,故可得解.【详解】不妨设正方体棱长为2,EF 中点为O ,取CD ,1CC 中点,G M ,侧面11BB C C 的中心为N ,连接,,,,FG EG OM ON MN ,如图,由题意可知,O 为球心,在正方体中,22222222EF FG EG =++=,即2R =则球心O 到1CC 的距离为2222112OM ON MN =++,所以球O 与棱1CC 相切,球面与棱1CC 只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,所以以EF 为直径的球面与正方体棱的交点总数为12.故答案为:122.(2020·天津·高考真题)若棱长为23)A .12πB .24πC .36πD .144π【答案】C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.3.(2017·天津·高考真题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【答案】92π【详解】设正方体边长为a ,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=.【考点】球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.4.(2016·全国·高考真题)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A .12πB .323πC .8πD .4π【答案】A【详解】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为2412ππ⋅=,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为a 的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别、2a 5.(2016·全国·高考真题)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为.【答案】14π【详解】长方体的体对角线长为球的直径,则2R ==,2R =,则球的表面积为24(142ππ=.考点03圆锥与圆柱中的球体切接问题1.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A .3πB .4πC .9πD .12π【答案】B【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==,所以,1BD =,3AD =,CD AB ⊥ ,则90CAD ACD BCD ACD ∠+∠=∠+∠= ,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CDCD BD=,CD ∴=因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=.故选:B.2.(2020·全国·高考真题)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.【答案】3【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r=⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:r =,其体积:343V r π==.故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.3.(2017·江苏·高考真题)如图,在圆柱O1O2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O 的体积为V2,则12V V的值是【答案】32【详解】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32.点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.考点04棱锥与棱台中的球体切接问题1.(2023·全国乙卷·高考真题)已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =.【答案】2【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解.【详解】如图,将三棱锥S ABC -转化为正三棱柱SMN ABC -,设ABC 的外接圆圆心为1O ,半径为r ,则2sin AB r ACB ==∠,可得r =,设三棱锥S ABC -的外接球球心为O ,连接1,OA OO ,则112,2OA OO SA ==,因为22211OA OO O A =+,即21434SA =+,解得2SA =.故答案为:2.【点睛】方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;(2)若球面上四点P 、A 、B 、C 构成的三条线段PA 、PB 、PC 两两垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R 2=a 2+b 2+c 2求解;(3)正方体的内切球的直径为正方体的棱长;(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.(2022·全国新Ⅱ卷·高考真题)已知正三棱台的高为1,上、下底面边长分别为同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π【答案】A【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r,所以1222r r ==123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =故121d d -=或121d d +=,1=1,解得225R =符合题意,所以球的表面积为24π100πS R ==.故选:A .3.(2021·全国甲卷·高考真题)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .12B .12C .4D .4【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=则ABC ,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以11111332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020·全国·高考真题)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020·全国·高考真题)已知△ABC 且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()AB .32C .1D 【答案】C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===∴球心O 到平面ABC 的距离1d ===.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.6.(2019·全国·高考真题)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===-P ABC 为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆ 为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体一部分,2R =34433R V R =∴=π==π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆ 为边长为2的等边三角形,CF ∴90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴=R ∴=,34433V R ∴=π==,故选D.【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.考点05球体切接问题中的最值及范围问题1.(2023·全国甲卷·高考真题)在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是.【答案】【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长1AC =2R R ''==,故max R =分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG,则MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为综上,R ∈.故答案为:3.(2022·全国乙卷·高考真题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12CD.2【答案】C【分析】方法一:先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】[方法一]:【最优解】基本不等式设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又设四棱锥的高为h ,则22r h 1+=,2123O ABCD V r h -=⋅⋅=≤=当且仅当222r h =即h .故选:C [方法二]:统一变量+基本不等式由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a ,底面所在圆的半径为r,则2r =,所以该四棱锥的高h =,13V a =(当且仅当22142a a =-,即243a =时,等号成立)所以该四棱锥的体积最大时,其高h .故选:C .[方法三]:利用导数求最值由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a ,底面所在圆的半径为r ,则2r =,所以该四棱锥的高h =,13V a =2(02)a t t =<<,V =()322t t f t =-,则()2322t f t t -'=,403t <<,()0f t '>,单调递增,423t <<,()0f t '<,单调递减,所以当43t =时,V 最大,此时h =故选:C.【点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;方法二:消元,实现变量统一,再利用基本不等式求最值;方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.3.(2022·全国新Ⅰ卷·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36π,所以球的半径3R =,[方法一]:导数法设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.[方法二]:基本不等式法由方法一故所以()()()3221224211646122(333333h h h V a h h h h h h h ⎡⎤-++==-=-⨯⨯=⎢⎥⎣⎦当且仅当4h =取到),当32h =时,得a 22min 11327;3324V a h ==⨯=当l =39322h =+=,a ⇒,正四棱锥体积221119816433243V a h ==⨯=<,故该正四棱锥体积的取值范围是2764[,].434.(2018·全国·高考真题)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .【答案】B【详解】分析:作图,D 为MO 与球的交点,点M 为三角形ABC 的中心,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大,然后进行计算可得.详解:如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大此时,OD OB R 4===2334ABC S AB == AB 6∴=,点M 为三角形ABC 的中心2BM 33BE ∴==Rt OMB ∴ 中,有22OM 2OB BM =-=DM OD OM 426∴=+=+=()max 1361833D ABC V -∴=⨯=故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到2BM 233BE ==OM ,进而得到结果,属于较难题型.5.(2016·全国·高考真题)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则该球体积V 的最大值是A .4πB .92πC .6πD .323π【答案】B【详解】试题分析:设的内切圆半径为,则,故球的最大半径为,故选B.考点:球及其性质.6.(2015·全国·高考真题)已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A .36πB .64πC .144πD .256π【答案】C【详解】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和锥体的体积.。
专题7-1 立体几何压轴小题:截面与球(讲+练)-2023年高考数学二轮复习讲练测(全国通用原卷版)

专题7-1立体几何压轴小题;截面与球目录讲高考 (1)题型全归纳 (2)【题型一】截面最值 (2)【题型二】球截面 (3)【题型三】截面综合难题 (3)【题型四】线面垂直型求外接球 (4)【题型五】特殊三角形定球心型 (5)【题型六】定义法列方程计算型求球心 (6)【题型七】内切球 (6)【题型八】棱切球型最值 (8)【题型九】内切球与外切球一体综合 (8)【题型十】球综合 (9)专题训练...........................................................................................................................................................................9讲高考1.江西·高考真题)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC 、DC 分别截于E 、F .如果截面将四面体分为体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别为1S ,2S ,则必有()A .12S S <B .12S S >C .12S S =D .12S S 、的大小不能确定2.(2022·全国·统考高考真题)在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11AC D3.(2022·全国·统考高考真题)已知正三棱台的高为1,上、下底面边长分别为其顶点都在同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π4.(2022·全国·l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]5.(2021·天津·统考高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A .3πB .4πC .9πD .12π6.(2020·全国·统考高考真题)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π题型全归纳【题型一】截面最值【讲题型】例题1..正方体1111ABCD A B C D -为棱长为2,动点P ,Q 分别在棱BC ,1CC 上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP x =,CQ y =,其中x ,[]0,2y ∈,下列命题正确的是_____.(写出所有正确命题的编号)①当0x =时,S 为矩形,其面积最大为4;②当1x y ==时,S 的面积为92;③当1x =,()1,2y ∈时,设S 与棱11C D 的交点为R ,则144RD y =-;④当2y =时,以1B 为顶点,S 为底面的棱锥的体积为定值83. 1.如图,长方体1111ABCD A B C D -中,AB =BC =4,13AA =,M 是线段11D C 的中点,点N 在线段11B C 上,MN ∥BD ,则长方体1111ABCD A B C D -被平面AMN 所截得的截面面积为___________.2.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .【题型二】球截面【讲题型】例题1.在三棱锥A -BCD 中,AB BC CD DA ====∠ADC =∠ABC =90°,平面ABC ⊥平面ACD ,三棱锥A -BCD O 的球面上,E ,F 分别在线段OB ,CD 上运动(端点除外),BE =.当三棱锥E -ACF 的体积最大时,过点F 作球O 的截面,则截面面积的最小值为()A .πBC .3π2D .2π 1.已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.2.在正四棱锥P ABCD -中,已知4PA AB ==,O 为底面ABCD 的中心,以点O 为球心作一半径为3PAB 截该球的截面面积为________.【题型三】截面综合难题例题1.如图,在四棱锥Q EFGH -中,底面是边长为4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为()A .12B .13C .14D .15【练题型】1.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是()A .若12θθ=,则AC BC=B .若12θθ≠,则121tan tan 2θθ⋅=C .θ可能值为6πD .当θ取值最大时,12θθ=2.如图,DE 是边长为6的正三角形ABC 的一条中位线,将△ADE 沿直线DE 翻折至△1A DE ,当三棱锥1A CED -的体积最大时,四棱锥1A BCDE -外接球O 的表面积为______;过EC 的中点M 作球O 的截面,则所得截面圆面积的最小值是______.【题型四】线面垂直型求外接球例题1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,2SA =,若球O16π,则三棱锥S -ABC 的体积的最大值为()A.2B.CD . 1.模板图形原理图122.计算公式2+r r=2sin PC CD R A ⎛⎫= ⎪⎝⎭;其中2【练题型】1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,2SA =,若球O 的表面积为16π,则三棱锥S -ABC 的体积的最大值为()A .332B .3C D .2.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为()A .32πB .2πC .94πD .83π【题型五】特殊三角形定球心型【讲题型】例题1.已知三棱锥底面ABC是边长为2的等边三角形,顶点S 与AB 边中点D 的连线SD 垂直于底面ABC ,且SD =SABC -的外接球半径为()A B C D1.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -A .5πB .6πC .7πD .8π2..在三棱锥-P ABC 中,2,1PA PB AC BC AB PC ======,则三棱锥-P ABC 的外接球的表面积为()A .43πB .4πC .12πD .523π【题型六】定义法列方程计算型求球心【讲题型】例题1.在空间直角坐标系O -xyz 中,四面体ABCD 各顶点坐标分别为()2,2,1A ,()2,1,2B -,()0,2,1C ,()0,0,1D .则该四面体外接球的表面积是___________.1.如图所示几何体ABCDEF ,底面ABCD 为矩形,4AB =,2BC =,△ADE 与△BCF 是等边三角形,EF AB ∥,2AB EF =,则该几何体的外接球的表面积为()A .6πB .12πC .22πD .24π2.直角ABC 中,2AB =,1BC =,D 是斜边AC 上的一动点,沿BD 将ABD △翻折到A BD ' ,使二面角A BD C '--为直二面角,当线段A C '的长度最小时,四面体A BCD '的外接球的表面积为()A .134πB .143πC .133πD .125π【题型七】内切球【讲题型】例题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为()A.3BC.92D.2【讲技巧】椎体的内切球,多采用体积分割法求解。
高考中的球体问题

高考中的球体问题例1球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴∴例222MC +∴2MA 例3 则由ππ43,3433V r V r ==,343πVr =,由,3V a =得3V a =. 322324)43(44V V r S ππππ===球.32322322166)(66V V V a S ====正方体. ∴<2164π <324V π32216V ,即正方体球S S <.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图作轴截面,设球未取出时水面高h PC =,球取出后,水面高x PH = ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为PC AC V ⋅⋅=231π圆锥3233)3(31r r r ππ=⋅=,球取出后水面下降到EF ,水体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水.又球圆锥水V V V -=,则33334391r r x πππ-=,解得r x 315=.例5.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比设R ∴为r 3.例6 而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 例7.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可.解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,.则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r ,233133-=+=+∴r R . 练习:1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是( ) A .16π B .20π C .24π D宽、高分别为2,2,4.的半径R 2四个顶点在同一个球面上,则此球的表面积为) 则正方体内接于球,正方体棱长为3,.设2=6a 2.V 4.四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π 答案:A解析:以PA ,PB ,PC 为棱作长方体,则该长方体的外接球就是三棱锥P -ABC 的外接球,所以球的半径R =2,所以球的表面积是S =4πR 2=16π.图5.过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.解:由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 6.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是(B )A 7.,∠解:89.A1a =A 。
2023年高考数学----球与截面面积问题规律方法与典型例题讲解

2023年高考数学----球与截面面积问题规律方法与典型例题讲解【规律方法】球的截面问题球的截面的性质:①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,PA ⊥平面ABCD ,2PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 【答案】8π9【解析】如图,将四棱锥P -ABCD 补为长方体,则此长方体与四棱锥的外接球均为球O ,则球O 半径r ===.O 位于PC 中点处.因底面ABCD 是矩形,则BC AB ⊥.因PA ⊥平面ABCD ,BC ⊂平面ABCD ,则PA BC ⊥,又PA ⊂平面PAB ,AB ⊂平面PAB ,∩PAAB A =,则BC ⊥平面PAB . 因PB ⊂平面PAB ,则BC PB ⊥.取PB 的中点为F ,则112,OF BC OF BC ==,OF PB ⊥.112PF PB ===. 因2EB PE =,则1233PE PB ==,得13EF PF PE =−=.则在直角三角形OEF 中,OE ===. 当EO 与截面垂直时,截面面积最小,则截面半径为1r ===故截面面积为289ππS ==⎝⎭. 故答案为:8π9例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC −体积的最大值是___________.【答案】15【解析】如图一所示:在圆2O 中,因为点2O 在截面ABC 上的投影H 恰为AC 的中点,且21O H =, 所以ABC 为直角三角形,且90ABC ∠=︒,又因为22O A =, 所以可得AH AC ==设,,AB m BC n ==,则有22212m n AC +==,所以22122m n mn =+≥,所以6mn ≤,当m n =所以132ABC S mn =≤; 如图二所示:因为球1O 的半径为10,16,PQ M =为线段PQ 的中点,所以16O M ==,当12,,M O O 三点共线且为如图所示的位置时,点M 为到平面ABC 的距离最大,即此时三棱锥M ABC −的高h 最大,此时112268115h MO O O O H =++=++=, 所以此时11153151533M ABC ABC V S −=⋅⋅≤⋅⋅=, 即三棱锥M ABC −体积的最大值是15.故答案为:15.例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D −的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.【答案】【解析】如图,过点F 作FP ∥1EF ,连接1B P ,由面面平行的性质可得:四边形1EB PF 为平行四边形,又因为正方体1111ABCD A B C D −的棱长为6,11113C E CD =,点F 是CD 的中点,所以点1BP =,所以PF ==因为平行四边形1EB PF所以1B EFP S == 故答案为:例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D −中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D −所得的截面图形是五边形;②直线11B D 到平面CMN ; ③存在点P ,使得1190B PD ∠=;④1PDD △ 其中所有正确结论的序号是__________.【答案】①③④【解析】对于①,如图直线MN 与1111,C B C D 的延长线分别交于11,M N ,连接11,CM CN 分别交1111,B B D D 于22,M N ,连接22,MM NN ,则五边形22MM CNN 即为所求的截面图形,故①正确;对于②,由题知11//MN B D ,MN ⊂平面CMN ,11B D ⊄平面CMN , 所以11//B D 平面CMN ,所以点1B 到平面CMN 的距离即为直线11B D 到平面CMN 的距离,设点1B 到平面CMN 的距离为h ,由正方体1111ABCD A B C D −的棱长为2可得,3,CM CN MN ===12∆==CMN S所以11133B CMN CMN V S h h −=⋅==, 111111123323C B MN B MN V S CC −=⋅=⨯⨯=,所以由11−−=B CMN C B MN V V ,可得h所以直线11B D 到平面CMN 对于③,如图建立空间直角坐标系,则11(2,0,2),(0,2,2),(2,2,0),(1,0,2)B D C M , 设,01PC MC λλ=≤≤,所以(1,2,2)==−PC MC λλ,又因为11(2,0,2),(0,2,2),(2,2,0),(1,0,2)B D C M , 所以(2,22,2)−−P λλλ,所以11(,22,22),(2,2,22)=−−=−−PB PD λλλλλλ,假设存在点P 使得1190︒∠=B PD , 所以211(2)2(22)(22)0⋅=−+−+−=PB PD λλλλλ, 整理得291440λλ−+=,所以1λ>(舍去),或λ 所以存在点P 使得1190︒∠=B PD ,故③正确;对于④,由③知(2,22,2)−−P λλλ,所以点(2,22,2)−−P λλλ在1DD 的射影为(0,2,2)λ,所以点(2,22,2)−−P λλλ到1DD 的距离为=d当2=5λ时,min d =所以1PDD △面积的最小值是122⨯= 故答案为:①③④。
高三数学复习---球的切、接、截面问题(有答案)
数学复习---球的切、接、截面问题(附参考答案)一.选择题(共16小题)..2.(2014•宝鸡三模)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则这个球的表面积是()D.3.(2014•锦州一模)一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为()D4.(2014•西藏一模)三棱锥S﹣ABC的顶点都在同一球面上,且,则该球的体积为.C5.(2014•临汾模拟)三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,π6.(2014•沈阳模拟)四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,7.(2013•辽宁)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,.C D.8.(2013•河池模拟)将长宽分别为3和4的长方形ABCD沿对角线AC折起直二面角,得到四面体A﹣BCD,则9.(2013•黄梅县模拟)已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的.C D.10.(2013•郑州一模)在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为、、,则该三棱锥外接球的表面积为()11.(2013•河池模拟)一个四面体A﹣BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的D.12.(2012•南宁模拟)已知Rt△ABC的顶点都在半径为4的球O面上,且AB=3,BC=2,∠ABC=,则棱锥O .C D.13.在正四棱锥S﹣ABCD中,侧面与底面所成角为,则它的外接球的半径R与内径球半径r的比值为()C.14.已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,,则三棱锥S﹣.C D15.(2014•安阳一模)如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为().D16.(2011•琼海一模)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=.C D.二.填空题(共8小题)17.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于_________.18.(2014•江西模拟)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为_________.19.(2014•呼伦贝尔二模)设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是_________.20.(2014•河南模拟)已知四棱锥P﹣ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则等于_________.21.(2012•辽宁)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为_________.22.(2009•湖南)在半径为13的球面上有A,B,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC的距离为_________;(2)过A,B两点的大圆面与平面ABC所成二面角为(锐角)的正切值为_________.23.正三棱锥P﹣ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为2,则正三棱锥的底面边长是_________.24.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r=_________.截面问题一.填空题(共8小题)1.过正三棱锥一侧棱及其半径为R的外接球的球心O所作截面如图,则它的侧面三角形的面积是__.2.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为_________(只填写序号).3.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是_________.4.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为_________.5.(2012•桂林模拟)如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为_________.6.已知正方体ABCD﹣A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是_________.7.已知空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,其截面圆心分别为M,N,则线段|MN|的长度最大值为_________.8.球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O的截面,球心O到截面的距离为4,则该球的体积为_________.9.(2014•上海二模)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?2015年高三数学复习---球的切接问题组参考答案与试题解析一.选择题(共16小题)..)R=).2.(2014•宝鸡三模)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则这个球的表面积是()D.r=,球的表面积.3.(2014•锦州一模)一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为()D它的对角线的长为球的直径:,球的半径为:4.(2014•西藏一模)三棱锥S﹣ABC的顶点都在同一球面上,且,则该球的体积为.C解:由题意所以球的体积为:5.(2014•临汾模拟)三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,π.=2所求球的体积为:2=326.(2014•沈阳模拟)四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,,正方体的对角线长为:6=67.(2013•辽宁)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,.C D.所以球的半径为:8.(2013•河池模拟)将长宽分别为3和4的长方形ABCD沿对角线AC折起直二面角,得到四面体A﹣BCD,则AC=×=259.(2013•黄梅县模拟)已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的.C D.=,E==2=3的半径为10.(2013•郑州一模)在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为、、,则该三棱锥外接球的表面积为()的面积分别为、,,,,AD=∴半径为=611.(2013•河池模拟)一个四面体A﹣BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的表面积为()D.=5R=12.(2012•南宁模拟)已知Rt△ABC的顶点都在半径为4的球O面上,且AB=3,BC=2,∠ABC=,则棱锥O .C D.,∴AC==的体积为=13.在正四棱锥S﹣ABCD中,侧面与底面所成角为,则它的外接球的半径R与内径球半径r的比值为()C.,设出正四棱锥的底面边长,求出斜高,侧棱长,求出内切球的半径与解:由于侧面与底面所成角为)R=所以两者的比为:14.已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,,则三棱锥S﹣.C D的半径为,cosA==215.(2014•安阳一模)如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为().D,球的半径为:;所以球的体积为:=16.(2011•琼海一模)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=.C D.正六棱柱的体积为,则,得极值点二.填空题(共8小题)17.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.易得球半径18.(2014•江西模拟)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为4π.R=点的截面到球心的最大距离为,再利用球的截面圆性质可∴正方体的棱长为,解得r=19.(2014•呼伦贝尔二模)设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是8.=AC=20.(2014•河南模拟)已知四棱锥P﹣ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则等于.外接圆的半径是AO=PO==∴四棱锥的外接球的半径为:R==故答案为:21.(2012•辽宁)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为.的半径为V=S h=PC=××2=22=×=的距离为﹣22.(2009•湖南)在半径为13的球面上有A,B,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC的距离为12;(2)过A,B两点的大圆面与平面ABC所成二面角为(锐角)的正切值为3.OED==323.正三棱锥P﹣ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为2,则正三棱锥的底面边长是3.PF=,底面三角形的高为:24.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r=.EF=ED=×==,R=故答案为:参考答案与试题解析一.填空题(共8小题)1.过正三棱锥一侧棱及其半径为R的外接球的球心O所作截面如图,则它的侧面三角形的面积是.则正三角形的高为,边长为RR=•R R=2.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为①②③(只填写序号).3.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是.,故答案为:4.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为.R=SD==×故答案为:5.(2012•桂林模拟)如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为.,π××.6.已知正方体ABCD﹣A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是(2).7.已知空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,其截面圆心分别为M,N,则线段|MN|的长度最大值为.OM===4的最大距离为:故答案为:8.球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O的截面,球心O到截面的距离为4,则该球的体积为.R=求出球2r=R=V=,故答案为:二.解答题(共1小题)9.(2014•上海二模)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?AC= ==即圆锥内的水深是。
高考数学复习第8章立体几何专题研究球与几何体的切接问题理市赛课公开课一等奖省优质课获奖课件
16R3 A. 81
64R3 C. 81
32R3 B. 81 D.R3
10/38
【解析】 如图,记 O 为正四棱锥 P- ABCD 外接球的球心,O1 为底面 ABCD 的中 心,则 P,O,O1 三点共线,连接 PO1,OA, O1A.
设 OO1=x,则 O1A= R2-x2,AB= 2· R2-x2,PO1=R+x,所以正四棱锥 P -ABCD 的体积 V=13AB2×PO1=13×2(R2-x2)(R+x)=23(-x3- Rx2+R2x+R3),求导:V′=23(-3x2-2Rx+R2)=-23(x+R)(3x -R),当 x=R3时,体积 V 有最大值6841R3,故选 C.
A.4π
9π B. 2
C.6π
32π D. 3
31/38
【解析】 由题意可得若V最大,则球与直三棱柱的部分面
相切,若与三个侧面都相切,可求得球的半径为2,球的直径为
4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底
面相切,此时球的半径R=
3 2
,此时的体积最大,Vmax=
4 3
πR3=
4π3 ×287=9π2 .
【答案】 A
38/38
【答案】 C
11/38
★状元笔记★ 锥体的外接球问题关键是确定球心位置: (1)将锥体还原或补形为正方体或长方体,进而确定球心; (2)锥体的外接球球心一定在过底面的外心与底面垂直的直 线上; (3)球心到各顶点的距离都相等; (4)球心一定在外接球的直径上!
12/38
思考题 1 (1)(2018·江西宜春模拟)一个几何体的三视图 如图所示,则该几何体的外接球的表面积为( )
V=-
2a3+2a2 在(0,232)上是增函数,在(232,
立体几何中的截面问题及球的切接问题--备战2022年高考数学一轮复习配套(创新设计版)
(2)(2020·名校仿真训练五)棱长为 2 的正方体 ABCD-A1B1C1D1 中,E,F 分别 为棱 C1D1 与 C1B1 的中点,则经过点 B,E,F 的平面截正方体所得的封闭图
形的面积为( A )
A.92 B.3 10 C.32 D. 10 解析 (2)
如图,经过点 B,E,F 的平面 BEF 截正方体所得截面为四边形 BDEF, 因为 E,F 分别是 C1D1,C1B1 的中点,正方体的棱长为 2, 所以 EF∥BD,且 EF=12BD, 所以四边形 BDEF 是下底为 BD=2 2,上底为 EF= 2的等腰梯形.
|OM|
23
解得|ON|= 3,
则圆 N 的半径 r= 42-( 3)2= 13,圆 N 的面积为πr2=13π,故选 D.
感悟升华
此类题主要考查空间想象能力及空间几何体的结构特征,解题时可寻找特 殊情况使问题得到简化.
【训练 1】 (1)已知圆柱的上、下底面的中心分别为 O1,O2,过直线 O1O2 的平
2.构造正方体、长方体、直棱柱等用上述结论确定外接球的球心 (1)同一个顶点上的三条棱两两垂直的四面体,求其外接球问题可构造正 方体或长方体. (2)相对的棱长相等的三棱锥,求其外接球问题可构造正方体或长方体.
【训练 2】(1)一个四面体的所有棱长都为 2,四个顶点在同一球面上,则此球的
表面积为( A )
感悟升华
求内切球的半径常用等积法 (1)正多面体内切球的球心与其外接球的球心重合,内切球的半径为球心 到多面体任一面的距离. (2)正棱锥的内切球与外接球的球心都在其高线上,但不一定重合.
【训练 3】 (1)(2020·全国Ⅲ卷)已知圆锥的底面半径为 1,母线长为 3,则该圆
高考数学复习考点题型专题讲解 题型47 球体与几何体(解析版)
高考数学复习考点题型专题讲解题型:球体与几何体【高考题型一】:多面体的外接球体。
【题型1】:长方体的外接球体。
『解题策略』:球的直径是长方体的体对角线:R =2222c b a ++(c b a ,,为三条棱长)。
特例:正方体外接球体:R =a 23(a 为棱长)。
1.(2010年新课标全国卷)设长方体的长、宽、高分别为2,,,a a a 其顶点都在一个球面上,则该球的表面积为 ( )A.23a πB.26a πC.212a πD.242a π【解析】:()a a a a R =++=22222,选B 。
2.(2017年新课标全国卷II)长方体的长、宽、高分别为3、2、1,其顶点都在球O 的球面上,则球O 的表面积为 。
【解析】:2142123122=++=R ,ππ1442==R S 。
3.(高考题)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.332πB.π4C.π2D.34π 【解析】:()12211222=++=R ,选D 。
【题型2】:直角三棱锥的外接球体。
『解题策略』:R =2222c b a ++(c b a ,,为三条直角棱长),还原后为长方体,即长方体的外接球体。
1.(2012年辽宁卷)已知正三棱锥P-ABC ,点P 、A 、B 、C 都在半径为3的球面上,若PA 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离为 。
【解析】:323==a R ,2=a ,球心到截面ABC 的距离为球的半径减去正三棱锥P-ABC 在面ABC 上的高,可求得正三棱锥P-ABC 在面ABC 上的高为体对角线的31,23所以球心到截面ABC =2.(高考题)若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是 。
【解析】:23323=⨯=R ,π9=S 。
【题型3】:阳马的外接球体。
『解题策略』:阳马:四棱锥ABCD P -,ABCD PA ⊥,底面是矩形,其还原为长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与球体截面有关的计算问题
【母题来源一】【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为
A. 64π
B. 48π
C. 36π
D. 32π
【母题来源二】【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,
P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°
,则球O 的体积为
A .
B .
C .
D
【命题意图】
高考对本部分内容重点考查球的几何性质及体积与表面积的计算.考查直观想象、数学运算和逻辑推理的核心素养.
【命题规律】
本部分是高考考查的重点内容,考查的主要角度有两种:一是由球体截面的性质计算体积与表面积;二是球与多面体的切与接问题.命题形式以选择题与填空题为主,涉及空间几何体的结构特征、三视图等内容,要求考生要有较强的空间想象能力和计算能力,能用转化与化归的思想解题.
【答题模板】
解答本类题目,一般考虑如下三步:
第一步:确定球心;
第二步:运用球体的性质求出球的半径;
第三步:根据公式计算.
【方法总结】
1.解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.
2.记住几个常用的结论:
(1)正方体的棱长为a ,球的半径为R .
①对于正方体的外接球,2R ;②对于正方体的内切球,2R =a ;
③对于球与正方体的各棱相切,2R .
(2)在长方体的同一顶点的三条棱长分别为a ,b ,c ,球的半径为R ,则2R =(3)正四面体的外接球与内切球的半径之比为3∶1.
3.构造法在定几何体外接球球心中的应用
(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;
(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;
(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;
(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.
【好题训练】
1.【2020广西南宁高三三模】已知过球面上三点,,A B C 的截面到球心距离等于球半径的一半,且ABC 是边长为6的等边三角形,则球表面积为
A .42π
B .48π
C .64π
D .60π 2.【2020安徽合肥一六八中学高三模拟】球面上有三点,,A B C 组成这个球的一个截面的内接三角形的三个顶点,其中18AB =,24BC =,30AC =,球心到这个截面的距离为球半径的一半,则该球的表面积为 A .1200π B .1400π C .1600π D .1800π
3.【2020广东佛山高三调研】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为
A .3500cm 3π
B .3866cm 3π
C .31372cm 3π
D .32048cm 3
π 4.【2020重庆八中高三三模】用一根长为18cm 的铁丝围成正三角形框架,其顶点为,,A B C ,将半径为2cm 的球放置在这个框架上(如图).若M 是球上任意一点,则四面体MABC 体积的最大值为
A .34cm
B 3
C .3
D .3
5.【2020湖北宜昌高三二模】已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为
A .3π
B .23π
C .π
D .43
π 6.【2020湖南省长郡中学高三模拟】已知长方体1111ABCD A B C D -各个顶点都在球面上,8AB AD ==,16AA =,过棱AB 作该球的截面,则当截面面积最小时,球心到截面的距离为
A .3
B .4
C .5
D .6
7.【2020四川南充高三三模】已知圆锥1SO 的顶点和底面圆周均在球O 的球面上,且该圆锥的高为8,母线12SA =,点B 在SA 上,且3SB BA =,则过点B 的平面被该球O 截得的截面面积的最小值为 A .27π B .36π C .54π D .81π
8.【2020福建泉州高三调研】在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为6的正方形,点E 在线段AD 上,且满足2AE ED =,过点E 作直四棱柱1111ABCD A B C D -外接球的截面,所得的截面面积的最大值与最小值之差为19π,则直四棱柱1111ABCD A B C D -外接球的半径为
A B .C .D .9.【2020山西师大附中高三质检】设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面,αβ
截球O 的两个截面圆的半分别为1l αβ--的平面角为150︒,则球O 的表面积为 A .112π B .28π C .16π D .4π
10.【2020广东惠州高三三模】已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,该四棱锥的五个面所在的平面截球面所得的圆大小相同,若正四棱锥P ABCD -的高为2,则球O 的表面积为 A .8π B .9π C .12π D .16π。