弧长和扇形面积(练习2)
弧长与扇形面积经典习题(有难度)

弧长与扇形面积练习题1. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π2. 如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cmB.35cm C.8cm D.53cm3.如图,是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A.60° B.90° C.120° D.180°12cm 6cm7.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π8.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC= 6cm,点P是母线BC上一点,且PC=23 BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(64π+)cm B.5cm C.35cm D.7cm9.如图,半径为1的小圆在半径为 9 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为()A . 17πB . 32πC . 49πD . 80π10. 如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧⌒BC的弧长为().A.33πB.32πC.πD.32π11. 在半径为4π的圆中,45°的圆心角所对的弧长等于.12. 已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是 m。
(结果用π表示)13.如图,圆锥的底面半径OB为10cm,它的展开图扇形的半径AB为30cm,则这个扇形的圆心角a的度数为____________.14. 如图,点A、B、C在直径为32的⊙O上,∠BAC=45º,则图中阴影的面积等于______________,(结果中保留π).2、如果一条弧长等于l,它的半径等于R,这条弧所对的圆心角增加1o,则它的弧长增加()A.lnB.180RπC.180lRπD.360l3、已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A、18πcm2B、36πcm2C、12πcm2D、9πcm24、圆的半径增加一倍,那么圆的面积增加到()A、1倍B、2倍C、3倍D、4倍5、一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A、1.5cmB、7.5cmC、1.5cm或7.5cmD、3cm或15cm8、扇形的周长为16,圆心角为360πo,则扇形的面积是()A.16 B.32 C.64 D.16π10、如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与12∠BOC相等的角共有()A、2个B、3个C、4个D、5个15、如图,将三角尺ABC(其中∠B=60°,∠C=90°,AB=6)绕点B按顺时针转动一个角度到A1BC1的位置,使得点A、B、C1在同一条直线上,点A所经过的路程是()A、2πB、4πC、8πD、12π16、如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.则在圆锥的侧面上从B 点到P 点的最短路线的长为( )13、如图,扇形OAB 的圆心角为90o,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是()A.P Q = B.P Q > C.P Q <D.无法确定17、如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点。
人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。
任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。
5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。
人教版九年级数学上册课件:弧长和扇形面积 (2)

制造弯形管道时,要先按中心线计算“展直长度”,再下料 ,试计算图所示管道的展直长度L(结果取整数) .
解:由弧长公式,可得弧AB 的长 因此所要求的展直长度
1.弧长相等的两段弧是等弧吗?
2.如图,有一段弯道是圆弧形的,道长是12m,弧所对的圆 心角是81°.这段圆弧所在圆的半径R是多少米(结果保留小 数点后以为)?
圆锥中的最短路径问题
如图,已知点 P 是圆锥母线 OM 上一点,OM =6,OP =4, 圆锥的侧面积为12π,一只蜗牛从 P 点出发,绕圆锥侧面爬行 一周回到点P,则爬过的最短路线长为______.
圆锥中的最短路径问题
如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面 圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一 母线AC上,问它爬行的最短路线是多少?
答案:2π.
扇形面积计算综合
如图,直径 AB 为 8 的半圆,绕 A 点逆时针旋转 60°,此时点 B 到了点 B ',则图中阴影部分的面积是___________.
圆锥中的最短路径问题
圆锥的底面半径是 1,母线长是 4,一只蜘蛛从底面圆周上的 一点 A 出发沿圆锥的侧面爬行一周后回到 A 点,则蜘蛛爬行的 最短路径的长是________.
如图,⊙A,⊙B,⊙C,⊙D 两两不相交,且半径都是2cm ,求图中阴影部分的面积. 提示:可以先算非阴影部分的扇 形面积之和.
答案:12π.
如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其 中水面高0.9cm,求截面上有水部分的面积(结果保留小数 点后两位).
如下图中每个阴影部分是以多边形各顶点为圆心,1 为半径的 扇形,并且所有多边形的每条边长都大于 2,则第 n 个多边 形中,所有扇形面积之和是___________( 结果保留π,用含 n 式子表示 ).
初中数学浙教版九年级上册3.8弧长及扇形的面积(2)同步练习

初中数学浙教版九年级上册3.8弧长及扇形的面积(2)同步练习一、单选题(共10题;共20分)1.一个扇形的半径为6,圆心角为,则该扇形的面积是()A. B. C. D.2.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为4的“等边扇形”的面积为()A. 8B. 16C. 2πD. 4π3.如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只羊(羊在草地上活动),那么羊在草地上的最大活动区域面积是()平方米.A. B. C. D.4.钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()A. B. C. D.5.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A. B. 1﹣ C. ﹣1 D. 1﹣6.如图,圆的四条半径分别是OA,OB,OC,OD,其中点O,A,B在同一条直线上,若∠AOD=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是()A. 1:2:2:3B. 3:2:2:3C. 4:2:2:3D. 1:2:2:17.如图所示,分别以边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为()A. B. C. D.8.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B为圆心, AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A. 16﹣2πB. 16﹣πC. 8﹣2πD. 8﹣π9.如图,扇形纸扇完全打开后,扇形ABC的面积为,∠BAC=150°,BD=2AD,则的长度为( )A. B. C. D.10.如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…P n…,记纸板P n的面积为S n,则S n-S n+1的值为( )A. B. C. D.二、填空题(共5题;共5分)11.一个扇形的半径为,面积为,则此扇形的圆心角为________.12.将长为8cm的铁丝首尾相接围成半径为2cm的扇形,则S扇形=________cm2.13.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为________.(答案用根号表示)14.如图,扇形AOB的圆心角是为90°,四边形OCDE是边长为1的正方形,点C,E,D 分别在OA,OB,上,过A作AF⊥ED交ED的延长线于点F,那么图中阴影部分的面积为________.15.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连结AC,BD.若图中阴影部分的面积是,OA=2,则OC的长为________.三、解答题(共4题;共40分)16.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,CD=,求阴影部分的面积.17.△ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1、B1的坐标分别是.(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形;(3)求出线段AC在(2)的条件下所扫过的面积.18.如图是一种正方形地板砖图样,阴影部分是由两个扇形(四分之一圆)重叠产生的.(1)设正方形边长为a,用含a的代数式表示图中阴影部分的面积S;(2)现在要按照图样制作地板砖若制成边长为0.3m的地板砖,求每块地板砖中阴影面积(单位:m2,π≈3.14,精确到0.01)19.如图,AB为⊙O的直径,CD是弦,AB⊥CD于点E,OF⊥AC于点F,BE=OF.(1)求证:△AFO≌△CEB;(2)若BE=4,CD = 求:①⊙O的半径;②求图中阴影部分的面积.答案解析部分一、单选题1.【答案】C【解析】【解答】解:该扇形的面积S=,故答案为:C.【分析】根据扇形的面积公式计算即可.2.【答案】A【解析】【解答】解:∵扇形的弧长等于它的半径,当半径为4时,∴此扇形的弧长为4,∴此等边扇形”的面积为.故答案为:A.【分析】根据等边扇形”的定义,可知已知扇形的半径和弧长都为4,再利用扇形的面积公式:S扇形=(l为扇形的弧长,r为扇形的半径),代入计算可求解。
圆的弧长与扇形面积综合练习题

圆的弧长与扇形面积综合练习题题1:已知一个半径为3cm的圆的弧长为12πcm,求扇形的面积。
题解:求扇形的面积时,需要知道扇形的圆心角和半径。
已知圆的弧长是12πcm,可以计算出圆心角的大小。
因为弧长等于半径乘以圆心角的弧度,所以可以得到12π = 3cm × 圆心角。
解方程可以得到圆心角为4π/3弧度。
扇形的面积等于圆心角占据的比例乘以整个圆的面积,所以扇形的面积为(4π/3)(π(3)^2) = 12π平方cm。
题2:若一个圆的半径是5cm,那么它的弧长和扇形面积各是多少?题解:已知圆的半径是5cm,它的弧长可以计算得出。
弧长等于半径乘以圆心角的弧度,所以弧长等于5cm ×圆心角。
圆心角的弧度可以通过圆弧长除以半径得到。
假设圆心角为θ弧度,则弧长为5θ。
要求扇形的面积,也需要知道圆心角的大小。
同样,我们可以利用扇形的面积公式,并确认圆心角的弧度为θ。
扇形的面积等于圆心角占据的比例乘以整个圆的面积。
所以扇形的面积为θ(π(5)^2) = 25θπ平方cm。
题3:已知一个扇形的半径是8m,扇形的面积是12π平方m,求圆心角和弧长各是多少?题解:已知扇形的半径是8m,扇形的面积是12π平方m。
要求圆心角的大小,可以利用扇形面积的公式,并确认圆心角的弧度为θ。
扇形的面积等于圆心角占据的比例乘以整个圆的面积,所以12π平方m = θ(π(8)^2)。
解方程可以得到θ = 3π/4。
要求弧长的大小,同样可以利用扇形的面积公式,但是需要先计算出圆心角的弧度。
扇形的面积等于圆心角占据的比例乘以整个圆的面积,所以12π平方m = (3π/4)(π(8)^2)。
解方程可以得到弧长为6πm。
题4:一个扇形的圆心角是π/2,弧长是4,求扇形的面积。
题解:已知扇形的圆心角是π/2,弧长是4。
要求扇形的面积,需要用到圆心角和半径的关系。
圆心角所占的比例乘以整个圆的面积就是扇形的面积。
所以扇形的面积等于(π/2)(πr^2),其中r表示圆的半径。
弧长和扇形面积(2)

教学内容2 .扇形的概念;4 .应用以上内容解决一些具体题目.教学目标了解扇形的概念,理解n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.n R2的计算公式,360重难点、关键1 .重点:n R n R2n °的圆心角所对的弧长L= ,扇形面积S扇= 及其它们的应用.2 .难点:两个公式的应用. 弧长和扇形面积的圆心角所对的弧长L=n R 1803.圆心角为n的扇形面积是S扇形=360通过复习圆的周长、圆的面积公式, 探索n的圆心角所对的弧长L=n R2 3180和扇形面积并应用这些公式解决一些题目.(老师口问,学生口答)请同学们回答下列问题. 1 •圆的周长公式是什么? 2 •圆的面积公式是什么? 3 •什么叫弧长?老师点评:(1 )圆的周长C=2 R(2 )圆的面积S 图=R 2 (3 )弧长就是圆的一部分.二、探索新知(小黑板)请同学们独立完成下题:设圆的半径为R ,则:1. ______________________ 圆的周长可以看作 的圆心角所对的弧.2. 1°的圆心角所对的弧长是 _________ _3. 2。
的圆心角所对的弧长是 ________ _ 4 . 4。
的圆心角所对的弧长是 _______ _5 . n °的圆心角所对的弧长是 _______ .(老师点评)根据同学们的解题过程,我们可得到:.c的圆心角所对的弧长为n R360例1制作弯形管道时,需要先按中心线计算“展直长度”再下料, ?试计算如图所示的管道的展直长度,即 A B 的长(结果精确到 0.1mm )分析:要求A B的弧长,圆心角知,半径知,只要代入弧长公式即可.解:R=40mm ,n=110石―n R 110 40 /• AB 的长= = ~76.8 (mm )180 180因此,管道的展直长度约为76.8mm .问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m?的绳子,绳子的另一端拴着一头牛,如图所示:(1 )这头牛吃草的最大活动区域有多大?(2)如果这头牛只能绕柱子转过n °角,那么它的最大活动区域有多大?学生提问后,老师点评:(1 )这头牛吃草的最大活动区域是一个以 A (柱子)为圆心,5m为半径的圆的面积.(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n °圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:.c像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. (小黑板),请同学们结合圆心面积S= R2的公式,独立完成下题:1.该图的面积可以看作是 _________ 的圆心角所对的扇形的面积.2 .设圆的半径为R, 1。
浙教版九年级上第三章圆同步练习3.8弧长及扇形的面积(2)

3.8 弧长及扇形的面积(2)第2课时 扇形的面积公式基础题知识点1 扇形的面积公式(S =n πR 2360=12lR ) 1.⊙O 的半径为9 cm ,AB ︵的长是5π cm ,则扇形OAB 的面积是( )A .22.5π cm 2B .25π cm 2C .45π cm 2D .100π cm 22.(吉林中考)如图,阴影部分是两个半径为1的扇形,若α=120°,β=60°,则大扇形与小扇形的面积之差为( )A .π3B .π6C .5π3D .5π63.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,那么半径为2的“等边扇形”的面积为( )A .πB .1C .2D .23π 4.(温州中考)已知扇形的面积为3π,圆心角为120°,则它的半径为 .知识点2 阴影部分的面积5.(甘孜中考)如图,已知扇形AOB 的半径为2,圆心角为90°,连结AB ,则图中阴影部分的面积是( )A .π-2B .π-4C .4π-2D .4π-46.(丽水中考)如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( )A .4π3- 3 B .4π3-2 3 C .2π3- 3 D .2π3-327.(湖州中考)如图,已知C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径OA =2,∠COD =120°,则图中阴影部分的面积等于 .8.如图,△ABC 中,∠A =30°,AB =AC ,以B 为圆心,BC 长为半径画弧,交AC 于点D ,交AB 于点E .(1)求∠ABD 的度数;(2)当BC =2时,求线段AE ,AD 与DE ︵围成阴影部分的面积.知识点3 应用面积公式解决实际问题9.如图,这是中央电视台《曲苑杂坛》节目中的一幅图案,它是一幅扇形图案,其中∠AOB 为120°,OC 的长为8 cm ,CA 的长为12 cm ,则阴影部分的面积为( )A .64π cm 2B .112π cm 2C .144π cm 2D .152π cm 210.(潍坊中考)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8 cm ,水的最大深度是2 cm ,则杯底有水部分的面积是( )A .(16π3-43)cm 2B .(16π3-83)cm 2C .(8π3-43)cm 2D .(4π3-23)cm 2 中档题11.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( )A .2πB .πC .π3D .2π312.(桂林中考)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连结AD ,则图中阴影部分面积是 ( )A .πB .5π4C .3+πD .8-π13.(衢州中考)运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8.则图中阴影部分的面积是( )A .252πB .10πC .24+4πD .24+5π14.如图,扇形OAB 的圆心角为90°,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是 .第12题 第13题 第14题15.(金华月考)如图,已知AB 是半圆O 的直径,点P 是半圆上一点,连结BP ,并延长BP 到点C ,使PC =PB ,连结AC .(1)求证:AB =AC ;(2)若AB =4,∠ABC =30°.①求弦BP 的长;②求阴影部分的面积.综合题16.如图,扇形ODE 的圆心角为120°,正三角形ABC 的中心恰好为扇形ODE 的圆心,且点B 在扇形ODE 内.(1)请连结OA 、OB ,并证明△AOF ≌△BOG ;(2)求证:△ABC 与扇形ODE 重叠部分的面积总等于△ABC 面积的13.。
弧长与扇形面积练习题与答案

知识点:1、 弧长公式: l n R(牢记)180在半径是 R 的圆中, 360 度的圆心角多对的弧长就是圆的周长 Cn R2 12、扇形面积公式: S扇形=或 S 扇形= 1lR (牢记) 360 23、圆锥的侧面积和全面积(难点) 圆锥的侧面展开图形是一个扇形,这个扇形的半径是圆锥的母线长R ,扇形的弧长是圆锥底面圆的周长。
典型例题1.已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积是 【关键词】圆锥侧面积、扇形面积答案:22000 cm 2;2. (2010 年福建省晋江市) 已知:如图,有一块含 30 的直角三角板 OAB 的直角边长 BO的长恰与另一块等腰直角三角板 ODC 的斜边 OC 的长相等,把该套三角板放置在平面 直角坐标系中,且 AB 3.(1) 若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2) 若把含 30 的直角三角板绕点 O 按顺时针方向旋转后,斜边 OA 恰好与 x 轴重叠,点 A 落在点 A ,试求图中阴影部分的面积 (结果保留 ).弧长和扇形面积答案:解: (1) 在 Rt OBA 中, AOB 30 , AB 3,OBcot AOB ,AB∴ OB AB cot30 3 3 ,∴点 A 3,3 3设双曲线的解析式为 ykk 0x∴3 3 k, k 9 393 ,则双曲线的解析式为 y3x(2) 在 Rt OBA 中,AOB 30 , AB 3 ,AB3sin AOB , sin30 ,OAOA∴ OA 6.关键词】反比例函数、扇形面积 yBO C AyA由题意得: AOC 60 ,260 62360在 Rt OCD 中, DOC 45 , OC OB 3 3 ,OD OC cos45332 3622212 1 3627.S ODC OD2224S阴=S扇形 AOA'SODC6 2743. (2010 年浙江省东阳市)在如图的方格纸中,每个小方格 都是边长为 1 个单位的正方形, △ABC 的三个顶点 都在 格点上(每个小方格的顶点叫格点) .( 1)如果建立直角坐标系,使点 B 的坐标为(- 5,2 ),点C 的坐标为(- 2, 2),则点 A 的坐标为 ▲ ; (2) 画出 △ABC 绕点P顺时针旋转 90 后的△A 1B1C,并求线段 BC 扫过的面积 .关键词:扇形面积公式 答案:(1)A(-4,4)(2)图略线段 BC 扫过的面积= (4 -1 )= 15444、( 2010 福建德化) 已知圆锥的底面半径是 3cm ,母线长为 6cm ,则侧面积为__________________________________________________________ cm 2.(结果保留 π) 关键词:圆锥侧面积答案: 185、已知圆锥的底面半径为 关键词:圆锥的高 3,侧面积为 15 ,则这个圆锥的高为 ▲ 答案: 4S扇形 AOA'6(2010年门头沟区).如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为 AB 的等腰梯形,上底CD的端点在圆周上,且 CD=10cm.求图中阴影部分的面积.【关键词】圆、梯形、阴影部分面积答案】 解:连结 OC , OD ,过点 O 作 OE ⊥CD 于点 E. ∵OE ⊥CD ,∴CE=DE=5, ∴OE= CO 2CE 2102 52 =5 3,∵∠ OED=9°0 ,DE= 1 OD , ∴∠DOE=3°0 ,∠DOC=6°0 . 2S△ OCD =2·OE ·CD= 25 3 (cm 2)50 2∴S 阴影 = S 扇形 - S △OCD = ( π- 25 3) cm3 50∴阴影部分的面积为 ( 530π- 25 3) cm 2.60102∴ S扇形36050(cm 2)33分7. (2010 年山东省济南市)如图,四边形 OABC 为菱形,点 ⌒B 、C 在以点 O 为圆心的 EF 上,若 OA =1,∠ 1=∠2,则扇形 OEF 的面积为 π π πA. B. C. 6 4 3 【关键词】扇形的面积 【答案】 C D.2πO8. ( 2010年台湾省) 如图(十三),扇形 AOB 中, OA=10, AOB =36 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧长和扇形面积(练习2)第1题. 如图10,扇形O D E 的圆心角为120 ,正三角形ABC 的中心恰好为扇形O D E 的圆心,且点B 在扇形O D E 内(1) 请连接O A O B 、,并证明A O F B O G △≌△; (2) 求证:A B C △与扇形O D E 重叠部分的面积等于A B C △面积的13.答案:(1)连结O A O B 、(如图) O 是正三角形ABC 的中心. O A O B ∴=.O A F O B ∠=∠.3601203AO B ∠==又120DOE ∠=A OB D O ∴∠=∠ A O B B O D D O E ∴∠-∠=∠-∠ 即A O F B O G ∠=∠故AO F BO G △≌△ (2)BO G BO F BG O F S S S =+ △△四边形而AO F BO G △≌△. 有BOG AOF S S =△△ AO FB O FBGOF S S SS ∴=+=△△△四边形又O 是正三角形ABC 的中心. 13AOBAB CS S ∴=△△BG OFS ∴四边形13A B C S =△即A B C △与扇形O D E 重叠部分的面积等于A B C △面积的13.DAE第2题. 如图,两个半径为1,圆心角是90的扇形O A B 和扇 形O A B '''叠放在一起,点O '在 AB 上,四边形OPO Q '是正方 形,则阴影部分的面积等于 . 答案:12-π第3题. 下图是一纸杯,它的母线A C 和E F 延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形O A B .经测量,纸杯上开口圆的直径为6cm ,下底面直径为4cm ,母线长8E F =cm .求扇形O A B 的圆心角及这个纸杯的表面积(面积计算结果用π表示).答案:解:由题意可知:6AB =π, 4C D =π 设AOB n ∠=,A O R =,则8C O R =-由弧长公式得:6180n R =ππ,(8)4180n R -=ππ解方程组618041808nR nR n⨯=⎧⎨⨯=-⎩得4524n R =⎧⎨=⎩答:扇形O A B 的圆心角是45∵24R = 816R -= 1AA BB '(第2题图)O1624722OABS =⨯⨯=扇形ππ 7232O A B O CD S S S =-=-纸杯侧面积扇形扇形ππ 40=π224S =⋅=纸杯底面积ππ.40444S =+=纸杯表面积πππ.第4题. 半径为R 的圆弧 AB 的长为12R π,则AB 所对的圆心角为 ,弦A B 的长为 .答案:90第5题. 半径为5的圆的弧长等于半径为2的圆的周长,则在半径为5的圆中,这条弧所对的圆心角的度数为 .答案:144第6题. 在半径为4cm 的圆中,弧长为2cm 3π的弧所对的圆周角的度数为 .答案:15第7题. 一个扇形的圆心角为30,半径为12cm ,则这个扇形的面积为 .答案:212cm π第8题. 如图,1O 和2O 是半径为6的两个等圆,且互过圆心,则图中阴影部分的面积为.答案:24π-第9题. 如图,△ABC 内接于O ,4cm AB BC C A ===,则图中阴影部分的面积为 .答案:216)93π-第10题. 如图,O A 是O 的半径,A B 是以O A 为直径的O ' 的弦,O B '的延长线交O 于C 点,且4O A =,45OAB ∠= ,则由 AB ,A C 和线段BC 所围成的图形(影阴部分)的面积是 .答案:53π-第11题. 已知扇形的圆心角为60,半径为5,则扇形周长为( )A.53πB.53π+10 C.56π D.5106π+答案:B第12题. 如果扇形的圆心角为150 ,半径是6,那么扇形的面积为( )A.5π B.10π C.15π D.30π答案:C第13题. 如图,1O ,与2O 外切于点C ,M 与1O ,2O 都相内切,切点分别为A ,B ,1O 与2O 的半径均为2,M 的半径为6,求图中阴影部分的面积.答案:连结12O O ,1M O ,2M O 并延长,则1M O ,2M O 分别过点A ,B .124O O = ,124O M O M ==,1212O O O M O M ∴==,122160M M O O M O O ∴∠=∠=∠=,12120AO C BO C ∴∠=∠=.12160112024423602236081063M O O M AB O AC S S S S 22⎛π⨯6π⨯2=--=-⨯⨯⨯-⨯ ⎝⎭π=π-=π-3 阴影扇形扇形第14题. 如图,正方形A B C D 的边长为2,分别以B ,D 为圆心,2为半径画弧,求图中阴影部分的面积.答案:2909022360360ABCD BAC DAC S S S S 22π⨯2π⨯2=+-=+-=π-4阴影正方形扇形扇形.D第15题. 如图,阴影部分是某一个广告标志,已知两圆弧所在圆的半径分别是20cm ,10cm ,120AOB ∠=,求这个广告标志的周长(精确到0.1cm ).答案:设半径为20cm ,10cm 的圆弧长分别为1l 和2l .124080(cm )180l π20π==3,224040(cm )180l π10π==3.广告标志的周长为128040(2010)240cm l l A C B D ππ+++=++-⨯=π+20≈145.6()33.第16题. 如图,1O 与2O 相外切于C 点,A B 切1O 于A 点,切2O 于B 点,21O O 的延长线交1O 于点D ,与B A 的延长线交于点P . (1)求证:2221P O P C P AP O =;(2)若AB =,6cm P C =,求图中阴影部分的面积.答案:(1)连结1O A ,2O B ,B C ,A C ,则12O A O B ∥,12180AO C BO C ∴∠+∠=.11O A O C = ,11O AC O C A ∴∠=∠,同理22O CB O BC∠=.112212360()180O AC O C A O C B O BC AO C BO C ∠+∠+∠+∠=-∠+∠=,1290AC O BC O ∴∠+∠= ,90ACB ∴∠= ,90CAB CBA ∴∠+∠=,11C BA O AC O C A ∠=∠=∠.P又C PA BPC ∠=∠ ,∴△PAC ∽△P C B ,P C P B P AP C∴=,2PC PA PB = .222PC PA PB PB PAPAPA∴==.12O A O B ∥,21PO PB PAPO ∴=,2221P O P C P AP O ∴=.(2)设P A x =,由2PC PA PB =,得(36x x +=,解得x =2PA PD PC =,226PAPD PC∴===,4C D ∴=,14PO =,11sin 2PA PO A PO ∠==160PO A ∴∠= ,1120AO C ∴∠= ,260B O C ∠=.1213AO PA BO PB==,26O B =,121221422(26)cm 233OA B O OA COB CS S S S =--=+⨯π-6π=π()阴影梯形扇形扇形第17题. 如图中的五个半圆,邻近的两个半圆相切,两只小虫以相同速度,同时从A 点到B 点,甲虫沿 1ADA , 12A EA , 23A FA , 3A GB 路线爬行;乙虫沿A CB 路线爬行,则下列结论正确的是( )A.甲先到达B 点 B.乙先到达B 点 C.甲、乙同时到达B 点 D.无法确定答案:C第18题. 如图,正方形A B C D 的边长为2,以C D 为直径在正方形内画半圆,再以D 为圆心,2为半径画弧A C ,则图中阴影部分的面积为() A.π B.23π C.32π D.2πD EFGC1A2A3A答案:D第19题. 如图,半圆O 的弦A B 平行直径C D ,已知24AB =,半圆E F 与A B 相切,求圆中阴影部分的面积.答案:如图所示,将小半圆沿C D 平行移动,使其圆心与点O 重合,这样所求阴影部分的面积不变.设平移后,小圆与线段A B 相切于G 点,连O G ,O B ,O G A B ∴⊥,且11241222B G A B ==⨯=.在Rt △O BG 中,222212144OB OG GB -===.2222211112222S S S O B O G O B O G G B 1=-=π-π=π(-)=π=π⨯144=72π2阴影大半圆小半圆.第20题. 已知一圆的周长为8cm π,其圆周上一段弧长为3cm π,则该弧所对的圆周角为 .答案:67.5第21题. 如果弧长为l ,圆心角度数为n ,圆的半径为r ,那么,弧长的计算公式为 .答案:180n r l π=第22题. 如果设圆心角是n 的扇形面积为S ,圆的半径为r ,那么扇形的面积为 .答案:2360n rS π=或12S lr =第23题. 圆心角为30 ,半径为R 的弧长为 . 答案:6R π第24题. 圆周长为6π,则60 圆心角所对应的弧长为 .答案:π第25题. 在半径为1cm 的圆中,弧长为23π的弧所对应的圆周角为 .答案:60第26题. 在O 中,如果120的圆心角所对应的弧长为43π,则O 的半径为 .答案:2第27题. 如果O 的半径3cm ,其中一弧长2πcm ,则这弧所对的弦长为 .答案:第28题. 圆心角是180 ,占整个周角的180360,因此它所对的弧长是圆周长的 .答案:12第29题. 圆心角是n ,占整个周角的 ,因此它所对的弧长是圆周长的 . 答案:360n ,360n第30题. 扇形的面积为34cm 2,扇形所在圆的半径32cm ,求扇形的圆心角.答案:120。