重力加速度的测量
物理实验测量重力加速度

物理实验测量重力加速度重力加速度(g)是指物体在自由下落时所受到的重力作用所产生的加速度。
在物理实验中,测量重力加速度的方法有多种,如自由落体法、摆动法、弹射法等。
本文将介绍自由落体法和摆动法两种常用的测量重力加速度的方法。
自由落体法自由落体法是通过测量物体自由下落的时间和下落的垂直高度,来计算重力加速度的方法。
实验器材:- 垂直高度计(测量下落高度)- 秒表(测量下落时间)实验步骤:1. 将垂直高度计固定在墙上,并调节好垂直度。
2. 让待测物体从垂直高度计的顶端自由落下。
3. 同时启动秒表,并在物体触碰到地面时停止计时。
4. 记录下物体自由落下所用的时间t。
根据自由落体运动的公式:h = 1/2 * g * t^2,其中h为下落高度,g 为重力加速度,t为下落时间。
由此可得:g = 2h / t^2重复多次实验并取平均值,可以得到较为准确的重力加速度的测量结果。
摆动法摆动法是通过测量简谐振动的周期,来计算重力加速度的方法。
实验器材:- 钟摆(保证长度和质量的准确性)- 秒表(测量振动周期)实验步骤:1. 将钟摆置于水平位置,并释放使其作简谐振动。
2. 同时启动秒表,并记录下钟摆作一次完整振动所用的时间t。
根据简谐振动的周期公式:T = 2π√(L/g),其中T为振动周期,L为摆长,g为重力加速度。
由此可得:g = 4π^2L / T^2重复多次实验并取平均值,可以得到较为准确的重力加速度的测量结果。
总结物理实验中测量重力加速度的方法有很多种,本文介绍了常用的自由落体法和摆动法。
在进行实验时,需要注意选取合适的实验器材,并进行多次实验取平均值以提高测量结果的准确性。
通过这些方法测量得到的重力加速度数值,对于理解物体的运动规律和进行相关研究具有重要意义。
附注:重力加速度通常被定义为9.8米/秒^2。
然而,实际测量中可能会存在误差,因此通过实验来确认地球上重力加速度的准确数值是具有重要意义的。
重力加速度的测量

重力加速度的测量引言重力加速度是地球上一个十分重要的物理量,在物理和工程学科中具有广泛的应用。
本文将介绍重力加速度的定义、测量方法和一些常见的测量设备。
重力加速度的定义重力加速度(g)是指在地球表面上的自由下落物体在一定时间内所获得的速度增加值。
它是一个物体受到地球引力作用的结果,通常用单位时间内速度的变化量表示。
重力加速度的测量方法有多种方法可以测量重力加速度,下面将介绍几种常见的方法。
自由落体法自由落体法是最常用的测量重力加速度的方法之一。
这种方法的基本原理是让一个物体从静止状态自由下落,通过测量下落时间和下落距离,可以计算出重力加速度。
具体步骤如下: 1. 将物体从一个固定高度上释放,并同时启动一个计时器; 2. 当物体落到地面时,停止计时器并记录下落时间; 3. 根据下落时间和下落距离,使用公式 $g =\\frac{2d}{t^2}$ 计算重力加速度。
平衡法平衡法是另一种常用的测量重力加速度的方法。
该方法通过测量一个物体在天平上的质量变化来推断重力加速度。
具体步骤如下: 1. 将待测物体放在一个天平上,记录物体的质量; 2. 在实验室中,进行相同条件的实验来测量天平上物体的质量; 3. 根据物体在天平上质量的变化,使用公式 $g = \\frac{\\Delta m}{m}$ 计算重力加速度。
弹簧法弹簧法是一种利用弹簧的弹性来测量重力加速度的方法。
该方法基于弹簧受到重力和弹性力的平衡关系,通过测量弹簧的伸长量来计算重力加速度。
具体步骤如下: 1. 将一个质量小于或等于弹簧的质量挂在弹簧上,记录弹簧的伸长量; 2. 移除挂在弹簧上的质量,记录弹簧的初始长度; 3. 根据弹簧的伸长量和初始长度,使用公式 $g = \\frac{k}{m}$ 计算重力加速度,其中g为弹簧的弹性系数,g为挂在弹簧上的质量。
常见的重力加速度测量设备除了以上提到的测量方法,还有一些专门用于测量重力加速度的设备。
下面介绍几种常见的设备。
测重力加速度的方法

测重力加速度的方法
方法二(测重力):用天平测一物体质量,质量为m ,将其挂在弹簧秤下,平衡后,读数为G.利用公式G=mg 得g=m G . 方法三(圆锥摆测量法):使单摆的摆锤在水平面内作匀速圆周运动,用刻度尺测量出h ,用秒表测出摆球转n 次所用的时间t ,摆球的角速度为ωt
n 2π 仪器:刻度尺,秒表,单摆
方法四:(打点计时器测量):布置好仪器,使重锤作自由落体运动,多次实验,选择理想纸带,找出起始点O ,取一末点P ,用刻度尺测出OP 距离为h ,t=0.02秒*两点间隔数,由h=21
g t²得g=²
t h 2 方法五:(万有引力测量):若已知地球半径与地球自转周期 F=m ²R GM =mg=m ²²4T R π则g=²²4T R π。
重力加速度测量实验的详细步骤与注意事项

重力加速度测量实验的详细步骤与注意事项重力加速度是地球上所有物体受到的向下的加速度,对物体的下落速度和特定的运动学实验来说至关重要。
进行重力加速度测量实验不仅能够帮助我们更好地理解自然界的基本物理规律,同时也是学习科学实验和数据处理技巧的绝佳机会。
本文将介绍重力加速度测量实验的详细步骤与注意事项。
一、实验目的本实验的主要目的是通过测量自由落体的下落时间和距离,计算重力加速度的精确值,并探究重力加速度是否与其所作用物体的质量有关。
二、实验器材1. 一支光滑的竖直直尺2. 一枚小球3. 一台计时器4. 一块纸板5. 一台电子秤三、实验步骤1. 设置实验环境将计时器保持在竖直直尺的底部,并确保其位置固定。
将纸板放在竖直直尺的顶部,作为小球下落的起点。
2. 准备实验数据使用电子秤测量小球的质量,并记录在实验记录表中。
确保质量数据的准确性。
3. 实验测量a. 将小球从纸板上释放,启动计时器记录下落所用的时间t1。
b. 重复操作3次,记录每次的下落时间。
c. 记录小球下落的距离h1。
可以使用直尺测量竖直直尺的高度,或者利用数值尺等测量工具来准确测量。
4. 数据处理a. 计算重力加速度的平均值。
加速度g可通过公式g=2h1/(t1^2)计算得出。
b. 计算测量数据的标准差,以评估测量值的精确性和实验结果的可靠性。
5. 分析与讨论a. 比较测得的重力加速度值和已知的标准重力加速度9.8 m/s^2的差异。
探究差异的原因。
b. 讨论小球的质量在实验过程中对测得的重力加速度值是否产生影响。
四、注意事项1. 实验环境应该避免风力和其他干扰因素,确保实验过程的准确性。
2. 在进行实验测量时,要保证小球的下落路径是垂直的,以避免测得的数值偏差。
3. 在计算重力加速度时,取多次实验测得的数据的平均值,以提高结果的可靠性。
4. 在记录测量结果时,尽量使用更为精确的仪器,如数值尺,以减小误差的存在。
5. 在进行测量之前,检查并校准计时器以确保其精确度。
重力加速度的不同测量方法

重力加速度几种不同方法的比较引言:重力加速度是物理学中的一个十分重要的物理量,在地面上不同的地区,重力加速度g值不相同,它是由物体所在地区的纬度、海拔等因素决定,随着地球纬度和海拔高度的变化而变化,准确地确定它的量值,无论从理论上、还是科研上、生产上以及军事上都有极其重大的意义。
测量重力加速度的方法有很多,我所要做的就是通过学习前人的理论知识,经过思考,在现有的实验室条件下,进行实验,做出归纳和总结,提出自己的看法与体会。
且实验方法虽然多,但有的测量仪器的精确度受环境因素的影响比较大,不是每种方法都适用,所以有必要对测量方法进行研究,找出一种适合测量本地重力加速度的方法。
一、重力加速度的测量方法(一)用自由落体法测量重力加速度1.实验仪器:自由落体装置(如图一),数字毫秒计,光电门(两个),铁球。
图一自由落体装置2.实验原理、步骤、注意事项实验原理:设光电门A 、B 间的距离为s ,球下落到A 门时的速度为0v ,通过A 、B 间的时间为t ,则成立:2/20gt t v s += (1)两边除以t ,得:2//0gt v t s += (2)设t x =,t s y /=,则:2/0gx v y += (3)这是一直线方程,当测出若干不同s 的t 值,用t x =和t s y /=进行直线拟合,设所得斜率为b ,则由2/g b =可求出g ,b g 2=(4) 实验步骤:(1)调节实验装置的支架,使立柱为铅直,再使落球能通过A 门B 门的中点。
(2)测量A 、B 两光电门之间的距离s 。
(3)测量时间t 。
(4)计算各组的x ,y 值,用最小二乘法做直线拟合,求出斜率b 及其标准偏差b S 、)(b u (注意:在取b 的时,由于立柱调整不完善,落球中心未通过光电门的中点,立柱上米尺的误差均给s 值引入误差,也是b 的不确定度来源,一般此项不确定度(B 类评定)较小,可略去不计,所以b S b u =)()。
物理实验方案测量重力加速度

物理实验方案测量重力加速度引言:重力加速度是物体在地球表面受到重力作用下的加速度,一般用g 表示。
测量重力加速度是物理实验中常见的一项基础实验,通过测量物体在自由下落中的加速度来确定地球表面的重力加速度。
实验目的:本实验旨在通过自由下落实验,测量重力加速度g的数值。
实验仪器:1. 下落时间测量装置2. 直尺3. 记号笔4. 计时器5. 物体(如小球、纸片等)实验原理:根据物体自由下落的运动学公式,可以得到下落时间与下落高度之间的关系:h = 1/2 * g * t^2其中,h为下落高度,t为下落时间,g为重力加速度。
实验步骤:1. 搭建下落时间测量装置:将直尺垂直插入地面或放置在水平台面上,使其稳固不动。
2. 在直尺上选择一个固定的起点作为下落物体的起始位置,使用记号笔在该起点处标记。
3. 将物体从起点位置自由下落,并同时启动计时器。
4. 当物体触地时,立即停止计时器,记录下落的时间t。
5. 重复上述实验步骤多次,取平均值作为实验结果。
6. 根据实验数据计算重力加速度的数值。
实验注意事项:1. 在选择物体时,要保证物体较小,形状较规则,并且密度均匀,以减小空气阻力的影响。
2. 实验过程中要注意准确记录下落时间,避免人为误差的产生。
3. 为了获得更准确的实验结果,实验次数应尽可能多,取平均值以降低随机误差。
实验数据处理:根据实验步骤中的公式,我们可以得到下落高度与下落时间之间的关系为:h = 1/2 * g * t^2。
可以通过记录多组下落高度与对应的下落时间数据,利用最小二乘法进行数据拟合,得到重力加速度g的数值。
实验结果与讨论:根据实验数据处理的方法,我们可以得到实验测得的重力加速度的数值。
通过与理论值进行比较,可以评估实验的准确度和可靠性。
结论:通过本实验,我们成功地测量了重力加速度g的数值,并对实验过程进行了分析和讨论。
实验结果对于理解物体在地球表面受到重力作用的特性具有重要意义,也为后续实验和课程的学习提供了基础。
高中物理实验测量重力加速度

高中物理实验测量重力加速度实验目的:测量重力加速度。
实验仪器:求重仪(简谐振动法测重力加速度实验装置)、计时器、直尺、金属球。
实验原理:重力加速度是物体在重力作用下的加速度,一般用符号"g"表示。
重力加速度是指物体在自由下落过程中获得的速度每秒增加的数值。
在地球表面,重力加速度的数值约等于9.8 m/s²,常用符号9.8 m/s²表示。
实验步骤:步骤一:调整求重仪将求重仪放在平稳的水平台上。
打开求重仪的仪器开关,待显示屏上数字稳定后,按下“归零”键将仪器归零。
步骤二:测量基准长度用直尺测量求重仪上方固定支架和下方测重支架之间的距离,记录为L₀。
步骤三:测重将金属球放在求重仪下方的测重支架上。
等待一段时间使求重仪显示屏上数值稳定后,按下“测重”键,记录显示屏上的测重数值为F。
步骤四:计时按下计时器的启动键,同时用手指轻轻拉开金属球使其离开测重支架,开始自由下落。
步骤五:停止计时当金属球下落到一定高度时,按下计时器的停止键,记录下自由下落所需的时间t。
实验数据处理:数据处理一:计算金属球的重力根据测重结果F,计算金属球受到的重力G=F。
数据处理二:计算自由下落所需的时间t将记录下的时间t转化为秒。
数据处理三:计算重力加速度g本实验中,自由下落的加速度为重力加速度g,根据自由落体运动公式 y=1/2gt²,可以得到g=2y/t²,其中y是自由下落的距离,即y=L₀-L。
实验结果与分析:根据实验数据处理的结果,我们可以计算出金属球受到的重力、自由下落所需的时间以及重力加速度的数值。
对于金属球受到的重力,我们可以观察到它的数值与金属球的质量成正比。
即金属球的质量越大,受到的重力也越大。
对于自由下落所需的时间,我们可以观察到当自由下落距离相同时,时间也是相等的。
这符合自由落体运动的规律。
最后,根据计算得到的重力加速度的数值,我们可以发现它接近于9.8 m/s²,这与地球表面的重力加速度数值相近,说明实验结果比较准确。
重力加速度的测量实验

重力加速度的测量实验重力加速度的测量实验是物理学中非常重要的一项实验,它可以帮助我们了解地球表面的重力以及物体在自由下落过程中的加速度。
在本文中,我将详细解读重力加速度的测量实验,包括实验的准备、过程,以及实验的应用和其他专业性角度。
首先,进行重力加速度的测量实验需要一定的实验准备工作。
首先,我们需要准备一个垂直于地面的垂直直线轨道,这可以通过使用一个垂直的支架或固定一个直线轨道来实现。
然后,我们需要准备一个可控制落体物体的装置,如一个简单的释放装置。
此外,还需要一台计时器和一个精确的距离测量仪器,如一个标尺或测量仪器。
在实验的过程中,首先我们需要将垂直直线轨道固定到实验台上,并使其垂直于地面。
然后,我们需要确定一个起点和终点,以便测量物体的自由下落过程中的时间和距离。
可以用一个绳子或标记物来确定这些点。
接下来,我们需要选择一个具有合适重力加速度范围的物体,例如一个小球。
然后,将该物体放置在起点上,并使用释放装置来控制物体的下落。
当物体开始下落时,我们使用计时器来记录物体自由下落的时间。
同时,我们使用距离测量仪器来测量物体下落过程中的距离。
我们可以在释放装置上放置一个反射器或使用激光仪器来精确测量距离。
重复这个实验多次,每次都记录下来的时间和距离。
然后,我们可以使用这些数据来计算平均下降时间和平均下降距离。
最后,我们可以利用这些数据来计算重力加速度的近似值。
通过测量重力加速度,我们可以应用这个实验结果在其他专业性角度中。
首先,重力加速度的测量可用于建筑物和桥梁的结构设计,以确保其能够承受地球表面的重力。
其次,测量重力加速度还可以用于天文学中,以帮助我们了解其他天体的重力特性,例如行星和恒星。
此外,重力加速度的测量还可用于检验物理理论和提出新的物理理论。
如果实验结果与理论预测相符,这将进一步验证现有的物理理论。
或者,如果实验结果与理论预测不一致,这可能提示需要修改或发展新的物理理论。
总而言之,重力加速度的测量实验是物理学中重要的实验之一,它可以帮助我们了解地球表面的重力以及物体在自由下落过程中的加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.根据抛体运动规律
1)利用竖直上抛运动对称性测量
将一小物体由M点以某初速度向上抛出,只要用光电计数器测量小物体从开始抛出到落回原处所用的时间t1,物体从M点正上方N处再回到N处所用的时间t2以及M、N两点间的高度差h,由竖直上抛运动的有关规律可得:g=8H/( - )
3.利用定滑轮来测量(阿特武德机)
将质量同为M的重物P,Q用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物P上附加一重量小得多的重物m,系统平衡被打破使其产生一微小加速度a=mg/(2M+m),测得a后,即可算出g。而要测a只需测出时间t内P通过的距离为s即可。
隔离P和m:(M+m)g—T=(M+m)a①
隔离Q:T—Mg=M a②
又s=at2/2③
联立①②③可解得g=2(2M+ m)s/ m t2
三.根据自由落体规律
1.利用自由落体的频闪照片来测量
设小球频闪照片时间间隔为T,由于自由落体为匀加速直线运动,故相邻相等时间内的位移之差△y=y2-y1=gT2,即g=△y/gT2,因此只要测出闪频照片的周期T,以及任意相邻相等时间的位移差△y,就可求出g。
一、利用物体重力和质量的关系来测量
用天平测出物体的质量m,用弹簧秤测出物体重力G,则重力加速度的值为g来测量
1)斜面光滑
让一质量为m的滑块从光滑斜面(如气垫导轨)的顶端由静止开始沿斜面滑至底端。只要测滑块滑动的距离l、下降的高度h和时间t,就可以测出重力加速度 。本实验中气垫导轨的倾角不宜过大(导致t过小)和过小(导致摩擦力相对于下滑力不可忽略)。
4.利用滴水法测量(利用酸式滴定管和金属盘测量)
将一个金属盘放在地板上,再将一根酸式滴定管安装好,使得从阀门流出的水滴从一米以上的高度处落到盘中。让水滴落到垫起来的盘子上,可以清晰地听到水滴碰盘子的声音。细心地调整滴定管的阀门,使前一个水滴碰到盘子听到响声的瞬间,注视到第二个水滴正好从阀门处开始下落,当听到某个响声开始计时,并数“0”,以后每听到一次响声,顺次加一,直到数到100停止计时,读出总时间to,则每一滴水下落时间t=to/100,再用米尺量出滴定管滴水处到盘子的距离h,则h= ,即可求得g= 。
2.双线摆
某同学采用双线摆和光电计数器测量重力加速度.已知每根悬线长l,两悬点间相距s,金属小球半径为r,AB为光电计数器.现将小球垂直于纸面向外拉动,使悬线偏离竖直方向一个较小的角度并由静止释放,同时启动光电计数器,当小球第一次经过平衡位置O时,由A射向B的光束被挡住,计数器计数一次,显示为“1”,同时由零开始计时,而后每当小球经过O点时,计数器都要计数一次.当计数器上显示的计算次数刚好为n时,计时时间为t.由此可知双线摆的振动周期T= ,计算重力加速度g时,双线摆的等效摆长L= ,最后依据公式 L,代入周期T和等效摆长L的值即可求出重力加速度.
∴y/x=ω2x/2g. ∴ g=ω2x2/2y.
将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.
六.用牛顿第二定律
1.标有刻度的粗细均匀的U型管装有适量的水固定在小车上,用不计质量的弹簧秤拉着小车在光滑水平面上作匀加速运动,弹簧秤读数为F,用天平测出整个小车装置的质量为M,小车运动时两液面高度差为Δh,U型管两管相距为L.
由机械能守恒定律可得mgh= ,则有g= 。
2.利用功能原理测量重力加速度.
用一根单摆线连接一铁球,固定另一端将小球放在固定点的水平线上,让小球做圆周运动,在固定点正下方放一光电门测量小球的速度.用尺测量固定点到光电门的长度h.再由功能原理mgh= . 可得g
九.用液柱的压强p=ρgh和有关气体实验定律
3.在小车上固定一个“⊥”形支架,上面装有量角器.量角器的圆心处挂有一重锤线,如图6所示.用天平测出整套装置的质量M,测力计质量不计,用测力计拉着小车在光滑的水平面上作匀加速运动时,测力计读数为F,重锤线与竖直方向夹角为α,整套装置的加速度为a=F/M,摆球受重力mg和绳子张力T,其合力产生加速度a.即mgtgα=ma,∴g=a/tgα=F/Mtgα.将所测F、M、α代入即可求得g
设U型管水平部分横截面积为S,则这段液体质量为m=ρ·S·L,ρ为水的密度.整个系统以加速度a=F/M沿水平方向运动,作用在该段水的合作力应为F=ma=ρ·S·LF/M.这个合外力由两臂液柱的压力差提供,即F=ρ·g·S·Δh.所以ρ·g·S·Δh=ρ·S·LF/M.由此可得:g=F·L/M·Δh,将所测F、L、M、Δh代入可求得g值.
取半径为R的玻璃杯,内装适当的液体,固定在旋转台上.旋转
台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面.重力加速度的计算公式推导如下:
取液面上任一液元A,它距转轴为x,质量为m,受重力mg、弹力N.由动力学知:
Ncosα-mg=0(1)
Nsinα=mω2x (2)
两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,
由于物体做竖直上抛运动时,受到空气阻力的影响,会产生一定的误差。因此,做该实验时可让该小物体在长真空管中做竖直上抛运动,时间测量可用光电技术。
2):利用平抛运动的频闪照片来测量
A、B、C三点为连续拍摄的小球三个位置,设频闪周期为T,测出AB竖直高度差为△y1,B、C竖直高度差为△y2,则有△y2-△y1=gT2,即得g=(△y2-△y1)/T2。
2.利用光电门和自由下落的球来测量
使用器材如下:刻度尺一把,带有光电计时器的实验板一块(在平板两端各有一个光控门,同时还配有其专用的直流电源、导线、重锤线、滑块。该仪器可用来测量物体从一个光电门运动到另一个光电门的时间),支架(能满足实验所需要的固定作用)
实验时先将带有光电计时器的实验板用支架竖直架稳,用刻度尺测量出两个光控门之间的距离s,再将小球从上面的一个光电门处自由释放,读出下落时间t。根据自由落体公式s=gt2/2则可求得g。
五.圆周运动
1.用圆锥摆测量
所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h,用秒表测出摆球n转所用的时间t,则摆球角速度ω=2πn/t摆球作匀速圆周运动的向心力F=mgtgθ,而tgθ=r/h所以mgtgθ=m r由以上几式得:g=4π2n2h/t2.
2.离心运动
实验设计:取一根长约60㎝,两端开口的均匀细玻璃管,一把米尺,可以在水池边设法测出当地的重力加速度(大气压强已由气压计读出为p0,水的密度为ρ)。其测量步骤如下:
5.用打点计时器测量
所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.
将仪器装置好,使重锤作自由落体运动.选择理想纸带,找出起始点0,数出时间为t的P点,用米尺测出OP的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.
6 光电门自由落体法
重力加速度是中学物理中一个常用的物理量,如何测量重力加速度呢?教材中只介绍了利用单摆来测量重力加速度一种方法。然而,近年来高考中有关物理实验的考查已不再拘泥于教材,更重视考查学生创新能力的意识,体现了理科综合考试“综合运用知识的创新意识和能力”的目标。那么,我们能不能不拘泥于教材而设计出一些其他的方法来测量重力加速度呢?以下是我根据以往的教学实践总结出来的几种方案,供大家参考。
2.将1中的U型管换成有刻度的玻璃缸内径为D,其它条件不变,水与小车一起作匀加速运动时,液面上下高差为Δh,这时测力计的读数为F,整套装置质量为M,加速度a=F/M.
在液体斜面上取一微小体积元,设其质量为m,所受重力为mg,它还受到下面液体给予的支持力N,这两个力的合力是产生加速度a的合力,即mg·tgα=ma.又tgα=Δh/D,所以g=F·D/M·Δh,将所测D、F、M、Δh代入即可求g.
2)、斜面不光滑(先测出斜面与木块间的动摩擦因数μ)
让小木块沿动摩擦因数为μ的斜面由顶端滑至底端,对小木块重新进行受力分析可知,沿斜面方向的合力F=mgsinθ-μmgcosθ。由牛顿第二定律可得小木块沿斜面方向的加速度a=gsinθ-μgcosθ。
再由l= sinθ= cosθ=
则有g=
同样,只要测出斜面的长度l,斜面的高度h,小木块由斜面顶端滑至底端所需时间t以及小木块与斜面间的动摩擦系数μ,就可测出重力加速度g。
四.物理摆
1.用单摆测量
单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成.在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,在平衡位置放一个光电门,测小球十次经过光电门所用的时间.重复以上操作.计算出周期T的平均值.再由 L.得出重力加速度g.将所测的n、t、h代入即可求得g值。注:若无法确定小球重心,可测量两次摆线长用g=求g。
根据运动学,仅受重力作用的初速度为零的“自由”落体,,则其位移方程可表示为:S=1/2at2其中,S是该自由落体运动的位移,t是通过这段位移所用的时间。根据公式可求出g。但是在实际测量时,很难测定该自由落体开始运动的时刻,因此这种方法难以实现。根据上述公式,令y=S/t可以看出y(t)是一个一元函数。若光电门A的位置不变,移动光电门B,即S取一系列给定值,同样测得一系列t值。只要测量两组数据,就可以求出g这样可以作出y~t实验曲线,曲线的斜率即g,曲线与y轴的交点坐标即为v0。设光电门A、B间的距离为 ,球下落到A门时的速度为v0,通过A、B间的时间为 ,则成立: (1);两边除以 ,得: (2);设 , ,则: (3);这是一直线方程,当测出若干不同 的 值,用 和 进行直线拟合,设所得斜率为 ,则由 可求出 ,
七.根据万有引力定律
实验设计:设想当宇宙飞船进入靠近地球表面的圆形轨道绕行时,受到地球的万有引力提供向心力,则有GMm/R2=mg=4mπ2R/T2,即g=4π2R/T。宇航员通过秒表测出宇宙飞船绕行周期T,查出地球的半径R,由g=4π2R/T,就可以测出地球表面的重力加速度。