影响PDC钻头技术性能指标的因素
浅谈聚晶金刚石复合片(PDC)钻头失效的原因及解决对策2

二、钻头失效原因及对策聚晶金刚石复合片具有一些特殊的性能比如:(1)硬度极高。
聚晶金刚石复合片是目前人造材料中最硬的,硬度大约为10000HV左右,甚至其硬度比硬质合金都要高很多;(2)耐磨性很高;(3)热稳定性好;在聚晶金刚石复合片钻头的工作环境中,井底环境较为复杂,另外钻进过程中会产生并累积大量的热量,热量累积过多的时候就会影响钻头使用。
(4)抗冲击能力好。
聚晶金刚石复合片抗冲击以及韧性、粘结强度是一个综合性能指标,很大程度上决定聚晶金刚石复合片钻头使用效果。
钻头失效一般有以下磨损。
1、平滑磨损PDC切削齿的平滑磨损的特征是磨损面宏观上表现为较为平整,其金刚石层和WC基托均在切削过程中被磨损而形成磨损平面。
在切削过程中,因为WC硬度要比金刚石低,所以WC基托会最早遭受磨损,一旦WC基托被磨损之后临近WC基托的金刚石就失去了有效支撑,容易形成唇边. 在唇边生成之后又在频繁的切削力作用下,唇边承受着拉应力,并导致拉应力裂纹出现并逐渐扩展,最终唇边断裂,唇边破裂之后会导致未破裂的金刚石层与岩石接触面积减少,承受应力更大,恶性循环之后又加速导致金刚石片的破裂,一旦金刚石片整个接触面均遭到破坏,就又会造成基托重新有效地接触岩石,平滑磨损过程是缓慢的,属正常的失效形式。
由于唇边的出现,容易使单位面积的切削力增大,而形成自锐效应。
自锐效应有利于保持钻头的有效切削能力。
2、微断屑微断屑的具体表现为金刚石片近似地沿切削方向形成微尺度的片状断裂,微断屑常常在钻头工作一定时间之后发生,由于钻头工作时,承受的负荷的交替变化以及表面局部的高温与冷却的交替,同时承受机械疲劳与冷热疲劳的作用,到达一定程度之后就会导致裂纹的产生,继而会扩展导致微断屑断裂。
3、宏观破裂表现为大尺寸的金刚石层的破断,钻头在钻进过程中会有很多情况,在遇到硬质岩石或者岩层岩性变化很大的时候,钻头容易受到较大的冲击负荷,其中尤其是PDC切削齿与岩石接触面较小时,容易造成切削齿在短时间内承受超负荷而导致发生大尺度的宏观破裂,导致钻头的报废.通过研究和总结我们可以得出,不止以上原因,当井底刚性物比如破损的钻头等没有及时清理的情况下,也会造成工作中的钻头受到冲击,使钻头发生宏观断裂. 通过研究我们得出,在工作中保持稳定的钻压,钻速,尽力避免大的冲击,也是减少发生宏观破裂的措施.4、剥离由于钻头是由不同的材料构成,一旦金刚石层与碳化钨基托的粘接破坏就容易造成剥离. 剥离现象出现之后就会使刃口不复存在之后失去切削能力。
PDC钻头工作原理及相关特点

第二章 PDC 钻头工作原理及相关特点PDC 钻头是依靠安装在钻头体上的切削齿切削地层的,这些切削齿有复合片切削齿和齿柱式两种结构,它们的结构以及在钻头上的安装方式如图1-2所示。
复合片式切削齿是将复合片直接焊接在钻头体上预留的凹槽内而形成的。
它一般用于胎体钻头;齿柱式切削齿是将复合片焊接在碳化钨齿柱上而形成的,安装时将其齿柱镶嵌或焊接在钻头体上的齿空内,它一般用于钢体钻头,也有用于胎体钻头的。
复合片(即聚晶金刚石复合片)是切削齿的核心。
复合片一般为圆片状,其结构如图1-3所示,它是由人造聚晶金刚石薄层及碳化钨底层组成,具有高强度、高硬度及高耐磨性,可耐温度750℃。
人们早就从实验中发现,岩石的诸力学强度中,抗拉强度最低,剪切强度次之,而抗压强度最高,抗压强度往往比剪切强度高数倍至十多倍。
显然采用剪切方式破碎岩石比用压碎方式要容易而有效的多。
PDC 钻头的复合片切削结构正是利用了岩石这一力学特性,采用高效的剪切方式来破碎岩石,从而达到了快速钻井的(a) 复合片式切削齿 (b)齿柱式切削齿图1-2 切削齿在钻头上的安装方式图1-3 复合片的结构图1-4 PDC 钻头的切削方式目的。
当PDC钻头在软到中等级硬度地层进时,复合片切削齿在钻压和扭矩作用下克服地层应力吃入地层并向前滑动,岩石在切削齿作用下沿其剪切方向破碎并产生塑性流动,切削所产生的岩削呈大块片状,这一切削过程与刀具切削金属材料非常相似(见图1-4)。
被剪切下来的岩屑,再由喷嘴射出泥浆带走至钻头与井壁间的环空运至井外。
PDC钻头因使用了聚晶金刚石复合片作切削元件而使得切削齿有很高的硬度和耐磨性。
PDC齿的缺点是热稳定性差,当温度超过700℃时,金刚石层内的粘结金属将失效而导致切削齿破坏,因此PDC齿不能直接烧结在胎体上而只能采用低温钎焊方式将其固定在钻头体上。
在工作中,切削齿底部磨损面在压力作用下一直与岩石表面滑动摩擦要产生大量的摩擦热,当切削齿清洗冷却条件不好,局部温度较高时,就有可能导致切削齿的热摩损(350-700℃时,切削齿的磨损速度很快,这一现象称为切削齿的热磨损)而影响钻头正常工作,所以钻头要避免热磨损出现就必须有很好的水力清洗冷却,润滑作用配合工作,这就是要求泥浆从喷嘴流出后水力分布要合理,能有效地保护切削齿,这即是对钻头水力计的基本要求之一。
自-PDC钻头的检测与误差原因解析

PDC钻头的检测与误差原因解析摘要:产品质量检测是对pdc钻头中包括直径、高度、角度、联接螺纹等几何尺寸、粗糙度、形位公差等的测量。
pdc钻头的检测是把握产品质量的关键环节,检验人员必须在充分准备的基础上按照检测标准进行,并分析误差的产生原因,以确保产品的质量。
ﻭ关键词:检测;误差;原因分析ﻪ产品质量检测包括首件检测、工序检测和出厂检测。
pdc钻头的技术要求很多, 包括几何形状、尺寸公差、形位公差、表面粗糙度、材质、热处理及硬度等。
检验人员检测时先从何处着手, 用哪些量具, 采用何种检测手段, 是检测工作中技术性很强的一个问题。
为了保证产品质量, 避免出现错检、误检和漏检, 检验人员应遵守程序,做好以下各方面工作。
1、测前准备ﻭ1.1、认真读懂图纸ﻪﻭpdc钻头虽不算复杂,但曲面较多,既不规则且各曲面间夹角也不是90°,因而给图纸的识读带来了一定难度,这就要求检验人员要有较高的识图能力,如图1所示。
ﻪ检验人员要通过认真阅读图纸,掌握零件的形体结构和大小。
一般应先分析主视图,然后按顺序分析其它视图。
同时要把各视图由哪些表面组成, 如平面、圆柱面、圆弧面、螺旋面等,组成表面的特征, 如孔、槽等, 它们之间的位置都要看懂、记清,尤其是要弄懂各曲面的形状及之间的位置关系,准确读出金刚石复合片切削齿的纵向前角和径向角。
检验人员要认真看图纸中的尺寸,通过看尺寸, 可以了解零件的大小, 看尺寸要从长、宽、高三个方向的设计基准进行分析, 要分清定形尺寸、定位尺寸、关键尺寸,要分清精加工面、粗加工面和非加工面。
在关键尺寸中,根据公差精度、表面粗糙度等级分析零件各尺寸的作用。
有表面需热处理的工序零件, 应注意处理前后尺寸公差变化的情况。
检验人员还应分析图纸中的标题栏,标题栏内标有所用零件名称, 通过看标题栏, 掌握零件所用材料规格、牌号和标准,从中分析材料的工艺性能, 以及对加工质量的影响。
工作中, 我曾遇到这样一个问题, 有一批pdc钻头表面粗糙度不好,并且加工效率较低, 严重影响了产品精度与产品质量。
PDC钻头保径特征对定向性能的影响

PDC 钻头保径特征对定向性能的影响PDC 钻头的导向能力是由钻头剖面、保径齿和保径块共同决定的。
对于每一个IADC 钻头剖面标准,钻头的导向性和漂移趋势可以通过一些经验方程来确定,这些方程仅仅与切削剖面的高度和长度有关。
现在人们逐渐认识到PDC 钻头的保径对其导向能力影响更大。
现在越来越多利用保径长度和保径齿特性来提高钻头导向性。
一.钻头导向性的定义钻头的导向性(Bs)是当钻头受到横向和轴向力时产生横向位移的能力,可以用横向和轴向钻进能力的比值来表示:latax D BS D (1)横向钻进能力lat D 是钻头在横向力作用下每旋转一周产生的横向位移,轴向钻进能力ax D 是钻头在钻压作用下每旋转一周的轴向钻进位移。
对大多数PDC 钻头来说,BS 数值通常介于0.001-0.1之间,与切削形状、保径齿和保径块的特性有关。
导向性越高的钻头,它的横向偏移趋势越强,可获得最大的造斜率或降斜率。
在定向井作业中,PDC 钻头除了应具备一定的稳定性和耐用性要求,钻头必须要对导向系统产生的侧向力能够恰当、迅速的作出反应,以便进行造斜。
因此,钻头的导向性应该与导向系统相一致。
钻头的设计应该考虑这三部分与地层的相互作用——切削结构(主要是切削剖面和后倾角),主动保径(保径齿或保径齿),被动保径(一般叫做保径块)。
PDC 切削结构的导向性主要依赖于钻头剖面;钻头越平,导向性越强。
Barton [1]进行了大量不同钻头剖面的数值模拟,计算各向异性指数(相当于Bs)。
作者观察到随着锥形长度的降低,导向性增加,平钻头剖面产生高的各向异性指数。
钻头的导向性不仅与钻头剖面有关,而且与保径特性(保径齿和保径块)关系更大。
有研究[2]发现在钻头施加侧向力。
发现保径块(全保径)消耗了84%的侧向力,相比而言,钻头剖面(切削结构)只消耗了少量的侧向力。
图1 定向井PDC钻头各部位消耗的侧向力Fig1 The lateral force consumed by each part of the PDC bit in directional drilling二.保径特性对其导向性的影响主动保径由PDC 钻头的直径位置上的削平部分构成,形成了切削结构和被动保径之间的过渡区。
关于PDC钻头破岩效率的研究

【 关键词 】 P DC钻 头 ; 破 岩效率 ; 研 究
在进行钻井的时候 ,经过实践证明,影响 P D C钻头性能 的主要
压下的变化规律大致上都是一样的, 仅 仅在 平均钻速上有 点儿差异 。 参数是布齿密度 、后倾角 与切 削齿 的尺 寸,这些参数能够直接影响
到P D C钻头 的破岩效 率。当前,在 设计 P D C钻头的时候 ,在大多数 情况下 ,设计人员仅仅是靠 自己的经验 来设计布齿密度、后倾角与 切削齿的尺寸 。例如 ,在软地层使 用尺 寸较 大和 密度较低的布齿 ,
高。
钻 头质量的好 坏能够决定钻井的 费用支 出、钻 井的质量和钻进 的速
度。其 中, 金刚石钻头 当中比较重要的一种是 P D C钻 头, 在钻压 比 较低的情况下 , P D C钻 头具有较好的钻速与进尺 ,因此被得 以普遍 的使用 。 影响 P D C钻头性能的主要参数是布齿密度、 后倾 角与切 削
高新技 术
关于 P D 0 钻头破岩效率 的研究
黄 立
( 胜利石油管理局黄河钻井总公司管具公司 )
【 摘 要】 在 钻进 的时候 ,所使用的破岩 的主要 工具是钻 头,
齿的数 目。 针对 比较松软 的地层 ,在确保井覆盖标准 的前提条件下 , 应当尽可能地设计和使密度 比低的布齿钻头 ,以使破岩效率大大提
由此可见 ,当使用 P D C钻头钻进三级 以下地层 的过程 中,使用 1 9 m m 尺寸 的切削齿的破岩效率是比较高的;当使用 P D C钻头钻进 V级与 Ⅳ级地层 的过程 中,使用 1 6 m m尺寸 的切 削齿 的破岩效率是 比较高 的 因此 ,倘若岩石 的可钻性级值 比较 高,那么就 需要使用小直径 的切削齿实施钻进。
PDC_钻头钻井提速关键影响因素研究

第 51 卷 第 4 期石 油 钻 探 技 术Vol. 51 No.4 2023 年 7 月PETROLEUM DRILLING TECHNIQUES Jul., 2023doi:10.11911/syztjs.2023022引用格式:高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023, 51(4):20-34.GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits [J]. Petroleum Drilling Techniques,2023, 51(4):20-34.PDC钻头钻井提速关键影响因素研究高德利1, 刘 维1, 万绪新2, 郭 勇3(1. 石油工程教育部重点实验室(中国石油大学(北京)),北京 102249;2. 中石化胜利石油工程有限公司,山东东营 257000;3. 中国石油新疆油田分公司工程技术研究院,新疆克拉玛依 834000)摘 要: 为了在钻井工程中发挥出PDC钻头的最大功效,通过理论分析、室内试验、案例分析、现场试验等,探讨了高钻压、高转速等钻井参数强化对PDC钻头钻速和磨损的影响规律,同时分析了PDC钻头的磨损机理与过早失效主因。
研究结果表明:1)钻压是影响PDC钻头机械钻速的直接和首选因素,当钻头处于高效破岩状态时,无论钻遇一般地层还是硬岩地层,钻压与机械钻速均应呈线性关系;钻遇均质硬岩地层时,建议将200 kN以上高钻压纳入PDC钻头的常规应用参数;2)提高转速可实现钻井提速,虽然高转速会加剧PDC钻头的磨损,但目前切削齿的质量足以满足PDC钻头在高转速(400~500 r/min)下长时间钻进多数地层的需求;3)布齿密度对钻头机械钻速有影响,但并非直接因素,只要“吃得进去,切得下来,排得及时”三者建立动态平衡,即便是高布齿密度PDC钻头也可以实现优快钻进;4)PDC钻头破岩效率越高,钻头磨损会越小,如提高钻压,会增大切削齿吃入深度、减少钻头磨损;5)动态冲击和低效破岩是造成PDC切削齿和钻头过早失效的主因,实现PDC钻头高效钻进的核心是提高破岩效率与抑制钻头振动。
PDC钻头执行标准

PDC钻头执行标准PDC钻头是一种广泛应用于石油钻井、煤矿开采和地质勘探等领域的钻井工具,其执行标准的制定对于保障钻头质量、提高钻井效率具有重要意义。
本文将从PDC钻头的材料要求、制造工艺、性能测试等方面,对PDC钻头执行标准进行详细阐述。
一、材料要求。
PDC钻头的刀片通常采用聚晶金刚石复合片作为切削元件,刀体则采用优质的合金钢材料。
PDC钻头的执行标准应明确规定刀片和刀体材料的选用标准、化学成分要求、热处理工艺等,以保证PDC钻头具有良好的耐磨性、抗冲击性和热稳定性。
二、制造工艺。
PDC钻头的制造工艺对其质量和性能具有重要影响。
执行标准应规定PDC钻头的整体设计要求、刀片与刀体的结合工艺、焊接工艺、表面涂层工艺等,确保PDC钻头具有良好的耐磨性和抗冲击性,同时提高钻头的使用寿命和钻井效率。
三、性能测试。
PDC钻头的性能测试是保证其质量的重要手段。
执行标准应明确规定PDC钻头的性能测试项目和测试方法,包括静态性能测试、动态性能测试、耐磨性测试、抗冲击性测试等,以确保PDC钻头符合设计要求,并能在实际工程中发挥良好的钻井效果。
四、质量控制。
PDC钻头的质量控制是执行标准的核心内容。
标准应规定PDC钻头的质量控制要求,包括原材料的采购检验、生产过程中的质量控制、成品的检测验收等,以确保PDC钻头的质量稳定可靠。
五、使用与维护。
执行标准还应包括PDC钻头的使用与维护要求,包括钻头的安装与拆卸、使用过程中的注意事项、钻头的修复与保养等,以延长PDC钻头的使用寿命,降低钻井成本。
六、结语。
PDC钻头执行标准的制定对于规范PDC钻头的生产与使用具有重要意义。
本文从材料要求、制造工艺、性能测试、质量控制、使用与维护等方面对PDC钻头执行标准进行了全面的阐述,希望能为相关行业的从业人员提供参考,推动PDC 钻头行业的健康发展。
PDC_钻头齿的破岩机理和性能测试方法研究现状

PDC钻头齿的破岩机理和性能测试方法研究现状李彦操(中石化胜利油田分公司, 工程技术管理中心, 山东东营 257000)摘要 聚晶金刚石复合片(polycrystalline diamond compact,PDC)钻头,是钻井工程中主要破岩工具之一。
PDC钻头切削齿的破岩效率、耐磨性、热稳定性和抗冲击性等性能指标对PDC钻头的使用效果影响很大,相关研究在国内外备受关注。
本文总结了国内外有关PDC钻头齿破岩机理和性能测试的实验装置、测试方法等代表性成果,按照PDC钻头齿与岩石相互作用的方式,相关实验主要包括5大类:PDC钻头齿直线切削实验、旋转切削实验、落锤冲击实验、PDC钻头单齿静压实验以及全尺寸PDC钻头实验;按照测试目的,又可分为PDC钻头齿的破岩机理和性能测试2大类。
通过调研分析这些实验研究的优缺点,以期为PDC钻头齿的研究与优化、PDC钻头的整体个性化设计等提供参考。
关键词 PDC钻头齿;直线切削实验;旋转切削实验;落锤冲击实验;PDC单齿静压实验;全尺寸PDC 钻头实验中图分类号 TQ164; TG74; TG58 文献标志码 A 文章编号 1006-852X(2023)05-0553-15DOI码 10.13394/ki.jgszz.2023.0155收稿日期 2023-08-01 修回日期 2023-08-16自2000年起,随着科研人员对PDC钻头齿破岩机理的深化理解和超硬材料科学与生产工艺的不断进步,PDC钻头在石油和天然气钻井工程中的应用逐渐普及。
如今,PDC钻头在油气钻井领域占据了超过80%的市场份额,贡献了90%以上的全球钻井进尺,几乎成为全球高端钻头市场的主导力量[1]。
PDC钻头齿的技术进步极大地推动了油气钻井工程的效益增长,然而,其有限的耐磨性、热稳定性和抗冲击性仍是制约PDC钻头齿更广泛应用的因素。
因此,研究PDC钻头齿本身的材料特性及其破岩机理,存在着广阔的创新空间和潜力巨大的工业应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响PDC钻头技术性能指标的因素第一、地层的因素,地层含有灰质、石英质、玄武岩等火成岩及其他质硬的砾石等,极易造成复合片先期磨损、崩齿、断齿,甚至在刀翼上磨出凹槽、断刀翼等严重井下复杂情况的发生;含有吸水性较强的泥质地层,在泥浆性能相同的情况下极易造成钻头泥包,甚至卡钻等复杂情况。
第二、操作的因素,猛提猛刹、顿钻、溜钻、钻井参数匹配不当(钻压、转盘转速、泵压、排量、螺杆转速、螺杆扭矩)、井下落物等,也是造成复合片先期磨损、崩齿、断齿,甚至在刀翼上磨出凹槽、断刀翼等严重复杂情况的重要因素。
第三、钻井液的因素,比重、固相含量、失水量、流变性、粘度、切力也对钻头的性能指标有着密切的关系,比重大、固相含量高机械钻速就变低(权威试验证明,固相含量每升高1%,机械钻速就下降8%),对钻头的冲蚀作用就厉害;粘度高、切力大机械钻速变慢;切力小,携带井底沉砂的能力弱,也降低钻头的机械钻速;失水大,在泥岩段极易造成地层吸水膨胀井眼缩径,在砂岩段容易由于失水大造成虚泥饼增厚而井眼缩径,严重影响机械钻速,加速对钻头的磨损报废。
第四、随意变更钻头的水力配置,新出厂的钻头一般都按甲方的要求,进行了科学的水力参数设计,当盲目变更钻头水眼的配置后,就人为地改变了钻头的冷却流场环境,为钻头的先期损坏提供了条件。
【摘要】本文在简要介绍了PDC钻头的物质成份,两大类别(胎体钻头和刚体钻头)及其不同物质在钻井作业过程中所起的作用的基础上,归纳、总结了PDC钻头特点,包括其设计特点和结构特点;同时较详细地分析了在打定向井时,PDC钻头的结构特征因素对造斜率的影响;另外也在分析、归纳、总结国内外专家、学者的独特见解的基础上,对PDC钻头的破岩机理,也在一定程度上给予阐述。
并在此基础上,最后也提出了一些PDC钻头的选型依据。
【关键词】PDC钻头; 特点; 机理分析Abstract:This themsis briefly introduces which materials PDC bit is made from,how it is manufactured,and the different types of PDC bits,also shows you the principal functionsof the different materials of PDC bit in drilling----on the basis of these,summaries the characteristics of PDC bit,including its designing characteristics and structural characteristics,and specificly analyses the effect of its structural characteristics on the leaning ration in the controlled directional drilling。
At the same time ,after studying the specific ideas of the different experts at home and abroad,to some extent,analyses and summaries the rock breaking mechanism of PDC bit。
In the end ,on this basis,gives you some facters that can help you how to choose PDC bit effiently。
Key words: PDC bit; characteristics; Mechanism analysis近年内,随着PDC钻头的广泛应用,PDC钻头在型号和质量上都进行了较大的改进,已经在软到硬的地层中逐步使用,并且取得了较好的经济效益,为更好地使用PDC钻头,使其最大限度地发挥优势,以便更好地服务于钻井作业,特从其特点和破岩机理方面撰写此文。
PDC钻头,就是聚晶金刚石复合片钻头,即Polycrystalline Diamond CompactBit。
它以金刚石为原料加入粘结剂在高温下烧结而成。
复合片为圆片状,金刚石层厚度一般小于1mm,切削岩石时作为工作层,碳化钨基体对聚晶金刚石薄层起支撑作用。
两者地有机结合,使PDC既具有金刚石地硬度和耐磨性,又具有碳化钨地结构强度和抗冲击能力。
由于聚晶金刚石内晶体间地取向不规则,不存在单晶金刚石固有地解理面,所以PDC的抗磨性及强度高于天然金刚石的,且不易破碎。
PDC由于多种材料的存在,热稳定性较差,同时脆性较强,不能经受冲击载荷。
PDC钻头的特点1973年美国开发了聚晶金刚石复合片钻头,国外广泛应用于软-中硬地层。
在中东和北海的深井及海洋钻井中首先获得了高井尺、高钻速,大大缩短了建井周期,降低了钻井成本,受到了钻境界的广泛重视,成为钻井工具的一项重大成就。
国内对PDC钻头也引起了极大的关注和兴趣,随着钻井技术人员对PDC钻头的认识和实践,它正在逐步取得较好的使用效果。
按钻头材料及切削齿结构划分,PDC钻头有钢体和胎体两大类别(间上图1-2)胎体钻头用碳化钨粉末烧结而成,用人造聚晶金刚石复合片钎焊在碳化钨胎体上,用天然金刚石保径。
碳化钨胎体耐冲蚀、耐磨、强度高、保径效果好。
钻头水眼水道面积可以根据钻井工艺需要的水力参数来设计,有较大的灵活性。
胎体外形可以根据地层特点设计,变化胎体形状只要改变模具而不需要增加设备。
钢体PDC钻头,是用镍、铬、钼合金机械加工成形。
经过热处理后在钻头体上钻孔,强人造聚晶金刚石复合片压入(紧配合)钻头体内,用柱状碳化钨保径。
它比胎体钻头成本低20%左右,但不耐磨且易被冲蚀。
PDC钻头的设计特点1.PDC钻头采用爪型设计PDC钻头的性能在很大程度上取决于切削齿的质量,PDC钻头都采用了高质量爪型齿和环形齿,经过与其它类型复合片对比试验分析,证明它具有抗剪强度高、耐冲击、寿命长、热稳定性能好的特点,与同尺寸普通PDC齿相比,爪型齿的金刚石含量提高了2。
7倍,抗冲击破坏能力提高2倍。
2.大刀翼设计全部PDC钻头系列的刀翼进行加高加大,采用超大排屑流道设计,可以更加有效的运移钻屑,清洗钻头,防止钻头泥包,提高机械钻速。
3.抗回旋设计采用力学平衡设计,对PDC钻头进行螺旋保径设计、轨道布齿设计、缓冲块设计以保证钻头抗回旋性能。
4.防泥包涂层设计和制造技术QP系列钻头可根据地层情况进行防泥包涂层设计,它采用了独特的对钻头表面负离子处理技术,使钻头表面带有负电荷,在钻头周围形成一个阳板,形成电流,钻头与钻井液之间形成一个水的集区,其作用就如同润滑剂或象隔板,在钻进中,泥页岩钻屑中的负离子与钢体表面的负电荷相斥,从而起到防泥包的效果。
5.可修复性钢体PDC钻头的本体磨损和切削齿破碎后可进行修复和更换,使得钻头的使用成本大大降低。
PDC钻头结构特征及此因素对造斜率的影响钻头的费用在一口井中的总费用中所占的比例不是很大,但选好和用好一只钻头对提高机械钻速、提高造斜率和降低全井费用却是关系重大。
为了高速、优质、低成本地钻好定向井,应从定向钻井的独特性出发优选钻头。
定向造斜段钻井的特点使使用井下马达,钻头转速高,钻头切削齿和钻头外径磨损快钻头寿命缩短。
在定向段钻进过程中,需要钻头能保持住所要求的工具面角度,如果所选的钻头布能提供合适的导向能力,就会获取布到所设计的造斜率或偏离所定的方位。
这样,就会增多纠斜和扭方位的次数或增多更换下部钻具组合的次数。
由于PDC钻头具有无活动件、适应高转速低钻压钻进工况之特点和钻头使用寿命长的优点,因此更适合与动力钻具配合使用,多次现场施工结果表明,动力钻具+PDC钻头钻进方式有利于提高钻井速度,减少起下钻次数、保证钻具安全,取得了动力钻具+牙轮钻头钻进方式无法比拟的技术经济效益。
常规定向井施工主要时通过选择合适的造斜工具(弯接头+动力钻具、单弯动力钻具、双弯动力钻具等)调整侧向力的大小,从而控制造斜率的高低,而同样的侧向力与不同结构的PDC钻头配合对造斜率时有极大的影响的。
在此,我本人认为影响PDC钻头造斜率的钻头结构特征因素主要有以下几点:钻头体长度、钻头冠状形状、钻头保径类型、保径切削齿侧倾角等等。
结构特征因素影响PDC钻头造斜率的机理分析众所周知,定向钻具组合的造斜率时通过下部钻具组合的弯曲形状产生钻头侧向力,使钻头在沿轴线方向钻进的同时侧向切削井壁而产生轨迹偏移的。
钻头轴向钻进和侧向切削的偶合产生一定的造斜率。
在侧向力和钻头轴向钻速一定的情况下,很显然钻头的侧向切削能力越强,钻具组合的造斜率就越高。
钻头体长度对造斜率的影响在如图1-3所示的带弯接头的造斜钻具组合中,依据文献(《短弯外壳导向钻具的造斜率计算》(帅健))中的导向动力钻具造斜率计算公式:式中:k------导向钻具造斜率;a-------弯接头弯角;L1------弯接头肘点至钻头的距离;L2-------弯接头肘点至下部钻具组合上切点的距离;F C-------作用在钻头上的侧向力从公式(1)可知:在其它结构参数一定的情况下,L1、k增大,即选用轴径短的PDC钻头能增加造斜率。
1.2 钻头的冠部形状对造斜率的影响在侧向力FC一定的情况下,钻头和地层地侧向接触面积越小,作用在单位井壁上地侧向力越大、侧切力越强、钻头地造斜率越高。
因此要想获得较高地造斜率,因选用冠部平坦,与地层侧向接触面小地PDC 钻头。
1.3 钻头保径类型对造斜率地影响定向段钻井地特点之一是侧向载荷大,下部钻具组合地弯曲角度越大或弯曲部分离钻头越远所引起地侧向载荷越严重,井下马达高速运转、井底沉积岩屑床、受侧向载荷等因素底综合影响,会使钻头外径很快磨损。
为了克服定向钻头外径的磨损,发展了PDC钻头保径技术,常见的保径方式有在钻头的台肩上镶焊PDC 齿或在钻头的外径上镶焊硬质合金块。
钻头保径长度取决于耐磨性和可导性。
钻头保径长度越长,耐磨性越强,但可导向性差;而保径长度较段则耐磨性较差,而导向性好,要根据地层的可钻性、可研磨性和导向能力来拳衡钻头的保径长度。
保径长的钻头一般比保径段的钻头更稳定,但这种钻头所能获得的最大造斜率小,定向施工人员一般都避免使用。
保径上径向排列PDC切削齿,这种设计制造的钻头具有导向和保径双重功能,比硬质合金块保径的钻头造斜率效果好。
1.4钻头保径切削齿侧倾角对造斜率的影响图1-4为PDC钻头保径切削齿侧倾角示意图,显然径切削齿侧倾角B越小,切削齿吃入岩石的深度越大,钻头的侧向切削能力越强。