电路分析基础[第三章含耦合电感的电路分析]课程复习

电路分析基础[第三章含耦合电感的电路分析]课程复习
电路分析基础[第三章含耦合电感的电路分析]课程复习

第三章 含耦合电感的电路分析

3.2.1耦合电感元件

一、名词解释

(1)磁耦合:通电线圈之间,通过彼此的磁场相互联系的现象。

(2)耦合线圈(互感线圈):存在磁耦合的线圈。

(3)耦合系数K1表示线圈磁耦合的紧密程度,定义为

式中,L1、L2为自感系数,M为两线圈间的互感系数。

(4)同名端:如图3.2.1所示。

当电流i1、i2分别从两线圈的两个端点输入时,若互感对自感磁链有增强作用,此对端子为同名端。如图3.2.1中1与2(或1'或2')为同名端。

二、耦合电感的电压与电流关系

如图3.2.1所示。

3.2.2含耦合电感电路的分析方法

含有耦合电感的电路与一般电路的区别仅在于耦合电感中除存在电感电压外,还存在互感电压。因此,在分析含有耦合电感的电路时,只要处理好互感电压及其作用,其余的就与一般电路的分析方法相同。为了分析方便,现将几种耦合电路列表进行比较,参见表3.2所示。

3.2.3空心变压器

一、空心变压器

空心变压器是由两个耦合线圈绕在一个共同的芯子上制成的电气设备,接电源的线圈称为初级线圈或原边线圈,接负载的线圈称为次级线圈或副边线圈,而芯子是由非铁磁材料制成的。变压器通过耦合作用,将原边的输入传递到副边输出。

二、空心变压器的原、副边电压方程

图3.2.2为空心变压器原理图,其原、副边电压方程为

式中,Z11为原边回路自阻抗,Z11=R1+jωL1;Z22为副边回路自阻抗,Z22=R2+jωL2+ZL;Z12、Z21为原、副边回路间互阻抗,Z12=Z21±jωM。

三、原、副边回路的反映阻抗

1.原边回路的输入阻抗

它是从图3.2.2中电源端1-1'看进去的阻抗,由两部分组成:一部分为原边回路自阻抗Z11;另一部分是副边回路在原边回路中的反映阻抗,即

该反映阻抗相当于副边回路在原边回路中增加了一个阻抗——Z r12。

2.副边回路中的反映阻抗

它是从负载端2—2'向左看进去的戴维南等效电路中阻抗中的一部分,是原边回路在副边回路中的反映,引入该反映阻抗后,便可得到副边的等效电路,进而直接求得副边电流及负载的电压和功率。

注意:反映阻抗Z r12、Z r21与同名端是无关的。

3.2.4理想变压器

一、理想变压的条件

(1)耦合系数为1,即

(2)变压器本身无损耗。即任一时刻,理想变压器吸收的瞬时功率恒等于零;

(3)理想变压器变比n与原副绕组的电感L1和L2的关系为

由上述条件可知:理想变压器与电感及耦合电感不同,它不是储能元件,也不是记忆元件;与电阻也不同,它不是耗能元件。因此,描述理想变压特性的参数只有一个——变比n。

二、理想变压器的特性方程

理想变压器的电路符号如图3.2.3所示。

由此得出的特性方程为

方程中的“±”号必须根据u1、u2和i1、i2的参考方向同名端的关系确定。如果u1和u2与同名端极性相同时,则u1、u2关系式取“+”号,反之取“-”号。如果i1、i2均从同名端流入(或流出),则i1、i2关系式中取“-”号,否则取“+”号。特性方程表明了变压器有变换电压和变换电流的作用。

三、理想变压器变换阻抗的性质

理想变压有变换电压和电流的作用。这种变比变换的作用还可以反映在阻抗的变换上。当副边线圈终端接有负载阻抗Z L时,对原边来说,相当于在原边接了一个阻抗。其阻抗的值为n2Z L,即Z'L=n2Z L。折合阻抗的计算与同名端无关。这就是理想变压器变换阻抗的性质。在电子技术中,常利用变压器的变换阻抗的作用来实现阻抗匹配。

电路分析基础作业参考解答

电路分析基础作业参考 解答 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。

(b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。 补充题: 1. 如图1所示电路,已知图1 解:由题得 I 3 2=0

含有耦合电感的电路(学生用)

第十章 含有耦合电感的电路 §1. 耦合电感器与互感电压 一、耦合电感器 ──如果电感器L 1,L 2之间有公共磁通相交链,这两个电感器就构成一个耦合电感器。 1、11φ21φ1L φ 电感器2与1的互感(mutual inductance ) 1 21 212121i N i M φψ=? 注2,21φ的方向与电感器2导线的绕向无关。 2 2’

1=k ──全耦合电感器(相当于021==L L φφ无漏磁通) 实际中: 当双线并绕时,耦合最强,1→k 。 当两个耦合电感器相距甚远,或彼此垂直时,其间耦合较弱,0→k 。

? ??><称强耦合时称弱耦合时,5.0,5.0k k 1ψ2ψ 1ψ13331333Mi i L -=-=ψψψ 表明:在这种绕线方式中,互感磁链与自感磁链方向相反,称为互感的“削弱”作用。 ΦΦ3’ 3

问题:在电路分析中,在确定互感电压时,是否一定要知道耦合电感器的实际绕向呢? 同名端──在耦合电感器各自一个端钮上通进电流,如果它们产生的互感磁通同方向,这两个端钮就称为同名端。在同名端上打上标记“。”、“.”、“*”或“?”均可。 标有同名端,并用参数表示的耦合电感器的电路符号为: 3. 21i i 、为时变函数时: dt di M dt di L dt Mi i L d dt d u 2 1121111)(+=+==ψ dt di M dt di L dt Mi i L d dt d u 1 2212222)(+=+==ψ

当21i i 、为同频率正弦量时,在正弦稳态情况下: 2 111I M j I L j U ωω+=? 1 222I M j I L j U ωω+=? M ω──互感抗

耦合电感的剖析

电感分析: 电感元件是电感线圈的理想化模型,用于反映电路中存储磁场能量的物理现 象。当线圈中通过电流i(t)时,就会在线圈内外产生磁通? (t) ,建立起磁场,其中储存有以磁场形式存在、由电能转化而来的磁场能量。 如果线圈的匝数为N,则与线圈交链的总磁通称为磁链,记为Ψ (t) ,有 Ψ(t)=N? (t) ,对于电感而言,磁通和磁链均是流过线圈自身的电流i(t)产 生的,所以成为自感磁通和自感磁链,简称为磁通和磁链,他们均是电流i(t)的函数。

Ψ(t )=L ?i (t ) U (t )=-e (t )= d ψ(t )dt = Nd ?(t ) dt =L di (t )dt 其中,U (t )是电感的端电压,e (t )是 感应电动势。一般电流和端电压关联,和感应电动势相反。 上面解释了,电感电流的跃变必然伴随着电感储能的跃变。电感储能与电压无关,和电流有关。 耦合电感: 电感仅仅考虑了流过一个线圈本身的时变电流所产生的磁通在自己内部引起的感应电压即自感电压。但是根据法拉第电磁感应定律,若两个或多个线圈相互邻近,则任一个线圈所载电流变化所产生的磁通,不仅能和自身交链,引起自感电压,而且还会有一部分与邻近的线圈交链,在该线圈上产生互感电压。 耦合电感与电感在开关电源中功能分析:对于电感,感值和匝数恒定,那么伏秒定则的含义是电感磁芯的磁通不变(或者是电流变化不变)。根据Ψ t =N ?(t ),Ψ t =L ?i (t ),电感端电压感应电动势U (t )=-e (t )= d ψ(t )dt =L di (t )dt 。可得U L ?t = d ψ(t )?t Ldt ===》d ψ t =?ψ t =?N ?(t ),由于电感匝 数恒定,事实上是磁通变化量??(t )恒定。 而在耦合电感中由于值存在原边、副边、互感,匝数有原边匝数、副边匝数,那么伏安关系变为磁通变化量的恒定。 耦合电感:

第三章电路的基本分析方法

第三章电阻电路的一般分析 一、教学基本要求 电路的一般分析是指方程分析法,是以电路元件的约束特性(VCR)和电路的拓补约束特性(KCL、KVL)为依据,建立以支路电流或回路电流或结点电压为变量的电路方程组,解出所求的电压、电流和功率。方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。 本章学习的内容有:电路的图,KCL和KVL的独立方程数,支路电流法,网孔电流法,回路电流法,结点电压法。 本章内容以基尔霍夫定律为基础。介绍的支路电流法、回路电流法和节点电压法适用于所有线性电路问题的分析,在后面章节中都要用到。 内容重点: 会用观察电路的方法,熟练应用支路电流法,回路电流法,结点电压法的“方程通式”写出支路电流方程,回路电流方程,结点电压方程,并求解。 预习知识: 线性代数方程的求解 难点: 1. 独立回路的确定 2. 正确理解每一种方法的依据 3. 含独立电流源和受控电流源的电路的回路电流方程的列写 4. 含独立电压源和受控电压源的电路的结点电压方程的列写 三、教学内容 3.1电路的图 一、电阻电路的分析方法 1、简单电路 利用等效变换,逐步化简电路。 2、复杂电路 不改变电路的结构, 选择电路变量(电流和/或电压),根据KCL和KVL以及元件的电流、电压关系,建立起电路变量的方程,从方程中解出电路变量。 电路的图: 将电路图中的元件略去, 只反映出元件的连接情况的图(*拓扑关系)(电压源、电阻的串联和电流源、电阻的并联都看成一条支路。)

电路分析基础作业参考解答

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 V U 52515=?-= 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。 (b )解:标注电流如图(b )所示。 由KCL 有 A I 426=-= 故 V I U 8422=?=?= 由于电流源的功率为 ) (a )(b

W U P 488661-=?-=?-= 电阻的功率为 W I P 32422222=?=?= 外电路的功率为 W U P 168223=?=?= 且 01632483213 1 =++-=++=∑=P P P P k k 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 19.025 10i i === 所以 A i 222.29 209.021≈== V i i u ab 889.09 829204)(41≈=??? ??-?=-= 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 ?????=+?? ? ?? -=+01010160050006000201000U I U I U I ) (b ) (a

含有耦合电感的电路

第十章 含有耦合电感的电路 本章重点: 1.互感及互感电压 2.互感线圈的串并联 3.理想变压器的变换作用 本章难点:空心变压器的等效电路 本章内容 §10-1 互感 1、概念:互感、总磁链、同名端。 2、耦合线圈的电压、电流关系) 设,u i 为关联参考方向: (1) 121111u u L u +=±== dt di M dt di dt d 211ψ 222122u u L u +=+±== dt di dt di M dt d 212ψ 式中:u 11=L 1 dt di 1 ,u 22=L 2dt di 2称为自感电压; u 22=±M dt di 1,u 12=±M dt di 2称为互感电压(互感电压的正负,决定于互感电压“+”极性端子,与产生它的电流流进的端子为一对同名端,则互感电压为“+”号). (2) 相量式 1212111j L L M U I j M I jX I J Z I ωω? ? ? ? ? =±=+ 1221222j L L M U M I j I jX I J Z I ωω? ? ? ? ? =±+=+ 式中M Z j M ω=为互感抗。 3、耦合因数: 1def k == =≤ §10-2 含有耦合电感电路的计算 1、耦合电感的串联 (1)反向串联:把两个线圈的同名端相连称为反接。由(a)图知:

111 11(L -M )=(L -M)di di di u R i R i dt dt dt =++ 22222(L -M )=(L -M)di di di u R i R i dt dt dt =++ 122212()(L +L -2M)di u u u R R i dt =+=++ 其相量式为(b 图去耦等效电路) 12 12()(L +L -2M)U R R I j I ω=++&&& 1212()(L +L -2M)Z R R j ω=++ (2)顺向串联;把两个线圈的异名端相连,称为顺接。 1212()(L +L +2M)Z R R j ω=++ 2、耦合电感线圈并联 (1)同侧并联电路:把两个耦合电感的同名端连在同一个结点上,称为同侧并联电路,由(a) 图得: ? ? ? 1211( )U R j L I j M I ωω=++; ? ? ? 1222 ()U j M I R j ML I ωω=++ i + ?? R 1 R 2 L 1 L 2 + + — — —U 1 U 2 i + R 1 R 2 L 1-M L 2-M + + — — U 1 U 2 — (a) (b) i ? + — ???U &j M ω1j L ω2 j L ω3I &1I &2 I &1R 20 ? + — ?U &3 j L ω() 1 j L M ω-() 2 j L M ω-3I &1 I & 2 I &1R 2 R 0 (a ) (b ) ① ① 1'

电路分析基础答案周围版第三章

()()1212331 1891842181833200.19A A I I I I I I U U I ?+-=-? -++-=-?? =??=-?电路分析基础答案周围版 3-2.试用节点分析法求图示电路中的电压ab U 。 解:选节点c 为参考点,列写节点方程: a 点:111413323a b U U ?? +-=-= ??? b 点:11141413322a b U U ?? -++=+-=- ??? 整理得:251090 41012 a b a b U U U U -=?? -+=-?; 解得:267a U V = ;2 7 b U V =; 3.429ab a b U U U V =-= *3-4.试用节点分析法求图示电路中的电压1U 。 解:选节点b 为参考点,列写节点方程: 节点a :3a U I = 节点c :111117986 642a c U U ?? -+++=-= ?? ? 补充:2c U I =- 解得:487c U V = ;72 7 a U V =-;117.14a c U U U V =-=- 3-8. 试用回路分析法求图示电路中的电流1I 。 解:列写回路方程: ()()()()()1231233 53223210 2323414253I I I I I I I ++-+-=?? -+++++++=-??=? 整理得:1231233 105210510653I I I I I I I --=?? -++=-??=?, 解得:10.6I A = *3-11.试用回路分析法求图示电路中的电流3I 。 解: 题图3-2 题图3-4 Ω I 10V 题图3-8 题图 3-11

第十章含耦合电感的电路习题解答.doc

第十章(含耦合电感的电路)习题解答 一、选择题 1.图10—1所示电路的等效电感=eq L A 。 A.8H ; B.7H ; C.15H ; D.11H 解:由图示电路可得 121 d d 2d d ) 63(u t i t i =++, 0d d 4d 221=+t i t i d 从以上两式中消去 t i d d 2 得t i u d d 811=,由此可见 8=eq L H 2.图10—2所示电路中,V )cos(18t u s ω=,则=2i B A 。 A.)cos(2t ω; B.)cos(6t ω; C.)cos(6t ω-; D.0 解:图中理想变压器的副边处于短路,副边电压为0。根据理想变压器原副边电压的关系可知原边的电压也为0,因此,有 A )cos(29 ) cos(18 1t t i ω=ω= 再由理想变压器原副边电流的关系n i i 121= (注意此处电流2i 的参考方向)得 A )cos(612t ni i ω== 因此,该题应选B 。 3.将图10─3(a )所示电路化为图10—3(b )所示的等效去耦电路,取哪一组符号取决于 C 。 A.1L 、2L 中电流同时流入还是流出节点0; B.1L 、2L 中一个电流流入0,另一个电流流出节点0 ; C.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向无关; D.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向有关。 解:耦合电感去耦后电路中的M 前面是取“+”还是取“–”,完全取决于耦合电感的同名端是在同侧还是在异侧,而与两个电感中电流的参考方向没有任何关系。因此,此题选C 。

电路分析基础[第三章含耦合电感的电路分析]课程复习

第三章 含耦合电感的电路分析 3.2.1耦合电感元件 一、名词解释 (1)磁耦合:通电线圈之间,通过彼此的磁场相互联系的现象。 (2)耦合线圈(互感线圈):存在磁耦合的线圈。 (3)耦合系数K1表示线圈磁耦合的紧密程度,定义为 式中,L1、L2为自感系数,M为两线圈间的互感系数。 (4)同名端:如图3.2.1所示。 当电流i1、i2分别从两线圈的两个端点输入时,若互感对自感磁链有增强作用,此对端子为同名端。如图3.2.1中1与2(或1'或2')为同名端。 二、耦合电感的电压与电流关系

如图3.2.1所示。 3.2.2含耦合电感电路的分析方法 含有耦合电感的电路与一般电路的区别仅在于耦合电感中除存在电感电压外,还存在互感电压。因此,在分析含有耦合电感的电路时,只要处理好互感电压及其作用,其余的就与一般电路的分析方法相同。为了分析方便,现将几种耦合电路列表进行比较,参见表3.2所示。

3.2.3空心变压器 一、空心变压器 空心变压器是由两个耦合线圈绕在一个共同的芯子上制成的电气设备,接电源的线圈称为初级线圈或原边线圈,接负载的线圈称为次级线圈或副边线圈,而芯子是由非铁磁材料制成的。变压器通过耦合作用,将原边的输入传递到副边输出。

二、空心变压器的原、副边电压方程 图3.2.2为空心变压器原理图,其原、副边电压方程为 式中,Z11为原边回路自阻抗,Z11=R1+jωL1;Z22为副边回路自阻抗,Z22=R2+jωL2+ZL;Z12、Z21为原、副边回路间互阻抗,Z12=Z21±jωM。 三、原、副边回路的反映阻抗 1.原边回路的输入阻抗

电路分析基础第三章作业答案

§3-1 叠加定理 3-l 电路如题图3-l 所示。(1)用叠加定理计算电流I 。(2)欲使0 =I ,问S U 应改为何值。 题图3-1 解:(1)画出独立电压源和独立电流源分别单独作用的电路如图(a)和图(b)所示。由此求得 A 3 A 1633 A 263V 18" ' "' =+==Ω +ΩΩ= =Ω+Ω= I I I I I (2)由以上计算结果得到下式 V 9A 1)9(0 A 191 S S " ' -=?Ω-==+?Ω = +=U U I I I 3-2用叠加定理求题图3-2电路中电压U 。 题图3-2 解:画出独立电流源和独立电压源分别单独作用的电路如图(a)和图(b)所示。由此求得

V 8V 3V 5 V 3V 9) 363 V 53A 3) 31(55 " ' " ' =+=+==?Ω+ΩΩ= =Ω??Ω+Ω+ΩΩ=U U U U U 3-3用叠加定理求题图4-3电路中电流i 和电压u 。 题图3-3 解:画出独立电压源和独立电流源分别单独作用的电路如图(a)和图(b)所示。由此求得 V )3cos 104( A )3cos 52( V 3cos 10)2(A 3cos 53cos 123 233 232155 4V V 86 36326 36 3 A 263632V 8 " '" ' " ""' ' t u u u t i i i t i u t t i u i +=+=-=+==Ω-=-=?+-? +?+ += =?Ω +?+ΩΩ+?==Ω+?+Ω= 3-4用叠加定理求题图3-4电路中的电流i 和电压u 。 题图3 -4 解:画出独立电压源和独立电流源分别单独作用的电路如图 (a)和图(b)所示。由此求得

天津理工电路习题及答案第十章含耦合电感电路

第十章 耦合电感和变压器电路分析 一 内容概述 1 互感的概念及VCR :互感、同名端、互感的VCR 。 2 互感电路的分析方法: ①直接列写方程:支路法或回路法; ②将互感转化为受控源; ③互感消去法。 3 理想变压器: ①理想变压器的模型及VCR ; ②理想变压器的条件; ③理想变压器的阻抗变换特性。 本章的难点是互感电压的方向。具体地说就是在列方程时,如何正确的计入互感电压并确定“+、-”符号。 耦合电感 1)耦合电感的伏安关系 耦合电感是具有磁耦合的多个线圈 的电路模型,如图10-1(a)所示,其中L 1、 L 2分别是线圈1、2的自感,M 是两线圈之 间的互感,“.”号表示两线圈的同名端。 设线圈中耦合电感两线圈电压、电流 选择关联参考,如图10-1所示,则有: dt di M dt di L )t (u dt di M dt di L )t (u 1 2222 11 1±=±= 若电路工作在正弦稳态,则其相量形式为: . 1 . 2. 2. 2. 1. 1I M j I L j U I M j I L j U ωωωω±=±= 其中自感电压、互感电压前正、负号可由以下规则确定:若耦合电感的线圈电压与电流的参考方向为关联参考时,则该线圈的自感电压前取正号(如图10-l (a)中所示)t (u 1的自感电压),否则取负号;若耦合电感线圈的线圈电压的正极端与该线圈中产生互感电压的另一线圈的 图10-1

电流的流入端子为同名端时,则该线圈的互感电压前取正号(如图10-l (a)所示中)t (u 1的互感电压),否则取负号(如图10-1(b)中所示)t (u 1的互感电压)。 2)同名端 当线圈电流同时流人(或流出)该对端钮时,各线圈中的自磁链与互磁链的参考方向一致。 2 耦合电感的联接及去耦等效 1)耦合电感的串联等效 两线圈串联如图10-2所示时的等效电感为: M 2L L L 2 1eq ±+= (10-1) (10-1)式中M 前正号对应于顺串,负号对应于反串。 2)耦合电感的三端联接 将耦合电感的两个线圈各取一端联接起来就成了耦合电感的三端联接电路。这种三端联接的电路也可用3个无耦合的电感构成的T 型电路来等效,如图10-3所示 图10-2 图10-3

电路第10章---含有耦合电感的电路汇总

§10.1 互感 耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感 两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流 i 2 时,不仅在线圈2中产生磁通f 22, 同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。定义互磁链: 图 10.1 ψ12 = N 1φ12 ψ21 = N 2φ21 当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链: 互感磁通链: 上式中 M 12 和 M 21 称为互感系数,单位为(H )。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和: 需要指出的是: 1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足

M12 =M21 =M 2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。 2. 耦合因数 工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义 一般有: 当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。 耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。 3. 耦合电感上的电压、电流关系 当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为: 即线圈两端的电压均包含自感电压和互感电压。 在正弦交流电路中,其相量形式的方程为 注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。以上说明互感电压的正、负: (1)与电流的参考方向有关。

电路分析基础第3章指导与解答

第3章 单相正弦交流电路的基本知识 前面两章所接触到的电量,都是大小和方向不随时间变化的稳恒直流电。本章介绍的单相正弦交流电,其电量的大小和方向均随时间按正弦规律周期性变化,是交流电中的一种。这里随不随时间变化是交流电与直流电之间的本质区别。 在日常生产和生活中,广泛使用的都是本章所介绍的正弦交流电,这是因为正弦交流电在传输、变换和控制上有着直流电不可替代的优点,单相正弦交流电路的基本知识则是分析和计算正弦交流电路的基础,深刻理解和掌握本章内容,十分有利于后面相量分析法的掌握。 本章的学习重点: ● 正弦交流电路的基本概念; ● 正弦量有效值的概念和定义,有效值与最大值之间的数量关系; ● 三大基本电路元件在正弦交流电路中的伏安关系及功率和能量问题。 3.1 正弦交流电路的基本概念 1、学习指导 (1)正弦量的三要素 正弦量随时间变化、对应每一时刻的数值称为瞬时值,正弦量的瞬时值表示形式一般为解析式或波形图。正弦量的最大值反映了正弦量振荡的正向最高点,也称为振幅。 正弦量的最大值和瞬时值都不能正确反映它的作功能力,因此引入有效值的概念:与一个交流电热效应相同的直流电的数值定义为这个交流电的有效值。正弦交流电的有效值与它的最大值之间具有确定的数量关系,即I I 2m 。 周期是指正弦量变化一个循环所需要的时间;频率指正弦量一秒钟内所变化的周数;角频率则指正弦量一秒钟经历的弧度数,周期、频率和角频率从不同的角度反映了同一个问题:正弦量随时间变化的快慢程度。 相位是正弦量随时间变化的电角度,是时间的函数;初相则是对应t=0时刻的相位,初相确定了正弦计时始的位置。 正弦量的最大值(或有效值)称为它的第一要素,第一要素反映了正弦量的作功能力;角频率(或频率、周期)为正弦量的第二要素,第二要素指出了正弦量随时间变化的快慢程度;初相是正弦量的第三要素,瞎经确定了正弦量计时始的位置。 一个正弦量,只要明确了它的三要素,则这个正弦量就是唯一地、确定的。因此,表达一

耦合电感的去耦等效方法

耦合电感的去耦等效方法的讨论 王胤旭5090309291 琦然5090309306 衎 5090309 摘要:本文主要讨论有公共连接点的两个耦合电感的简单去耦等效方法以及由此衍生的两个特例--耦合电感的串联和并联。并讨论多重耦合电感的去耦相对独立性以及某些含有复杂耦合电感电路的快速去耦等效方法。 1.有公共连接点的耦合电感的去耦等效 图示电路中, 耦合电感L1和L2 有一公共连接点 N, 根据耦合电感的性质, 可得如下方程: ?????+=+=2 21211I I L j MI j U MI j L j U BC AC ωωωω 对于节点N 有KCL 方程:0321=++I I I 上面两式整理得:2 2113 223 11)()()()(I M L j I M L j U U U MI j I M L j U MI j I M L j U BC AC AB BC AC ---=-=--=--=ωωωωωω 故可得其等效去耦电路如图2所示。 图1 耦合电感

图2 等效去耦后的电感 上述去耦过程可以用文字表述如下: 1)设互感为M 的两耦合电感具有公共的连接点(假设其同名端相连)且连接点处仅含 有三条支路, 则其去耦规则为: 含有耦合电感的两条支路各增加一个电感量为- M 的附 加电感; 不含耦合电感的另一条支路增加一个电感量为- M 的附加电感。 若为非同名端连接,只需将上述电感量M 改变符号即可。 2)若连接处含有多条支路, 则可以通过节点分裂, 化成一个在形式上仅含三条支路的节 点。 2.两个特例----耦合电感的串联和并联 2. 1 两耦合电感串联 1)若同名端连接于同一节点(即电流从异名端流入), 则构成反接串联,计算公式: M L L L eq 221-+=; 2)若非同名端连接于同一节点(即电流从同名端流入), 则构成顺接串联,计算公式: M L L L eq 221++=; 2. 2 两耦合电感的并联 1)若同名端连接于同一节点, 则构成同侧并联,计算公式:M L L M L L L eq 2212 21-+-=; 2)若非同名端连接于同一节点, 则构成异侧并联,计算公式:M L L M L L L eq 2212 21++-=;

《电路分析基础》第3章指导与解答

第3章单相正弦交流电路的基本知识 前面两章所接触到的电量,都是大小和方向不随时间变化的稳恒直流电。本章介绍的单相正弦交流电,其电量的大小和方向均随时间按正弦规律周期性变化,是交流电中的一种。这里随不随时间变化是交流电与直流电之间的本质区别。 在日常生产和生活中,广泛使用的都是本章所介绍的正弦交流电,这是因为正弦交流电在传输、变换和控制上有着直流电不可替代的优点,单相正弦交流电路的基本知识则是分析和计算正弦交流电路的基础,深刻理解和掌握本章内容,十分有利于后面相量分析法的掌握。 本章的学习重点: ●正弦交流电路的基本概念; ●正弦量有效值的概念和定义,有效值与最大值之间的数量关系; ●三大基本电路元件在正弦交流电路中的伏安关系及功率和能量问题。 3.1 正弦交流电路的基本概念 1、学习指导 (1)正弦量的三要素 正弦量随时间变化、对应每一时刻的数值称为瞬时值,正弦量的瞬时值表示形式一般为解析式或波形图。正弦量的最大值反映了正弦量振荡的正向最高点,也称为振幅。 正弦量的最大值和瞬时值都不能正确反映它的作功能力,因此引入有效值的概念:与一个交流电热效应相同的直流电的数值定义为这个交流电的有效值。正弦交流电的有效值与它的最大值之间具有确定的数量关系,即I 。 I2 m 周期是指正弦量变化一个循环所需要的时间;频率指正弦量一秒钟内所变化的周数;角频率则指正弦量一秒钟经历的弧度数,周期、频率和角频率从不同的角度反映了同一个问题:正弦量随时间变化的快慢程度。 相位是正弦量随时间变化的电角度,是时间的函数;初相则是对应t=0时刻的相位,初相确定了正弦计时始的位置。 正弦量的最大值(或有效值)称为它的第一要素,第一要素反映了正弦量的作功能力;角频率(或频率、周期)为正弦量的第二要素,第二要素指出了正弦量随时间变化的快慢程度;初相是正弦量的第三要素,瞎经确定了正弦量计时始的位置。 一个正弦量,只要明确了它的三要素,则这个正弦量就是唯一地、确定的。因此,表达一

含有耦合电感的电路

第5章 含有耦合电感的电路 内容提要 本章主要介绍耦合电感的基本概念和基本特性,同时介绍同名端的概念及使用方法,重点介绍采用消耦法求解含有耦合电感电路的分析计算方法,最后介绍空心变压器及理想变压器的工作原理,特性方法式及其分析计算方法。 §5.1 互感 当一个线圈通过电流时,在线圈的周围建立磁场,如果这个线圈邻近还有其它线圈,则载流线圈产生的磁通不仅和自身交链,而且也和位于它附近的线圈交链,则称这两线圈之间具有磁的耦合或说存在互感。载流线圈的磁通与自身线圈交链的部分称为自感磁通,与其它线圈交链的部分称为互感磁通。 5.1.1互感及互感电压 如图5-1所示,两组相邻线圈分别为线圈I 和线圈Ⅱ,线圈I 的匝数为1N ,线圈Ⅱ的匝数为2N 。设电流1i 自线圈I 的“1”端流入,按右手螺旋定律确定磁通正方向如图5-1所示,由1i 产生磁通11?全部交链线圈I 的1N 匝线圈,而其中一部分21?,不仅交链线圈I 而且交链线圈Ⅱ的2N 匝线圈,我们定义11?是线圈I 的自感磁通,21?是线圈I 对线圈Ⅱ的互感磁通。这里的线圈I 通过电流1i 产生了磁通,我们将这种通有电流的线圈称为载流线圈或施感线圈,流经线圈的电流称为施感电流。同理如果在线圈Ⅱ中通入电流2i ,由电流2i 也会产生线圈Ⅱ的自感磁通22?和线圈Ⅱ对线圈I 的互感磁通12?。 说明:磁通(链)下标的第一个数字表示该磁通链所在线圈的编号,第二个数字表示产生该磁通(链)的施感电流的编号,接下来研究的使用双下标符号的物理量,其双下标的含义均同上。 当载流线圈中的施感电流随着时间变化时,其产生的磁通链也随之变化。根据法拉第电磁感应定律,这种时变磁通在载流线圈内将会产生感应电压。 设通过线圈I 的总磁通为1?,则有 12111???+= (5-1) 其中自感磁通11?与1N 匝线圈交链,对于线性电感则有自感磁通链11ψ为 1111111N L i ψφ== (5-2) 式(5-2)中,1L 称为线圈I 的自感系数,简称自感,单位为亨利简称亨(H )。

电路分析基础第3章指导与解答

电路分析基础第3章指导与解答

第3章单相正弦交流电路的基本知识 前面两章所接触到的电量,都是大小和方向不随时间变化的稳恒直流电。本章介绍的单相正弦交流电,其电量的大小和方向均随时间按正弦规律周期性变化,是交流电中的一种。这里随不随时间变化是交流电与直流电之间的本质区别。 在日常生产和生活中,广泛使用的都是本章所介绍的正弦交流电,这是因为正弦交流电在传输、变换和控制上有着直流电不可替代的优点,单相正弦交流电路的基本知识则是分析和计算正弦交流电路的基础,深刻理解和掌握本章内容,十分有利于后面相量分析法的掌握。 本章的学习重点: ●正弦交流电路的基本概念; ●正弦量有效值的概念和定义,有效值与最大 值之间的数量关系; ●三大基本电路元件在正弦交流电路中的伏安 关系及功率和能量问题。 3.1 正弦交流电路的基本概念 1、学习指导 (1)正弦量的三要素 正弦量随时间变化、对应每一时刻的数值称为瞬时值,正弦量的瞬时值表示形式一般为解析式或波形图。正弦量的最大值反映了正弦量振荡的正向最高点,也称为振幅。 正弦量的最大值和瞬时值都不能正确反映它的作功能力,因此引入有效值的概念:与一个交流电热效应相同的直流电的数值定义为这个交流 38

39 电的有效值。正弦交流电的有效值与它的最大值之间具有确定的数量关系,即I I 2m 。 周期是指正弦量变化一个循环所需要的时间;频率指正弦量一秒钟内所变化的周数;角频率则指正弦量一秒钟经历的弧度数,周期、频率和角频率从不同的角度反映了同一个问题:正弦量随时间变化的快慢程度。 相位是正弦量随时间变化的电角度,是时间的函数;初相则是对应t=0时刻的相位,初相确定了正弦计时始的位置。 正弦量的最大值(或有效值)称为它的第一要素,第一要素反映了正弦量的作功能力;角频率(或频率、周期)为正弦量的第二要素,第二要素指出了正弦量随时间变化的快慢程度;初相是正弦量的第三要素,瞎经确定了正弦量计时始的位置。 一个正弦量,只要明确了它的三要素,则这个正弦量就是唯一地、确定的。因此,表达一个正弦量时,也只须表达出其三要素即可。解析式和波形图都能很好地表达正弦量的三要素,因此它们是正弦量的表示方法。 (2)相位差 相位差指的是两个同频率正弦量之间的相位之差,由于同频率正弦量之间的相位之差实际上就等于它们的初相之差,因此相位差就是两个同频率正弦量的初相之差。注意:不同频率的正弦量之间是没有相位差的概念而言的。 相位差的概念中牵扯到超前、滞后、同相、反相、正交等术语,要求能够正确理解,要注意超前、滞后的概念中相位差不得超过±180°;同相即两个同频率的正弦量初相相同;反相表示两个同频率正弦量相位相差180°,注意180°在解析式中相当于等号后面的负号;正交表示两个同频率正弦量之间的相位差是90°。

相关文档
最新文档