扫描电镜的结构及典型试样形貌观察

合集下载

扫描电镜的结构及典型试样形貌观察

扫描电镜的结构及典型试样形貌观察

扫描电镜的结构及典型试样形貌观察扫描电镜(Scanning Electron Microscope, SEM)是目前应用最广泛的一种表面形貌观察技术。

通过SEM,可以对各种材料的形貌进行高分辨率、高对比度的观察和分析,从而更全面地了解材料的微观结构和性质。

SEM的主要组成部分包括电子枪、电子束轨迹控制系统、光学系统、样品舞台、探测器和显示器等。

SEM的电子枪是形成电子束的核心部件。

它由一个发射体(一般是热阴极)和一个聚焦体组成,通过电子发射和电子束聚焦的机制,将电子束聚焦到非常小的尺寸,以实现高分辨率的成像。

光学系统主要包括扫描线圈和扫描电镜柱。

扫描线圈控制电子束在样品表面扫描运动,而扫描电镜柱则控制电子束的出射角度和位置,以保证电子束能够有效地扫描样品表面,并将所得到的信号转换为图像。

样品舞台是用来固定和定位样品的平台。

在样品舞台上,可以放置不同类型的试样,如金属、陶瓷、生物样品等。

通常,样品需要通过真空冷冻干燥、蒸镀金或碳等处理方式来提高电子束的穿透性和对比度。

探测器是SEM中的重要部件,用于检测从样品表面发射的信号。

常用的探测器有二次电子检测器(SE)和反射电子检测器(BSE)。

二次电子是由于电子束与样品交互作用所产生的,用于观察表面的形貌和纹理。

反射电子则是通过烧蚀物质等特殊技术,将电子束与样品发生散射后的反向电子进行探测,用于观察样品的组织结构和化学成分。

SEM对各种尺度的试样形貌观察具有广泛的应用。

下面以几种典型的试样形貌观察为例进行介绍:1.金属材料的表面形貌观察:SEM可以观察到金属表面的晶粒形貌、晶界、裂纹、孔洞等细微结构,从而分析金属材料的晶体生长、晶界迁移和应力等性质。

2.生物样品的形貌观察:通过SEM可以观察到生物样品的细胞形态、纤维结构、细菌和病毒等微观结构。

这对研究生物学、医学和食品科学等领域具有重要意义。

3.矿石和岩石的形貌观察:SEM可以观察到矿石和岩石的晶体形貌、矿物颗粒的形态和分布等特征,从而分析其成因和性质。

扫描电镜实验报告

扫描电镜实验报告

扫描电镜实验报告扫描电镜(Scanning Electron Microscope,SEM)是一种应用广泛的高分辨率显微镜,能够对样品进行表面形貌和微观结构的观测和分析。

本实验旨在通过扫描电镜对不同样品的表面形貌和微观结构进行观察和分析,从而加深对扫描电镜原理和应用的理解。

首先,我们准备了几种不同的样品,包括金属材料、植物组织和昆虫外骨骼等。

在实验过程中,我们首先对样品进行了表面处理,包括金属样品的金属镀膜处理、植物组织的冷冻干燥处理以及昆虫外骨骼的金属喷镀处理,以保证样品在扫描电镜下的观察效果。

接下来,我们将样品放置在扫描电镜的样品台上,并调整好合适的观察条件。

在观察过程中,我们发现扫描电镜能够清晰地显示样品的表面形貌和微观结构,包括金属样品的晶粒结构、植物组织的细胞结构以及昆虫外骨骼的纹理结构等。

通过对这些结构的观察和分析,我们不仅可以直观地了解样品的表面特征,还可以深入地研究样品的微观结构和性质。

在实验中,我们还发现扫描电镜具有较高的分辨率和深度信息,能够对样品进行三维观察和分析。

通过调整扫描电镜的工作参数,我们成功地获得了不同角度和深度的样品图像,进一步揭示了样品的微观结构和表面形貌。

这为我们深入理解样品的微观特征提供了重要的信息和依据。

总的来说,通过本次实验,我们深入了解了扫描电镜的原理和应用,掌握了样品的表面形貌和微观结构的观察方法,提高了对样品性质和特征的认识。

扫描电镜作为一种重要的分析工具,将在材料科学、生物学、医学等领域发挥重要作用,为科学研究和工程应用提供有力支持。

通过本次实验,我们不仅提高了对扫描电镜的认识,还对不同样品的表面形貌和微观结构有了更深入的理解。

扫描电镜的高分辨率和深度信息为我们提供了更多的观察和分析角度,有助于我们更全面地认识样品的特性和性能。

希望通过今后的实践和研究,能够更好地利用扫描电镜这一强大的工具,为科学研究和工程应用做出更多的贡献。

扫描电镜实验报告

扫描电镜实验报告

扫描电镜实验报告扫描电镜是一种高分辨率的显微镜,能够对样品进行高分辨率成像。

在本次实验中,我们使用了扫描电镜对样品进行了观察和分析。

本报告将对实验的目的、方法、结果和结论进行详细的描述和分析。

实验目的。

本次实验的主要目的是利用扫描电镜对样品进行表面形貌和微观结构的观察和分析,了解扫描电镜在材料科学和生物科学领域的应用,掌握扫描电镜的操作技巧和注意事项。

实验方法。

1. 样品制备,首先,我们准备了需要观察的样品,如金属材料、生物组织等,并对样品进行表面处理和固定。

2. 扫描电镜操作,接下来,我们将样品放入扫描电镜的样品台上,并根据仪器操作手册进行电镜的开机、预热和调试,确保仪器处于正常工作状态。

3. 观察和记录,在样品放置好并仪器调试完成后,我们通过调整扫描电镜的参数,如放大倍数、对焦等,对样品进行观察,并记录观察到的表面形貌和微观结构。

实验结果。

经过扫描电镜的观察,我们得到了样品的高分辨率图像,并对样品的表面形貌和微观结构进行了分析。

我们观察到样品表面的微观结构非常复杂,有许多微小的颗粒和纹理,这些结构对样品的性能和功能具有重要影响。

通过扫描电镜的观察,我们能够更加深入地了解样品的微观特征,为进一步的研究和分析提供了重要的参考。

实验结论。

本次实验通过扫描电镜的观察和分析,我们对样品的表面形貌和微观结构有了更加深入的了解。

扫描电镜作为一种高分辨率的显微镜,能够为材料科学和生物科学领域的研究提供重要的技术支持。

通过本次实验,我们掌握了扫描电镜的操作技巧和注意事项,为今后的科研工作打下了良好的基础。

总结。

通过本次实验,我们不仅学习了扫描电镜的操作和应用,还对样品的表面形貌和微观结构有了更深入的了解。

扫描电镜在材料科学和生物科学领域具有重要的应用价值,能够为科研工作提供重要的技术支持。

希望通过本次实验,能够对大家对扫描电镜的应用有更深入的了解,为今后的科研工作提供帮助和指导。

在本次实验中,我们通过扫描电镜对样品进行了观察和分析,了解了扫描电镜在科研领域的重要应用价值。

扫描电镜的结构原理及图像衬度观察.

扫描电镜的结构原理及图像衬度观察.

实验四扫描电镜的结构原理及图像衬度观察一实验目的1 结合扫描电镜实物,介绍其基本结构和工作原理,加深对扫描电镜结构及原理的了解。

2选用合适的样品,通过对表面形貌衬度和原子序数衬度的观察,了解扫描电镜图像衬度原理及其应用。

3 利用二次电子像对断口形貌进行观察。

二实验原理1 扫描电镜基本结构和工作原理扫描电子显微镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号.这些信号经检测器接收、放大并转换成调制信号.最后在荧光屏上显示反映样品表面各种特征的图像。

扫描电镜具有景深大、图像大体感强、放大倍数范围大连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。

图4-1为扫描电镜结构原理方框图。

扫描电镜所需的加速电压比透射电镜要低得多,一般约在1—30kV、实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。

扫描电镜的图像放大倍数在一定范围内,(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。

扫描电镜镜的光光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束.作为使样品产生各种物理信号的激发源。

扫描电镜最常使用的是二电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。

图4-1 扫描电镜结构原理方框图扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。

这一部分的实验内容可参照教材(材料分析方法),并结合实验室现有的扫描电镜进行,在此不作详细介绍。

主要介绍两种扫描电镜Quanta环境扫描电子显微镜和场发射扫描电镜。

2表面形貌衬度原理及应用二次电子信号主要用于分析样品的表面形貌。

二次电子只能从样品表面层5—10nm 深度范围内被入射电子束激发出来,大于10nm时,虽然入射电子也能使核外电子脱离原子而变成自由电子,但因其能量较低以及平均自由程较短,不能逸出样品表面,最终只能被样品吸收。

扫描电镜观察铜铁合金断口形貌实验报告

扫描电镜观察铜铁合金断口形貌实验报告

扫描电镜观察铜铁合金断口形貌实验报告
这是一项金属材料实验,通过扫描电镜观察铜铁合金断口形貌,可以从中得到材料断口的结构和形态信息,进而分析其力学性能和断裂机理。

以下是实验报告的大致结构:
I. 实验目的
明确实验的目的以及研究对象,说明实验的重要性和意义。

II. 实验原理
介绍使用扫描电镜观察材料断口形貌的原理,包括仪器的工作原理和样品的制备方法。

III. 实验步骤
详细介绍实验的具体操作步骤,包括样品的制备、仪器参数的调节、图像的获取和处理等。

IV. 实验结果与分析
给出观察到的铜铁合金断口形貌图像,并进行定性和定量分析,包括断口的结构特征、晶粒尺寸、裂纹形态等。

V. 结论
总结实验结果,分析材料的断裂机理和力学性能,归纳实验中的经验和教训。

VI. 实验小结
简要评价实验的完成情况和实验结果的可靠性,并提出改进建议。

以上是可能的实验报告结构,具体可根据实验的具体要求和实验结果的复杂程度进行适当调整。

同时需要注意保证实验数据的准确性和科学性,避免出现武断、个人化的结论。

扫描电镜的结构及典型试样形貌观察

扫描电镜的结构及典型试样形貌观察

实验目的■1 •了解扫描电镜的用途、结构及基本原理;■2 ■了解扫描电镜的样品制备;■3■上机操作,利用二次电子信号观察样品形貌。

二实验仪器■ KYKY-2800扫描电镜■扫描电子显微镜的主要性能■放大倍数电子束在样品表面扫描的幅度为As,在荧光屏阴极射线同步扫描的幅度为Ac,则扫描电镜的放大倍数为:M二Ac/As。

目前商品化的扫描电镜放大倍数可以从20倍调节到20万倍左右。

■分辨率分辨率是扫描电镜的主要性能指标,它是指分辨两点之间的最小距离。

分辨率大小由入射电子束直径和调制信号类型共同决定。

电子束直径越小,分辨率越高。

由于用于成像的物理信号不同,它们的分辨率也不同。

二次电子像的分辨率约为5・10 nm,背反射由字像的约为50-200nm o寸娥的分辨車则更低。

■景深景深是指一个透镜对高低不平的试样各部位能同时聚焦成像的一个能力范围。

电子束孔径角是决定扫描电镜景深的主要因寒它取决手末级透镜的光箱宣径和工作距离。

扫描由饒的末级透镜采用小孔径角,长焦距,所以可以获得很大的景深,它比一般光学显微镜景深大100-500倍,比透射电镜的景深大10倍。

因此用图Array一KYKY—2800型扫描电镜扫描电镜光学系统及成像示意图扫描放大器扫描线圈物镜试样二次电子信号放大器探测器电子枪聚光镜显示器镜筒离子泵图3真空系统放气阀V6 M旁路阀V3 Q I TCsO TC1 TC2 [扩散泵前级阀V2 Q储气瓶VI阀样品室主阀V5镜筒阀V4=O热偶规TC4挡板扩散泵■冷规SEM基本原理■扫描电镜利用电子枪发射电子束,电子束经过聚焦后在样品表面扫描,激发样品产生各种物理信号(如图4所示),信号经过检测、视频放大和信号处理,在荧光屏上显示岀能反映样品表面各种特征的扫描图像的显微镜。

入射电子束IUU-电子束与物质相互作用及产生的信息俄歇电子 二次电子 连续X 射EU000T02 ETU0005〜00「四利用扫描电镜观察样品形貌的操作步骤20 KV 500 X '~100 um~ SEM SN:00仃图5不同失效形式的扫描图像图a为表面失效形式中的波磨失效图b为表面失效形式中的犁沟失效图c为表面失效形式中的剥落失效25 KV 60.OX 1mm KYKY-2800 435" 25 KV 1.50KX 10 um KYKY-2800B SEM SN:0634 图6不同断口形貌的扫描图像25 KV 500 X 100 um KYKY-2800B SEM SN:0651am图7样品组织的扫描图像图a为带有滑移线的奥氏体组织图b为贝氏体组织20 KV 2.00K KYKY-2800BSEM SN:004320 KV 500 X 100 um KYKY-2800B SEM SN:0084。

扫描电镜实验报告

扫描电镜实验报告

扫描电镜实验报告姓名:日期:2011年6月2日一、实验目的1、结合扫描电镜(SEM)实物,介绍其基本结构和工作原理,加深对扫描电镜结构及原理的了解。

2、应用SEM扫描观察实验样品的表面形貌。

二、实验仪器JEOL JSM-6490LV型扫描电子显微镜三、实验原理及内容扫描电子显微镜(SEM)的设计思想和工作原理,早在1935年便已被提出来了。

1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。

经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,1956年开始生产商品扫描电镜。

近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。

1、扫描电镜的基本结构(如图1所示)1)电子光学系统:电子枪、聚光镜、物镜光阑;2)扫描系统:扫描信号发生器、扫描放大控制器、扫描偏转线圈;3)信号探测放大系统:探测二次电子、背散射电子等信号;4)图像显示和记录系统:早期SEM采用显像管、照相机等,数字式SEM采用电脑系统进行图像显示和记录管理;5)真空系统:真空泵高于10-4Torr,常用机械真空泵、扩散泵、涡轮分子泵;6)电源系统:高压发生装置、高压油箱。

图1 扫描电镜成像原理图1—电子枪;2—镜筒;3—试样室;4—脉冲多道分析器;5—计算机;6—数据储存;7—视频放大器;8—信号处理系统;9—显象管;10—扫描发生器;11—Si (Li )检测器L —电磁透镜;C —扫描线圈;S —试样;D1—二次电子检测器;D2—背反射电子检测器;SE —二次电子;BSE —背反射电子;SC —试样电流;EBIC —电子感生电流电子枪提供一个稳定的电子源,以形成电子束。

灯丝加热到工作温度后,出射的电子便离开V 型尖端。

由于阴极(灯丝)和阳极间加有1~30KV (一般20KV左图2 自偏压电子枪结构图右)的高压,这些电子则向阳极加速运动。

扫描电镜在材料表面形貌观察及成分分析中的应用

扫描电镜在材料表面形貌观察及成分分析中的应用

扫描电镜在材料表面形貌观察及成分分析中的应用一、实验目的1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途;2)了解能谱仪的基本结构、原理和用途;3)了解扫描电镜对样品的要求以及如何制备样品。

二、实验原理(一)扫描电镜的工作原理和结构1. 扫描电镜的工作原理扫描电镜是对样品表面形态进行测试的一种大型仪器。

当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。

在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。

如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。

扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。

图1 入射电子束轰击样品产生的信息示意图从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。

由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。

由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。

这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。

这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。

入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描电镜的结构

扫描电镜由电子光学系统,信号收集及显 示系统(图2所示), 真空系统(图3所示) 及电源系统组成。
扫描电镜光学系统及成像示意图
电子枪
显示器
聚光镜 扫描 放大器 扫描线圈 物镜 试样 二次电子 探测器 信号 放大器
图2
离子泵 镜筒 离子泵手动阀
图 3 真 空 系 统 抽气管
机械泵 储气瓶 放气阀V6 旁路阀V3 TC3 TC1 扩散泵前级阀V2 TC2

图6-a为断口形貌中的沿晶断裂 图6-b为断口形貌中的解理断裂 图6-c为断口形貌中的韧窝断裂 图6-d为断口形貌中的疲劳断裂
a
b
图7 样品组织的扫描图像
图a为带有滑移线的奥氏体组织 图b为贝氏体组织
五 实验报告要求
明确本次实验目的; 简单画出扫描电镜的成像原理图; 简述所观察样品的二次电子像形貌特征。


5~50nm
1nm
入 射 电 子 束
500~5000nm
100~1000nm
俄歇电子 二次电子 背散射电子 特征X射线
连续X射线
背散射电子空间分辨率 X射线的分辨率
图4
三 扫描电镜样品的制备



ቤተ መጻሕፍቲ ባይዱ
1.要求干净,干燥的块状或粉末样品,尺 寸不大于φ20×10mm。 2.金属断口样品:要求是干净、新鲜的表 面;如果是金相样品须进行深腐蚀。 3.非金属样品须在真空镀膜机中喷镀金、 铝或碳,以保证样品导电性良好。
一 实验目的
1.了解扫描电镜的用途、结构及基本原理; 2.了解扫描电镜的样品制备; 3.上机操作,利用二次电子信号观察样品 形貌。

二 实验仪器



KYKY-2800扫描电镜 扫描电子显微镜的主要性能 放大倍数 电子束在样品表面扫描的幅度为As,在荧光屏阴极射 线同步扫描的幅度为Ac,则扫描电镜的放大倍数为: M= Ac /As。 目前商品化的扫描电镜放大倍数可以从20倍调节到20万倍左右。 分辨率 分辨率是扫描电镜的主要性能指标,它是指分辨两点之 间的最小距离。分辨率大小由入射电子束直径和调制信号类型共 同决定。电子束直径越小,分辨率越高。由于用于成像的物理信 号不同,它们的分辨率也不同。二次电子像的分辨率约为5-10 nm,背反射电子像的约为50-200nm。X射线的分辨率则更低。 景深 景深是指一个透镜对高低不平的试样各部位能同时聚焦成 像的一个能力范围。 电子束孔径角是决定扫描电镜景深的主要因 素,它取决于末级透镜的光栅直径和工作距离。 扫描电镜的末级 透镜采用小孔径角,长焦距,所以可以获得很大的景深,它比一 般光学显微镜景深大100-500倍,比透射电镜的景深大10 倍。因 此用扫描电镜观察试样断口具有其它分析仪器无法比拟的优点。
四 利用扫描电镜观察样品形貌的操作步骤
向冷却阱中加入液氮。打开样品室, 装样,关闭样品室,抽真空 通过Z轴调节工作距离 (最佳值为12mm) 调节X、Y轴, 寻求感兴趣的样品区域 当真空指示灯亮时,打开V1阀, 加电压至20kV,电流加至60μA
调节对比度和亮度, 使样品在显示屏上显示出来
调整放大倍数并调焦 (要遵循高倍聚焦低倍照的原则) 打开样品室,取出样品, 关上样品室,抽真空, 当真空指示灯亮时, 将仪器置于准备状态,完毕
1 KYKY-2800 图
型 扫 描 电 镜
扫描电镜(SEM)的用途

扫描电镜主要用于研究各种不同样品的组 织及表面形貌,它可以应用到各个领域之 中的不同方向,它以各种不同的实物为研 究对象。例如,它可以研究金属及合金的 组织,磨损形貌,腐蚀和断裂形貌;也可 以很方便地研究玻璃,陶瓷,纺织物等的 细微结构和形貌;
V1阀 样品室 热偶规TC4
主阀V5
镜筒阀V4
挡板 扩散泵
冷规
SEM基本原理

扫描电镜利用电子枪发射电子束,电子束 经过聚焦后在样品表面扫描,激发样品产 生各种物理信号(如图4所示),信号经过 检测、视频放大和信号处理,在荧光屏上 显示出能反映样品表面各种特征的扫描图 像的显微镜。
电子束与物质相互作用及产生的信息
慢速扫描,照相,保存
做完后,将电流和电压值回零, 将对比度、亮度值回零, 放大倍数降到100左右,关闭V1阀
a
b
c
图5 不同失效形 式的扫描图像
图a为表面失效形式中的波磨失效 图b为表面失效形式中的犁沟失效 图c为表面失效形式中的剥落失效
a
b
图 6 不 同 断 口 形 貌 的 扫 描 图 像
c
d
相关文档
最新文档