模糊层次分析法的程序实现
模糊层次分析法讲解

决策
根据总排序结果,进行决策分析,得出最优 方案。
04
模糊层次分析法的优缺点
优点
处理不确定性和模糊性
简化决策过程
模糊层次分析法能够处理传统层次分析法 无法处理的模糊性和不确定性,使决策过 程更加贴近实际情况。
通过将复杂的决策问题分解为多个层次和 因素,模糊层次分析法能够简化决策过程 ,提高决策效率。
案例二:企业战略决策制定
总结词
企业战略决策制定
详细描述
在企业战略决策制定中,模糊层次分析法可以用于评估 企业的竞争地位、市场机会和风险,以及制定相应的战 略措施,帮助企业做出科学合理的战略决策。
案例三:投资项目风险评估
总结词
投资项目风险评估
详细描述
模糊层次分析法在投资项目风险评估中,可以综合考虑 项目的各种风险因素,如市场风险、技术风险、财务风 险等,对投资项目进行风险评估,为投资者提供科学的 风险管理建议。
考虑因素间的相对重要性
易于理解和操作
模糊层次分析法能够考虑各因素间的相对 重要性,从而更准确地反映实际情况。
模糊层次分析法的原理和操作过程相对简 单,易于理解和掌握,降低了决策者的认 知负担。
缺点
主观性较强 模糊层次分析法在确定因素权重 和评价矩阵时具有较强的主观性, 不同决策者可能会得出不同的结 论。
模糊集合与隶属度函数
模糊集合
模糊集合是用来描述模糊性概念的集 合,其成员的隶属程度可以是介于0 和1之间的任意值。
隶属度函数
隶属度函数是用来确定某个元素属于 某个模糊集合的程度的函数,其值域 为[0,1]。
模糊关系与模糊矩阵
模糊关系
模糊关系描述了不同模糊集合之间的关联程度,可以用模糊矩阵来表示。
层次分析法及模糊综合评价

为残缺元素
Cw w
3, w (0.5714,0.2857,0.1429)T
Aw w
2 2 0 A 1/ 2 1 2
0 1/ 2 2
aij , i j, aij
aij 0,
i j, aij
mi 1, i j
mi~A第i 行 中的个数
6. 更复杂的层次结构 • 递阶层次结构:层内各元素独立,无相互影响和 支配;层间自上而下、逐层传递,无反馈和循环。 • 更复杂的层次结构:层内各元素间存在相互影响 或支配;层间存在反馈或循环。
• 精确计算的复杂和不必要
• 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。
和法——取列向量的算术平均
1 2 例 A 1/ 2 1
6 列向量 0.6 0.615 0.545 0.364 平均 0.324 w
为 A 的 截集,其中, 叫置信水平。
模糊综合评价
什么是事物的模糊性? 指客观事物在中介过渡时所呈现的“亦此亦彼性”。
(1)清晰的事物——每个概念的内涵(内在涵义或本质属性) 和外延(符合本概念的全体)都必须是清楚的、不变的,每个 概念非真即假,有一条截然分明的界线,如男、女。
(2)模糊性事物——由于人未认识,或有所认识但信息不够丰富, 使其模糊性不可忽略。它是一种没有绝对明确的外延的事物。 如美与丑等。人们对颜色、气味、滋味、声音、容貌、冷暖、 深浅等的认识就是模糊的。
定理1 正矩阵A 的最大特征根是正单根,对应
正特征向量w,且
lim
k
Ak e eT Ake
w,
e (1,1,,1)T
正互反阵的最大特征根是正数, 特征向量是正向量。
模糊层次分析法

模糊层次分析法模糊层次分析法是一种多变量决策分析方法,旨在帮助决策者在复杂的决策问题中做出合理的选择。
与传统的层次分析法相比,模糊层次分析法能够处理不确定性、模糊性和主观性的问题,因此在实际应用中具有很高的灵活性和适应性。
模糊层次分析法的核心思想是将问题拆解为不同的层次结构,分别从不同角度对问题的因素进行评价和排序。
具体来说,模糊层次分析法包括以下几个步骤:定义目标层、准则层和方案层,建立层次结构模型;构建模糊层次判断矩阵,利用专家经验和模糊数学的方法对层次结构中的评价指标进行两两比较,得到判断矩阵;计算模糊一致性指标,判断判断矩阵的一致性程度;通过模糊层次权重计算方法将判断矩阵转化为权重向量,评估和排序方案。
首先,模糊层次分析法要明确问题的目标。
目标层是决策问题的最高层,是整个层次结构的根节点。
目标层定义了决策问题的目标和愿景,可以是一个具体的指标,也可以是一项重要的战略目标。
例如,对于一个公司来说,提高市场份额、提升产品质量和降低成本可能是目标层的几个重要目标。
其次,确定准则层。
准则层是指对于实现目标所需要的关键因素或评价标准。
准则层的每个因素都与目标层直接相关,通过对准则的评估和排序可以帮助决策者识别出最为关键的因素。
在确定准则层时,应该考虑因素之间的相互关联性和重要性。
最后,定义方案层。
方案层是指为实现目标而采取的具体措施或方案。
一般情况下,方案层是决策问题的最低层。
在定义方案层时,应该考虑到各个方案之间的可行性、资源需求和可能的风险。
在模糊层次分析法中,决策者需要对准则层和方案层中的因素进行两两比较,构建模糊判断矩阵。
模糊判断矩阵是用来描述不确定和模糊的评价值的,可以通过专家判断、模糊数学方法和模糊逻辑推理进行计算和推断。
模糊判断矩阵的元素通常采用模糊数表示,模糊数由隶属函数和隶属度组合而成。
在模糊层次分析法中,为了判断判断矩阵的一致性程度,需要计算模糊一致性指标。
模糊一致性指标能够量化判断矩阵的一致性程度,判断决策者所提供的判断是否存在矛盾和不一致的情况。
层次分析法模糊综合评价法操作流程

层次分析法模糊综合评价法操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!层次分析法与模糊综合评价法的操作流程解析层次分析法(Analytic Hierarchy Process,AHP)和模糊综合评价法是决策分析中常用的方法,它们在处理复杂、多因素的问题时具有显著优势。
模糊层次分析法

模糊层次分析法模糊层次分析法(Fuzzy Analytic Hierarchy Process,简称FAHP)是一种用于多标准决策的数学方法。
它结合了模糊逻辑和层次分析法(Analytic Hierarchy Process,简称AHP)的思想,能够处理模糊性和不确定性的问题。
FAHP在工程管理、经济决策、环境评估等领域具有广泛的应用。
FAHP的核心思想是将问题分解为多个层次,并对每个层次的因素进行比较和权重分配。
在FAHP中,通过模糊数来表示专家的判断和评价,并利用模糊数之间的运算进行计算。
模糊数是由一个值和一个隶属度函数组成的,可以用来表示各种可能性和不确定性。
FAHP的步骤包括:问题的层次划分、建立模糊判断矩阵、确定权重、计算总权重和一致性检验。
首先,将问题按照层次结构进行划分。
层次结构是由一系列目标、准则和方案组成的,目标是最终要达到的结果,准则是用于评价和选择方案的标准,方案是可供选择的备选方案。
然后,根据专家判断和评价,建立模糊判断矩阵。
模糊判断矩阵是由模糊数填充的矩阵,用于表示各个层次之间的相对重要性。
模糊判断矩阵的元素可以通过专家评价或统计数据得出。
接下来,确定权重。
根据模糊判断矩阵,可以计算得出每个层次因素的权重。
权重的计算可以利用模糊综合评判法,将模糊数进行聚合。
然后,计算总权重。
将各个层次因素的权重进行组合,得出各个方案的总权重。
最后,进行一致性检验。
通过计算一致性指标来判断判断矩阵的一致性。
一致性指标的计算可以利用随机一致性指标进行。
FAHP的优点是能够处理模糊性和不确定性,对专家判断和评价有较好的灵活性。
它还能够结合多个层次因素进行权衡,提高决策的科学性和准确性。
总之,FAHP是一种多标准决策方法,能够应对复杂的决策问题。
它的核心思想是将问题分解为多个层次,通过模糊数的运算进行计算和评估。
FAHP在实际应用中具有广泛的应用前景,可以帮助决策者做出科学、准确的决策。
模糊层次分析方法

上述两相邻判断的中值
因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
设要比较各准则C1,C2,… , Cn对目标O的重要性
C :C a
i
j
ij
A (aij )nn , aij 0, a ji
CI2
CI 500
1
2 500
500
n
500
n 1
Saaty的结果如下
随机一致性指标 RI
n 1 2 3 4 5 6 7 8 9 10 11 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
定义一致性比率 : CR CI
最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。 对于相邻的两层,称高层为目标层,低层为因
素层。 下面举例说明。
例1 大学毕业生就业选择问题 获得大学毕业学位的毕业生,在“双向选择”时,
模糊层次分析法

模糊层次分析法模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)是一种多准则决策方法,用于处理模糊和不确定性问题。
它是将层次分析法(Analytic Hierarchy Process,AHP)与模糊集合理论相结合的一种扩展方法。
本文将介绍模糊层次分析法的原理、应用领域以及具体案例,以帮助读者更好地了解和使用该方法。
首先,让我们来了解模糊集合理论。
模糊集合是一种介于完全隶属和完全不隶属之间的集合,其中元素的隶属度是一个介于0和1之间的实数。
模糊集合可以用来表示模糊和不确定性信息,对于处理多准则决策问题非常有用。
模糊层次分析法是在AHP的基础上引入了模糊集合的概念来处理问题中的模糊和不确定性信息。
与AHP类似,FAHP也是通过构建层次结构来描述决策问题,并进行两两比较来确定各层级的权重。
但是,与AHP不同的是,FAHP将判断矩阵中的元素从精确值转换为模糊值,以考虑到问题中的不确定性。
在使用FAHP进行决策时,首先需要确定层次结构,并确定每个层级的准则或因素。
然后,利用专家判断或实证数据来进行两两比较,得到判断矩阵。
接下来,需要将判断矩阵的元素从精确值转换为模糊值,以反映不确定性。
这可以通过专家的模糊众数判断或基于实证数据的模糊众数估计来实现。
一旦得到模糊判断矩阵,就可以计算各层级的权重。
这可以通过求解带模糊判断矩阵的特征向量来实现。
在计算权重时,需要考虑到模糊判断矩阵的不确定性,通常使用最大-最小模糊集合运算来求解特征向量。
模糊层次分析法在很多领域都有广泛的应用。
例如,在工程项目选择中,可以使用FAHP来确定各个候选项目的权重,以便选择最合适的项目。
在供应链管理中,可以使用FAHP来评估供应商的绩效,并确定最佳供应商。
在环境评价中,可以使用FAHP来评估不同因素对环境影响的程度,并确定最佳的环境保护措施。
以一个简单的案例来说明FAHP的应用。
假设一个公司需要选择最佳的广告渠道,以促进产品销售。
模糊层次分析法(FAHP)

则应有 若
即 比 重要 则
有
另一方面
是 比 相对重要的一个度量 再加上 自身比较重要性的度量为 则可得 比
绝对重要的度量 即
也即
应是模糊一致矩阵
综上所述 以及模糊一致矩阵的性质知 用模糊一致矩阵
上的模糊关系 比 重要得多 是合理的
表示因素间两两重要性比较的模糊一致矩阵 同表示因素重要程度权重之间的关系
未知数
个方程 解此方程组还不能确定唯
故将此式加到方程组 中可得到含有
个方程
模糊系统与数学
年
解此方程组即可求得权重向量
结论
模糊层次分析法同普通层次分析法相比具有以下优点
用本文给出的定理 或定理 检验模糊矩阵是否具有一致性较通过计算判
断矩阵的最大特征根及其对应特征向量检验判断矩阵是否具有一致性更容易
用本文给出的方法调整模糊矩阵的元素可很快使模糊不一致矩阵具有模糊一致
故
即
具有如下形式
简记为
由
有
令
有
再由
及上式 有
第期
即 又
张吉军 模糊层次分析法
故要使
事实上 因为 也应成立 此时 有
对一切 对一切
成立 必有 成立 特别地 对
故 对一切
成立 再因
次多项式最多有
个根知
从而必有
于是有
及
由
及
有
当
时
所以 是元素 和 重要程度差异
的
度量单位 它的大小直接反映了决策者的意志趋向 越大表明决策者非常重视元素间重
性 克服了普通层次分析法要经过若干次调整 检验 再调整 再检验才能使判断矩阵具有
一致性的缺点
用定理 或定理 作为检验模糊矩阵是否具有一致性的标准较检验判断矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、模糊层次分析法的程序实现
给出模糊层次分析法的Matlab程序。
clear;
clc;
E=input('输入计算精度e:')
Max=input('输入最大迭代次数Max:')
F=input('输入优先关系矩阵F:');
%计算模糊一致矩阵
N=size(F);
r=sum(F');
for i=1:N(1)
for j=1:N(2)
R(i,j)=(r(i)-r(j))/(2*N(1))+0.5;
end
end
E=R./R';
% 计算初始向量----------
% W=sum(R')./sum(sum(R)); % 和行归一法
%---------------------------------------------------------
for i=1:N(1)
S(i)=R(i,1);
for j=2:N(2)
S(i)=S(i)*R(i,j);
end
end
S=S^(1/N(1));
W = S./sum(S);%方根法%-------------------------------------------------------- % a=input('参数a=?');
%W=sum(R')/(N(1)*a)-1/(2*a)+1/N(1); %排序法
% 利用幂法计算排序向量----V(:,1)=W'/max(abs(W)); %归一化
for i=1:Max
V(:,i+1)=E*V(:,i);
V(:,i+1)=V(:,i+1)/max(abs(V(:,i+1)));
if max(abs(V(:,i+1)-V(:,i)))k=i;
A=V(:,i+1)./sum(V(:,i+1));
break
Else
End
End
四、计算实例
由优先关系矩阵得到模糊一致矩阵
利用三种方法计算排序向量分别为:
五、结束语
模糊层次分析法广泛应用于许多领域,解决了判断矩阵的一致性与人类思维一致性的差异问题,同时还得到了计算精度较高的且与实际情况较吻合的排序向量,但是模糊一致矩阵的转换和排序向量的求解计算复杂,工作量大,本文运用Matlab程序实现了该方法,能够方便的解决方法的计算问题。